1
|
Xu R, Wang L, He P, Jia R. Transcriptomics Analysis of the Immune Effects of Okadaic Acid on Caco-2 Cells. Chem Biodivers 2024; 21:e202300926. [PMID: 38230763 DOI: 10.1002/cbdv.202300926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/30/2023] [Indexed: 01/18/2024]
Abstract
Okadaic Acid, a type of diarrhetic shellfish poison, is widely distributed and harmful, causing symptoms such as diarrhea, vomiting, and more in humans. Recent studies have demonstrated that OA can lead to various toxicities such as cytotoxicity, neurotoxicity, embryotoxicity, and hepatotoxicity. In order to investigate the immunotoxicity of OA on intestinal cells, a transcriptome analysis was conducted to compare the differences in the Caco-2 cell transcriptional group before and after administration. The CCK-8 experiment demonstrated that OA had a detrimental effect on the activity of Caco-2 cells, with an IC50 value of 33.98 nM. Transcriptome data revealed changes in immune-related genes between the experimental and control groups, including inflammatory factors, heat shock proteins, and zinc finger proteins. The analysis of the results suggests that OA can induce the production of inflammatory factors and apoptosis in cells, and may also affect cell ferroptosis. These findings indicate that OA has a significant impact on intestinal immunity, providing valuable insights for the study of immune toxicity associated with OA.
Collapse
Affiliation(s)
- Ruihang Xu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Li Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| |
Collapse
|
2
|
Wuerger LT, Birkholz G, Oberemm A, Sieg H, Braeuning A. Proteomic analysis of hepatic effects of okadaic acid in HepaRG human liver cells. EXCLI JOURNAL 2023; 22:1135-1145. [PMID: 38054204 PMCID: PMC10694344 DOI: 10.17179/excli2023-6458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/18/2023] [Indexed: 12/07/2023]
Abstract
The marine biotoxin okadaic acid (OA) is produced by dinoflagellates and enters the human food chain by accumulating in the fatty tissue of filter-feeding shellfish. Consumption of highly contaminated shellfish can lead to diarrheic shellfish poisoning. However, apart from the acute effects in the intestine, OA can also provoke toxic effects in the liver, as it is able to pass the intestinal barrier into the blood stream. However, molecular details of OA-induced hepatotoxicity are still insufficiently characterized, and especially at the proteomic level data are scarce. In this study, we used human HepaRG liver cells and exposed them to non-cytotoxic OA concentrations for 24 hours. Global changes in protein expression were analyzed using 2-dimensional gel electrophoresis in combination with mass-spectrometric protein identification. The results constitute the first proteomic analysis of OA effects in human liver cells and indicate, amongst others, that OA affects the energy homeostasis, induces oxidative stress, and induces cytoskeletal changes.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Greta Birkholz
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Huang L, Liu B, Yu XW, Pan GQ, Xu JY, Yan D, Wang YL, Guo QN. Rat tight junction proteins are disrupted after subchronic exposure to okadaic acid. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62201-62212. [PMID: 36940028 DOI: 10.1007/s11356-023-26471-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Okadaic acid (OA), a lipophilic phycotoxin distributed worldwide, causes diarrheic shellfish poisoning and even leads to tumor formation. Currently, the consumption of contaminated seafood is the most likely cause of chronic OA exposure, but there is a serious lack of relevant data. Here, the Sprague-Dawley rats were exposure to OA by oral administration at 100 µg/kg body weight, and the tissues were collected and analyzed to assess the effect of subchronic OA exposure. The results showed that subchronic OA administration disturbed colonic mucosal integrity and induced colitis. The colonic tight junction proteins were disrupted and the cell cycle of colonic epithelial cells was accelerated. It is inferred that disruption of the colonic tight junction proteins might be related to the development of chronic diarrhea by affecting water and ion transport. Moreover, the accelerated proliferation of colonic epithelial cells indicated that subchronic OA exposure might promote the restitution process of gut barrier or induce tumor promoter activity in rat colon.
Collapse
Affiliation(s)
- Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Bo Liu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Xiao-Wen Yu
- Chongqing Key Laboratory of Traditional Chinese Medicine to Prevent and Treat Autoimmune Diseases, Chongqing, 400021, People's Republic of China
| | - Guang-Qiang Pan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Jia-Yi Xu
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Yan
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Ya-Li Wang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
4
|
Wuerger LT, Hammer HS, Hofmann U, Kudiabor F, Sieg H, Braeuning A. Okadaic acid influences xenobiotic metabolism in HepaRG cells. EXCLI JOURNAL 2022; 21:1053-1065. [PMID: 36172076 PMCID: PMC9489895 DOI: 10.17179/excli2022-5033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/10/2022]
Abstract
Okadaic acid (OA) is an algae-produced lipophilic marine biotoxin that accumulates in the fatty tissue of filter-feeding shellfish. Ingestion of contaminated shellfish leads to the diarrheic shellfish poisoning syndrome. Furthermore, several other effects of OA like genotoxicity, liver toxicity and tumor-promoting properties have been observed, probably linked to the phosphatase-inhibiting properties of the toxin. It has been shown that at high doses OA can disrupt the physical barrier of the intestinal epithelium. As the intestine and the liver do not only constitute a physical, but also a metabolic barrier against xenobiotic exposure, we here investigated the impact of OA on the expression of cytochrome P450 (CYP) enzymes and transporter proteins in human HepaRG cells liver cells in vitro at non-cytotoxic concentrations. The interplay of OA with known CYP inducers was also studied. Data show that the expression of various xenobiotic-metabolizing CYPs was downregulated after exposure to OA. Moreover, OA was able to counteract the activation of CYPs by their inducers. A number of transporters were also mainly downregulated. Overall, we demonstrate that OA has a significant effect on xenobiotic metabolism barrier in liver cells, highlighting the possibility for interactions of OA exposure with the metabolism of drugs and xenobiotics.
Collapse
Affiliation(s)
- Leonie T.D. Wuerger
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Helen S. Hammer
- SIGNATOPE GmbH, Markwiesenstraße 55, 72770 Reutlingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstr. 112, 70376 Stuttgart, and University of Tübingen, 72074 Tübingen, Germany
| | - Felicia Kudiabor
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Holger Sieg
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany,*To whom correspondence should be addressed: Holger Sieg, German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany, E-mail:
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
5
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
6
|
Ma C, Sun X, Kong L, Wang X, Zhou S, Wei X, Kirsanov D, Legin A, Wan H, Wang P. A multi-channel handheld automatic spectrometer for wide range and on-site detection of okadaic acid based on specific aptamer binding. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4345-4353. [PMID: 34622887 DOI: 10.1039/d1ay00976a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Okadaic acid (OA) is one of the marine toxins that are widely distributed and harmful to humans. However, the current detection methods for OA involve complex procedures, need long detection time, and rely on large-scale laboratory equipment. In this work, a multi-channel handheld automatic spectrometer (MHAS) based on a spectral sensor was developed with the advantages of small size, simple operation and low cost. It could achieve rapid detection within 30 s and a wide spectral detection range of 470-780 nm with a broadband LED as the light source and a microplate containing 8 wells as a sample cell. Moreover, through the combination of gold nanoparticles (AuNPs) and aptamer-OA34, a highly sensitive and rapid system for OA detection was established with a LOD of 1.80 μg L-1 and a wide detection range of 20-10 000 μg L-1, which is comparable to a microplate reader. Compared with other studies, the proposed MHAS realized rapid on-site detection of OA with a wider detection range, shorter detection time and higher portability. Therefore, the MHAS promises to be a stable and efficient optical detection instrument for on-site detection in the fields of food safety, disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Chiyu Ma
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xianyou Sun
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Liubing Kong
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinyi Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Shuqi Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Xinwei Wei
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Dmitry Kirsanov
- Laboratory of Chemical Sensors, Chemistry Department, Saint-Petersburg State University, 199034, Russia
| | - Andrey Legin
- Laboratory of Chemical Sensors, Chemistry Department, Saint-Petersburg State University, 199034, Russia
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
7
|
Liu Y, Zheng JW, Peng XC, Li HY, Huang L, Li DW, Liu JS, Yang WD. Changes in colonic microbiotas in rat after long-term exposure to low dose of okadaic acid. CHEMOSPHERE 2020; 254:126874. [PMID: 32361543 DOI: 10.1016/j.chemosphere.2020.126874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/05/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Okadaic acid (OA), one of the most important phycotoxins, is widely distributed around the world, concerning diarrheic shellfish poisoning (DSP), and even colorectal cancer. Here, we found that long-term exposure of OA at a low dose (80 μg kg-1 body weight) had certain effects on colonic microbiotas and tract in rat. In the OA-exposed rat, colonic epithelium layer was damaged, and relative abundance of some microbiotas were significantly changed, especially genera in Clostridiales. However, no intestinal inflammation or significant disease was observed. Combined with the increase in relative abundance of some genera in Clostridiales induced by OA in the fermentation experiment, we proposed that OA could cause damage to the intestinal epithelium and increase the relative abundance of pathogenic bacteria, thereby increasing the probability of contact between intestinal epithelium and pathogenic bacteria and leading to an easier pathogenicity.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Xi-Chun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510630, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Lu Huang
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Jie-Sheng Liu
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Toxins of Okadaic Acid-Group Increase Malignant Properties in Cells of Colon Cancer. Toxins (Basel) 2020; 12:toxins12030179. [PMID: 32183214 PMCID: PMC7150798 DOI: 10.3390/toxins12030179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/06/2020] [Accepted: 03/10/2020] [Indexed: 12/26/2022] Open
Abstract
Diarrhetic shellfish poisoning (DSP) is a syndrome caused by the intake of shellfish contaminated with a group of lipophilic and thermostable toxins, which consists of okadaic acid (OA), dinophysistoxin-1 (DTX-1) and dinophysistoxin-2 (DTX-2). These toxins are potent protein Ser/Thr phosphatase inhibitors, mainly type 1 protein phosphatase (PP1) and type 2A protein phosphatase (PP2A). Different effects have been reported at the cellular, molecular and genetic levels. In this study, changes in cell survival and cell mobility induced by OA, DTX-1 and DTX-2 were determined in epithelial cell lines of the colon and colon cancer. The cell viability results showed that tumoral cell lines were more resistant to toxins than the nontumoral cell line. The results of the functional assays for testing cell migration, evaluation of cell death and the expression of proteins associated with cell adhesion showed a dual effect of toxins since in the nontumoral cell line, a greater induction of cell death, presumably by anoikis, was detected. In the tumoral cell lines, there was an induction of a more aggressive phenotype characterized by increased resistance to toxins, increased migration and increased FAK activation. In tumoral cell lines of colon cancer, OA, DTX-1/DTX-2 induce a more aggressive phenotype.
Collapse
|
9
|
Li Z, Hu B, Zhou R, Zhang X, Wang R, Gao Y, Sun M, Jiao B, Wang L. Selection and application of aptamers with high-affinity and high-specificity against dinophysistoxin-1. RSC Adv 2020; 10:8181-8189. [PMID: 35497848 PMCID: PMC9049938 DOI: 10.1039/c9ra10600f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/11/2020] [Indexed: 12/30/2022] Open
Abstract
Diarrhetic shellfish toxins (DSTs) are marine toxins distributed widely in the world, which pose a major threat to the health of mankind. Dinophysistoxin-1 (DTX-1) has the most potent toxicity in DSTs. However, the current detection methods have ethical problems and technical defects. Further research is needed, to develop a more suitable alternative to the supervision system. In this work, we successfully obtained an aptamer with high affinity and specificity bound to DTX-1 for the first time. After optimization, a core sequence of the aptamer with a higher KD of 64 nM was obtained, while the binding mode of the core sequence and DTX-1 was explored. Based on this aptamer, we developed a biolayer interferometry (BLI) biosensor platform for DTX-1 detection. The aptasensor exhibited a broad detection range from 40 to 600 nM DTX-1 (linear range from 80 to 200 nM), and the low detection limit was 614 pM. Morever, the aptasensor showed good reproducibility and stability, which indicated that this novel aptasensor had broad development prospects for the sensitive and rapid detection of DTX-1. For the first time, the aptamer of dinophysistoxin-1 was successfully obtained with high affinity and specificity by SELEX, and an aptasensor with a detection range from 40 to 600 nM was developed by biolayer interferometry.![]()
Collapse
Affiliation(s)
- Zhen Li
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Bo Hu
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Rong Zhou
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Xiaojuan Zhang
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Ruizhe Wang
- Spine Center
- Department of Orthopedics
- Changzheng Hospital Affiliated to Second Military Medical University
- Shanghai
- P. R. China
| | - Yun Gao
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Mingjuan Sun
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| | - Lianghua Wang
- Department of Biochemistry and Molecular Biology
- College of Basic Medical Sciences
- Navy Medical University
- Shanghai 200433
- P. R. China
| |
Collapse
|
10
|
Fu LL, Zhao XY, Ji LD, Xu J. Okadaic acid (OA): Toxicity, detection and detoxification. Toxicon 2019; 160:1-7. [DOI: 10.1016/j.toxicon.2018.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/13/2018] [Accepted: 12/21/2018] [Indexed: 10/27/2022]
|
11
|
Daguer H, Hoff RB, Molognoni L, Kleemann CR, Felizardo LV. Outbreaks, toxicology, and analytical methods of marine toxins in seafood. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Vilariño N, Louzao MC, Abal P, Cagide E, Carrera C, Vieytes MR, Botana LM. Human Poisoning from Marine Toxins: Unknowns for Optimal Consumer Protection. Toxins (Basel) 2018; 10:E324. [PMID: 30096904 PMCID: PMC6116008 DOI: 10.3390/toxins10080324] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Marine biotoxins are produced by aquatic microorganisms and accumulate in shellfish or finfish following the food web. These toxins usually reach human consumers by ingestion of contaminated seafood, although other exposure routes like inhalation or contact have also been reported and may cause serious illness. This review shows the current data regarding the symptoms of acute intoxication for several toxin classes, including paralytic toxins, amnesic toxins, ciguatoxins, brevetoxins, tetrodotoxins, diarrheic toxins, azaspiracids and palytoxins. The information available about chronic toxicity and relative potency of different analogs within a toxin class are also reported. The gaps of toxicological knowledge that should be studied to improve human health protection are discussed. In general, gathering of epidemiological data in humans, chronic toxicity studies and exploring relative potency by oral administration are critical to minimize human health risks related to these toxin classes in the near future.
Collapse
Affiliation(s)
- Natalia Vilariño
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - M Carmen Louzao
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Paula Abal
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Eva Cagide
- Laboratorio CIFGA S.A., Plaza Santo Domingo 20-5°, 27001 Lugo, Spain.
| | - Cristina Carrera
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
- Hospital Veterinario Universitario Rof Codina, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Mercedes R Vieytes
- Departamento de Fisiología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|