1
|
Stingray Venom Proteins: Mechanisms of Action Revealed Using a Novel Network Pharmacology Approach. Mar Drugs 2021; 20:md20010027. [PMID: 35049882 PMCID: PMC8781517 DOI: 10.3390/md20010027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 01/02/2023] Open
Abstract
Animal venoms offer a valuable source of potent new drug leads, but their mechanisms of action are largely unknown. We therefore developed a novel network pharmacology approach based on multi-omics functional data integration to predict how stingray venom disrupts the physiological systems of target animals. We integrated 10 million transcripts from five stingray venom transcriptomes and 848,640 records from three high-content venom bioactivity datasets into a large functional data network. The network featured 216 signaling pathways, 29 of which were shared and targeted by 70 transcripts and 70 bioactivity hits. The network revealed clusters for single envenomation outcomes, such as pain, cardiotoxicity and hemorrhage. We carried out a detailed analysis of the pain cluster representing a primary envenomation symptom, revealing bibrotoxin and cholecystotoxin-like transcripts encoding pain-inducing candidate proteins in stingray venom. The cluster also suggested that such pain-inducing toxins primarily activate the inositol-3-phosphate receptor cascade, inducing intracellular calcium release. We also found strong evidence for synergistic activity among these candidates, with nerve growth factors cooperating with the most abundant translationally-controlled tumor proteins to activate pain signaling pathways. Our network pharmacology approach, here applied to stingray venom, can be used as a template for drug discovery in neglected venomous species.
Collapse
|
2
|
Structural, enzymatic and pharmacological profiles of AplTX-II - A basic sPLA 2 (D49) isolated from the Agkistrodon piscivorus leucostoma snake venom. Int J Biol Macromol 2021; 175:572-585. [PMID: 33529631 DOI: 10.1016/j.ijbiomac.2021.01.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
A basic sPLA2 (D49) from the venom of snake Agkistrodon piscivorus leucostoma (AplTX-II) was isolated, purified and characterized. We determined the enzymatic and pharmacological profiles of this toxin. AplTX-II was isolated with a high level of purity through reverse phase chromatography and molecular exclusion. The enzyme showed pI 9.48 and molecular weight of 14,003 Da. The enzymatic activity of the AplTX-II depended on Ca2+ pH and temperature. The comparison of the primary structure with other sPLA2s revealed that AplTX-II presented all the structural reasons expected for a basic sPLA2s. Additionally, we have resolved its structure with the docked synthetic substrate NOBA (4-nitro-3-octanoyloxy benzoic acid) by homology modeling, and performed MD simulations with explicit solvent. Structural similarities were found between the enzyme's modeled structure and other snake sPLA2 X-Ray structures, available in the PDB database. NOBA and active-site water molecules spontaneously adopted stable positions and established interactions in full agreement with the reaction mechanism, proposed for the physiological substrate, suggesting that NOBA hydrolysis is an excellent model to study phospholipid hydrolysis.
Collapse
|
3
|
Wang B, Wang Q, Wang C, Wang B, Qiu L, Zou S, Zhang F, Liu G, Zhang L. A comparative analysis of the proteomes and biological activities of the venoms from two sea snakes, Hydrophis curtus and Hydrophis cyanocinctus, from Hainan, China. Toxicon 2020; 187:35-46. [PMID: 32871160 DOI: 10.1016/j.toxicon.2020.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022]
Abstract
We characterized and compared the venom protein profiles of Hydrophis curtus (synonyms: Lapemis hardwickii, Lapemis curtus and Hydrophis hardwickii) and Hydrophis cyanocinctus, the two representatives of medically important venomous sea snakes in Chinese waters using proteomic approaches. A total of 47 and 38 putative toxins were identified in H. curtus venom (HcuV) and H. cyanocinctus venom (HcyV), respectively, and these toxins could be grouped into 15 functional categories, mainly proteinases, phospholipases, three-finger toxins (3FTxs), lectins, protease inhibitors, ion channel inhibitors, cysteine-rich venom proteins (CRVPs) and snake venom metalloproteases (SVMPs). The constituent ratio of each toxin category varied between HcuV and HcyV with 3FTx (54% in HcuV/69% in HcyV) and PLA2 (38% in HcuV/22% in HcyV) unanimously ranked as the top two most abundant families. Both HcuV and HcyV exhibited relatively high lethality (LD50 values in mice of 0.34 μg/g and 0.24 μg/g, respectively), specific PLA2 activity and hemolytic activity. On the basis of several previous reports of HcuV and HcyV collected from other areas, these findings greatly expand our understanding of geographical variation and interspecies diversity of the two sea snake venoms and can provide a scientific basis for the development of specific sea snake antivenom in the future.
Collapse
Affiliation(s)
- Bo Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Qianqian Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Chao Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Beilei Wang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Leilei Qiu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Shuaijun Zou
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Fuhai Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China
| | - Guoyan Liu
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China.
| | - Liming Zhang
- Department of Marine Biomedicine and Polar Medicine, Naval Characteristic Medical Center, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Möller C, Davis WC, Clark E, DeCaprio A, Marí F. Conodipine-P1-3, the First Phospholipases A 2 Characterized from Injected Cone Snail Venom. Mol Cell Proteomics 2019; 18:876-891. [PMID: 30765458 DOI: 10.1074/mcp.ra118.000972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 02/06/2019] [Indexed: 12/30/2022] Open
Abstract
The phospholipase A2 (PLA2s) superfamily are ubiquitous small enzymes that catalyze the hydrolysis of phospholipids at the sn-2 ester bond. PLA2s in the venom of cone snails (conodipines, Cdpi) are composed of two chains termed as alpha and beta subunits. Conodipines are categorized within the group IX of PLA2s. Here we describe the purification and biochemical characterization of three conodipines (Cdpi-P1, -P2 and -P3) isolated from the injected venom of Conus purpurascens Using proteomics methods, we determined the full sequences of all three conodipines. Conodipine-P1-3 have conserved consensus catalytic domain residues, including the Asp/His dyad. Additionally, these enzymes are expressed as a mixture of proline hydroxylated isoforms. The activities of the native Conodipine-Ps were evaluated by conventional colorimetric and by MS-based methods, which provide the first detailed cone snail venom conodipine activity monitored by mass spectrometry. Conodipines can have medicinal applications such inhibition of cancer proliferation, bacterial and viral infections among others.
Collapse
Affiliation(s)
- Carolina Möller
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - W Clay Davis
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412
| | - Evan Clark
- §Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, 33431
| | - Anthony DeCaprio
- ¶Department of Chemistry and Biochemistry, Florida International University, SW 8th St, Miami, Florida, 33119
| | - Frank Marí
- From the ‡Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, South Carolina, 29412;.
| |
Collapse
|
5
|
Jia Y, Olvera P, Rangel F, Mendez B, Reddy S. Rapid Identification of Phospholipase A₂ Transcripts from Snake Venoms. Toxins (Basel) 2019; 11:E69. [PMID: 30691065 PMCID: PMC6409593 DOI: 10.3390/toxins11020069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/09/2019] [Accepted: 01/21/2019] [Indexed: 11/16/2022] Open
Abstract
Phospholipase A₂ (PLA₂) is a major component in snake venoms and it is found in many different isoforms. To identify transcripts encoding different PLA₂ isoforms, we developed a simple, rapid procedure. Total RNA was extracted from the venoms of three cottonmouth snakes and two diamondback rattlesnakes, and further reverse-transcribed into complementary DNA (cDNA). Using one pair of cottonmouth PLA₂-specific primers and a Reverse Transcription Polymerase Chain Reaction (RT-PCR) technique, we identified 27 unique full-length PLA₂ transcripts, including nine sequences identical to the previously documented ones in the database and one novel GIII-like PLA₂. Two common transcripts respectively encoding Asp49 and Lys49 PLA₂ isoforms were identified in all three cottonmouth venoms, that contain more PLA₂ transcripts than the diamondback rattlesnake venoms. The placement of cloned PLA₂ transcripts in snake venom PLA₂s was further discussed by phylogenetic analysis. The procedure developed in this study paves the way for accelerated acquisition of transcriptome data on any other venom toxin families. The results obtained are crucial for insight into the structure and function of PLA₂ isoforms for scientific and potential therapeutic purposes.
Collapse
Affiliation(s)
- Ying Jia
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Pablo Olvera
- Biology Department, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Frida Rangel
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Bianca Mendez
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| | - Samir Reddy
- Mathematics and Science Academy, The University of Texas Rio Grande Valley, Brownsville, TX 78520, USA.
| |
Collapse
|
6
|
Impact of Naja nigricollis Venom on the Production of Methaemoglobin. Toxins (Basel) 2018; 10:toxins10120539. [PMID: 30558289 PMCID: PMC6316634 DOI: 10.3390/toxins10120539] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/24/2022] Open
Abstract
Snakebite envenomation is an affliction currently estimated to be killing upwards of 100,000 people annually. Snakebite is associated with a diverse pathophysiology due to the magnitude of variation in venom composition that is observed worldwide. The haemolytic (i.e., lysis of red blood cells) actions of snake venoms are well documented, although the direct impact of venoms on haemoglobin is not fully understood. Here we report on the varied ability of a multitude of snake venoms to oxidise haemoglobin into methaemoglobin. Moreover, our results demonstrate that the venom of an elapid, the black necked spitting cobra, Naja nigricollis, oxidises oxyhaemoglobin (Fe2+) into methaemoglobin (Fe3+) in a time- and concentration-dependent manner that is unparalleled within the 47 viper and elapid venoms evaluated. The treatment of venom with a reducing agent, dithiothreitol (DTT) is observed to potentiate this effect at higher concentrations, and the use of denatured venom demonstrates that this effect is dependent upon the heat-sensitive proteinaceous elements of the venom. Together, our results suggest that Naja nigricollis venom appears to promote methaemoglobin production to a degree that is rare within the Elapidae family, and this activity appears to be independent of proteolytic activities of venom components on haemoglobin.
Collapse
|
7
|
Phospholipases A2 purified from cottonmouth snake venoms display no antibacterial effect against four representative bacterial species. Toxicon 2018; 151:1-4. [DOI: 10.1016/j.toxicon.2018.06.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/07/2018] [Accepted: 06/07/2018] [Indexed: 11/17/2022]
|
8
|
Tracing the evolution of venom phospholipases A 2 in Gloydius strauchii and related pitvipers: A tale of two acidic isozymes. Toxicon 2017; 141:65-72. [PMID: 29191388 DOI: 10.1016/j.toxicon.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 01/29/2023]
Abstract
Two acidic Asp49-PLA2s with Glu6 substitution and a neutral Lys49-PLA (designated Gst-K49) were cloned from G. strauchii venom glands, their full amino acid sequences were deduced. The predominant acidic PLA2 (designated Gst-E6a) contains 124 residues and the M18W30 substitutions, while the minor acidic PLA2 (designated Gst-E6b) contains 122 residues and the V18A30 substitutions. Their sequences are most similar to those of the respective orthologous PLA2s of G. intermedius venom. Gst-E6a and Gst-E6b appear to be paralogs and possibly have different predatory targets or functions. The LC-MS/MS results indicate the presence of only three PLA2 gene products in the crude venom, the relative expression levels were in the order of Gst-E6a ≫ Gst-E6b > Gst-K49, as confirmed by qPCR results. In contrast to other Gloydius, G. strauchii venom does not contain neurotoxic or basic anticoagulant Asp49-PLA2s, but Gst-K49 is the first Lys49-PLA2 identified in Gloydius venoms. However, its venom content is relatively low and its pI value 7.3 is much lower than those of other Lys49-PLA2s and. The Lys49-PLA2 genes appear to regress in the venom of most of Gloydius and related rattlesnake, and this evolutionary regression occurred before the dispersal of Asian pitvipers to the New World.
Collapse
|