1
|
Pais-Costa AJ, Marques A, Oliveira H, Gonçalves A, Camacho C, Augusto HC, Nunes ML. New Perspectives on Canned Fish Quality and Safety on the Road to Sustainability. Foods 2025; 14:99. [PMID: 39796393 PMCID: PMC11719813 DOI: 10.3390/foods14010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025] Open
Abstract
Canning extends the shelf life of seafood products while preserving their quality. It is increasingly considered a more sustainable food processing method due to the primary fishing methods used for key species and the lower energy costs compared to the production of fresh and frozen fish. However, canning can change key components, allow some contaminants to persist, and generate undesirable compounds. This review revisits the effects of canning on product quality and highlights the potential hazards that may compromise safety. It also examines emerging trends in product development, particularly novel formulations aimed at optimizing nutritional value while maintaining safety standards without compromising sustainability. Overall, the quality of most canned seafood meets industry requirements, for example, with improvements in processing strategies and strict safety protocols, leading to reduced histamine levels. However, data on marine biotoxins and microplastics in canned seafood remain limited, calling for more research and monitoring. Environmental contaminants, along with those generated during processing, are generally found to be within acceptable limits. Product recalls related to these contaminants in Europe are scarce, but continuous monitoring and regulatory enforcement remain essential. While new formulations of canned fish show promise, they require thorough evaluation to ensure both nutritional value and safety.
Collapse
Affiliation(s)
- Antónia Juliana Pais-Costa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - António Marques
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Helena Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Amparo Gonçalves
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
- Division of Aquaculture, Upgrading and Bioprospection, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA, I.P.), 1495-165 Algés, Portugal
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| | - Helga Coelho Augusto
- Cofisa, S.A., Terrapleno do Porto de Pesca—Gala, 3090-735 Figueira da Foz, Portugal;
| | - Maria Leonor Nunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIIMAR-LA), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal (A.G.); (C.C.)
| |
Collapse
|
2
|
Wu H, Chen J, Peng J, Zhong Y, Zheng G, Guo M, Tan Z, Zhai Y, Lu S. Nontarget Screening and Toxicity Evaluation of Diol Esters of Okadaic Acid and Dinophysistoxins Reveal Intraspecies Difference of Prorocentrum lima. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12366-12375. [PMID: 32902972 DOI: 10.1021/acs.est.0c03691] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-resolution mass spectrometry (HRMS) analysis with the assistance of molecular networking was used to investigate intracellular toxin profiles of five Prorocentrum lima (P. lima) strains sampled from the north Yellow Sea and South China Sea. Mice were used as a model species for testing the acute toxicity of intracellular okadaic acid (OA) and dinophysistoxins (DTXs) in free and esterified states. Results showed that OA and DTX1 esterified derivatives were detected in all P. lima samples, accounting for 55%-96% of total toxins in five strains. A total of 24 esters and 1 stereoisomer of DTX1 (35S DTX1) were identified based on molecular networking and MS data analysis, 15 esters of which have been reported first. All P. lima strains displayed specific toxin profiles, and preliminary analysis suggested that toxin profiles of the five P. lima strains might be region-related. Moreover, acute toxicity in mice suggested higher toxicity of esters compared with free toxins, which highlights the importance and urgency of attention to esterified toxins in P. lima.
Collapse
Affiliation(s)
- Haiyan Wu
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jiaqi Chen
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Jixing Peng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Yun Zhong
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guanchao Zheng
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Mengmeng Guo
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Zhijun Tan
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Yuxiu Zhai
- Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Songhui Lu
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
3
|
Rambla-Alegre M, Miles CO, de la Iglesia P, Fernandez-Tejedor M, Jacobs S, Sioen I, Verbeke W, Samdal IA, Sandvik M, Barbosa V, Tediosi A, Madorran E, Granby K, Kotterman M, Calis T, Diogene J. Occurrence of cyclic imines in European commercial seafood and consumers risk assessment. ENVIRONMENTAL RESEARCH 2018; 161:392-398. [PMID: 29197280 DOI: 10.1016/j.envres.2017.11.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/08/2017] [Accepted: 11/18/2017] [Indexed: 06/07/2023]
Abstract
Cyclic imines constitute a quite recently discovered group of marine biotoxins that act on neural receptors and that bioaccumulate in seafood. They are grouped together due to the imino group functioning as their common pharmacore, responsible for acute neurotoxicity in mice. Cyclic imines (CIs) have not been linked yet to human poisoning and are not regulated in the European Union (EU), although the European Food Safety Authority (EFSA) requires more data to perform conclusive risk assessment for consumers. Several commercial samples of bivalves including raw and processed samples from eight countries (Italy, Portugal, Slovenia, Spain, Ireland, Norway, The Netherlands and Denmark) were obtained over 2 years. Emerging cyclic imine concentrations in all the samples were analysed on a LC-3200QTRAP and LC-HRMS QExactive mass spectrometer. In shellfish, two CIs, pinnatoxin G (PnTX-G) and 13-desmethylspirolide C (SPX-1) were found at low concentrations (0.1-12µg/kg PnTX-G and 26-66µg/kg SPX-1), while gymnodimines and pteriatoxins were not detected in commercial (raw and processed) samples. In summary, SPX-1 (n: 47) and PnTX-G (n: 96) were detected in 9.4% and 4.2% of the samples, respectively, at concentrations higher than the limit of quantification (LOQ), and in 7.3% and 31.2% of the samples at concentrations lower than the LOQ (25µg/kg for SPX-1 and 3µg/kg for PnTX-G), respectively. For the detected cyclic imines, the average exposure and the 95th percentile were calculated. The results obtained indicate that it is unlikely that a potential health risk exists through the seafood diet for CIs in the EU. However, further information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
| | - Christopher O Miles
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway; National Research Council Canada, 1411 Oxford St., Halifax, Nova Scotia, Canada B3H 3Z1
| | | | | | - Silke Jacobs
- Department of Agricultural Economics, Ghent University, Block A, Coupure Links 653, 9000 Gent, Belgium; Department of Public Health, Ghent University, UZ 4K3, De Pintelaan 185, 9000 Ghent, Belgium
| | - Isabelle Sioen
- Department of Food Safety and Food Quality, Ghent University, Block B, Coupure Links 653, 9000 Ghent, Belgium
| | - Wim Verbeke
- Department of Agricultural Economics, Ghent University, Block A, Coupure Links 653, 9000 Gent, Belgium
| | - Ingunn A Samdal
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Morten Sandvik
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106 Oslo, Norway
| | - Vera Barbosa
- Portuguese Institute for the sea and atmosphere, I.P. (IPMA), Avenida de Brasília, 1449-006 Lisbon, Portugal
| | | | - Eneko Madorran
- University of Maribor, Faculty of Medicine, Institute of Anatomy, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Kit Granby
- Technical University of Denmark, National Food Institute, Moerkhoej Bygade 19, 2860 Soeborg, Denmark
| | - Michiel Kotterman
- IMARES Wageningen-UR, Haringkade 1, 1976 CP Ijmuiden, The Netherlands
| | - Tanja Calis
- AQUATT, Olympic House, Pleasants Street, Dublin 8, Ireland
| | - Jorge Diogene
- IRTA, Ctra. Poble Nou, km. 5.5, 43540 Sant Carles de la Ràpita, Spain
| |
Collapse
|
4
|
García C, Oyaneder-Terrazas J, Contreras C, Del Campo M, Torres R, Contreras HR. Determination of the toxic variability of lipophilic biotoxins in marine bivalve and gastropod tissues treated with an industrial canning process. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 33:1711-1727. [PMID: 27646025 DOI: 10.1080/19440049.2016.1239032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Contamination of shellfish with lipophilic marine biotoxins (LMB), pectenotoxins (PTXs), yessotoxins (YTXs) and okadaic acid (OA) toxin groups in southern Chile is a constant challenge for the development of miticulture considering the high incidence of toxic episodes that tend to occur. This research is focused on using methodologies for assessing the decrease in toxins of natural resources in Chile with high value, without altering the organoleptic properties of the shellfish. The species were processed through steaming (1 min at 121°C) and subsequent canning (5 min at 121°C). Changes in the profiles of toxins and total toxicity levels of LMB in endemic bivalves and gastropods were determined using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The total reduction of toxicity (≈ 15%) was not related to the destruction of the toxin, but rather to the loss of LMB on removing the shells and packing media of canned products (***p < 0.001). Industrial processing of shellfish reduces LMB contents by up to 15% of the total initial contents, concomitant only with the interconversion of PTX-group toxins into PTX-2sa. In soft bottom-dwelling species with toxicities beyond the standard for safe human consumption (≥ 160 μg OA-eq kg-1), toxicity can be reduced to safe levels through industrial preparation procedures.
Collapse
Affiliation(s)
- Carlos García
- a Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | - Javiera Oyaneder-Terrazas
- a Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | - Cristóbal Contreras
- a Laboratory of Marine Toxins, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| | - Miguel Del Campo
- b Departamento de Investigación y Desarrollo , Fundación Ciencia y Tecnología para el Desarrollo , Santiago , Chile
| | - Rafael Torres
- c Departamento de Investigación , Departamento de Estudios de la Biblioteca del Congreso Nacional , Santiago , Chile
| | - Héctor R Contreras
- d Laboratory of Molecular and Cellular Andrology, Physiology and Biophysics Program, Institute of Biomedical Sciences, Faculty of Medicine , Universidad de Chile , Santiago , Chile
| |
Collapse
|