1
|
Kumar R, Singh BR. Botulinum Toxin: A Comprehensive Review of Its Molecular Architecture and Mechanistic Action. Int J Mol Sci 2025; 26:777. [PMID: 39859491 PMCID: PMC11766063 DOI: 10.3390/ijms26020777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/06/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Botulinum toxin (BoNT), the most potent substance known to humans, likely evolved not to kill but to serve other biological purposes. While its use in cosmetic applications is well known, its medical utility has become increasingly significant due to the intricacies of its structure and function. The toxin's structural complexity enables it to target specific cellular processes with remarkable precision, making it an invaluable tool in both basic and applied biomedical research. BoNT's potency stems from its unique structural features, which include domains responsible for receptor recognition, membrane binding, internalization, and enzymatic cleavage. This division of labor within the toxin's structure allows it to specifically recognize and interact with synaptic proteins, leading to precise cleavage at targeted sites within neurons. The toxin's mechanism of action involves a multi-step process: recognition, binding, and catalysis, ultimately blocking neurotransmitter release by cleaving proteins like SNAP-25, VAMP, and syntaxin. This disruption in synaptic vesicle fusion causes paralysis, typically in peripheral neurons. However, emerging evidence suggests that BoNT also affects the central nervous system (CNS), influencing presynaptic functions and distant neuronal systems. The evolutionary history of BoNT reveals that its neurotoxic properties likely provided a selective advantage in certain ecological contexts. Interestingly, the very features that make BoNT a potent toxin also enable its therapeutic applications, offering precision in treating neurological disorders like dystonia, spasticity, and chronic pain. In this review, we highlight the toxin's structural, functional, and evolutionary aspects, explore its clinical uses, and identify key research gaps, such as BoNT's central effects and its long-term cellular impact. A clear understanding of these aspects could facilitate the representation of BoNT as a unique scientific paradigm for studying neuronal processes and developing targeted therapeutic strategies.
Collapse
Affiliation(s)
- Raj Kumar
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA;
| | | |
Collapse
|
2
|
Ghaseminejad-Bandpey A, Etemadmoghadam S, Jabbari B. Botulinum Toxin Treatment of Psoriasis-A Comprehensive Review. Toxins (Basel) 2024; 16:449. [PMID: 39453225 PMCID: PMC11510791 DOI: 10.3390/toxins16100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
A literature search on the subject of botulinum toxin treatment in psoriasis found 15 relevant articles, 11 on human subjects and 4 on animal studies. Of the human data, eight were clinical trials and three were single case reports. Seven out of eight clinical trials, all open-label, reported improvement in psoriasis following intradermal or subcutaneous botulinum toxin injections. One double-blind, placebo-controlled study, which used a smaller dose than the open-label studies, did not note a healing effect. Animal studies have shown that injection of botulinum toxins in the skin heals psoriatic skin lesions and can reduce the level of interleukins (ILs) and cytokines as well as inflammatory cells in psoriatic plaques. There is a need for controlled, blinded studies conducted in larger numbers of patients with doses that have shown promise in open-label studies.
Collapse
Affiliation(s)
- Ali Ghaseminejad-Bandpey
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.G.-B.); (S.E.)
| | - Shahroo Etemadmoghadam
- Biggs Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.G.-B.); (S.E.)
| | - Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06516, USA
| |
Collapse
|
3
|
Ni L, Chen H, Xu X, Sun D, Cai H, Wang L, Tang Q, Hao Y, Cao S, Hu X. Neurocircuitry underlying the antidepressant effect of retrograde facial botulinum toxin in mice. Cell Biosci 2023; 13:30. [PMID: 36782335 PMCID: PMC9926702 DOI: 10.1186/s13578-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUNDS Botulinum toxin type A (BoNT/A) is extensively applied in spasticity and dystonia as it cleaves synaptosome-associated protein 25 (SNAP25) in the presynaptic terminals, thereby inhibiting neurotransmission. An increasing number of randomized clinical trials have suggested that glabellar BoNT/A injection improves depressive symptoms in patients with major depressive disorder (MDD). However, the underlying neuronal circuitry of BoNT/A-regulated depression remains largely uncharacterized. RESULTS Here, we modeled MDD using mice subjected to chronic restraint stress (CRS). By pre-injecting BoNT/A into the unilateral whisker intrinsic musculature (WIM), and performing behavioral testing, we showed that pre-injection of BoNT/A attenuated despair- and anhedonia-like phenotypes in CRS mice. By applying immunostaining of BoNT/A-cleaved SNAP25 (cl.SNAP25197), subcellular spatial localization of SNAP25 with markers of cholinergic neurons (ChAT) and post-synaptic membrane (PSD95), and injection of monosynaptic retrograde tracer CTB-488-mixed BoNT/A to label the primary nucleus of the WIM, we demonstrated that BoNT/A axonal retrograde transported to the soma of whisker-innervating facial motoneurons (wFMNs) and subsequent transcytosis to synaptic terminals of second-order neurons induced central effects. Furthermore, using transsynaptic retrograde and monosynaptic antegrade viral neural circuit tracing with c-Fos brain mapping and co-staining of neural markers, we observed that the CRS-induced expression of c-Fos and CaMKII double-positive neurons in the ventrolateral periaqueductal grey (vlPAG), which sent afferents to wFMNs, was down-regulated 3 weeks after BoNT/A facial pre-administration. Strikingly, the repeated and targeted silencing of the wFMNs-projecting CaMKII-positive neurons in vlPAG with a chemogenetic approach via stereotactic injection of recombinant adeno-associated virus into specific brain regions of CRS mice mimicked the antidepressant-like action of BoNT/A pre-treatment. Conversely, repeated chemogenetic activation of this potential subpopulation counteracted the BoNT/A-improved significant antidepressant behavior. CONCLUSION We reported for the first time that BoNT/A inhibited the wFMNs-projecting vlPAG excitatory neurons through axonal retrograde transport and cell-to-cell transcytosis from the injected location of the WIM to regulate depressive-like phenotypes of CRS mice. For the limited and the reversibility of side effects, BoNT/A has substantial advantages and potential application in MDD.
Collapse
Affiliation(s)
- Linhui Ni
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Hanze Chen
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Xinxin Xu
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.13402.340000 0004 1759 700XDepartment of Ultrasonography, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Di Sun
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Huaying Cai
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Li Wang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Qiwen Tang
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China
| | - Yonggang Hao
- grid.13402.340000 0004 1759 700XDepartment of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053 China ,grid.263761.70000 0001 0198 0694Department of Neurology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215125 China
| | - Shuxia Cao
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| | - Xingyue Hu
- Department of Neurology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
4
|
Carré D, Martin V, Kouidri Y, Morin R, Norlund M, Gomes A, Lagarde JM, Lezmi S. The distribution of neuromuscular junctions depends on muscle pennation, when botulinum neurotoxin receptors and SNAREs expression are uniform in the rat. Toxicon 2022; 212:34-41. [DOI: 10.1016/j.toxicon.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022]
|
5
|
Cheng F, Ahmed F. OnabotulinumtoxinA for the prophylactic treatment of headaches in adult patients with chronic migraine: a safety evaluation. Expert Opin Drug Saf 2021; 20:1275-1289. [PMID: 34187265 DOI: 10.1080/14740338.2021.1948531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Existing oral prophylaxis for chronic migraine (CM) are often ineffective or poorly tolerated. OnabotulinumtoxinA (onabotA) is approved for headache prophylaxis in CM and ameliorates headaches in patients refractory to multiple preventatives.Areas covered: We appraise evidence regarding action mechanisms, pharmacodynamics, and pharmacokinetics of onabotA in CM prophylaxis. We critically evaluate salient clinical and real-world studies demonstrating its efficacy in improving multiple aspects of CM. We discuss onabotA safety, tolerability, and adverse events (AEs) for CM prophylaxis from clinical trials, post-authorization studies and meta-analyses, including novel pregnancy safety data and comparisons with oral prophylactics. We explore areas of future interest, particularly onabotA safety and efficacy in the context of novel antibody-based prophylaxis.Expert opinion: Clinical and real-world evidence demonstrate onabotA safety, tolerability and efficacy for CM prophylaxis. Most AEs are mild/moderate and self-limiting, with few serious AEs and no treatment-related deaths. Common AEs include neck pain, ptosis, muscle weakness, and stiffness. Modifying existing responder-criteria enables more patients to benefit from onabotA. OnabotA shows superior safety and efficacy to oral preventatives, and appears safe in pregnancy. Future pregnancy-risk register will clarify pregnancy and lactation safety further. Future research comparing onabotA safety and efficacy with newly emergent antibody-based prophylaxis is keenly awaited.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Neurosciences, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Fayyaz Ahmed
- Department of Neurosciences, Hull University Teaching Hospitals NHS Trust, Hull, UK
| |
Collapse
|
6
|
Schenke M, Schjeide BM, Püschel GP, Seeger B. Analysis of Motor Neurons Differentiated from Human Induced Pluripotent Stem Cells for the Use in Cell-Based Botulinum Neurotoxin Activity Assays. Toxins (Basel) 2020; 12:toxins12050276. [PMID: 32344847 PMCID: PMC7291138 DOI: 10.3390/toxins12050276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/12/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are potent neurotoxins produced by bacteria, which inhibit neurotransmitter release, specifically in their physiological target known as motor neurons (MNs). For the potency assessment of BoNTs produced for treatment in traditional and aesthetic medicine, the mouse lethality assay is still used by the majority of manufacturers, which is ethically questionable in terms of the 3Rs principle. In this study, MNs were differentiated from human induced pluripotent stem cells based on three published protocols. The resulting cell populations were analyzed for their MN yield and their suitability for the potency assessment of BoNTs. MNs produce specific gangliosides and synaptic proteins, which are bound by BoNTs in order to be taken up by receptor-mediated endocytosis, which is followed by cleavage of specific soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) proteins required for neurotransmitter release. The presence of receptors and substrates for all BoNT serotypes was demonstrated in MNs generated in vitro. In particular, the MN differentiation protocol based on Du et al. yielded high numbers of MNs in a short amount of time with high expression of BoNT receptors and targets. The resulting cells are more sensitive to BoNT/A1 than the commonly used neuroblastoma cell line SiMa. MNs are, therefore, an ideal tool for being combined with already established detection methods.
Collapse
Affiliation(s)
- Maren Schenke
- Institute for Food Toxicology, Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine, 30173 Hannover, Germany;
| | - Brit-Maren Schjeide
- Institute of Nutritional Science, Department of Nutritional Biochemistry, University of Potsdam, 14558 Nuthetal, Germany; (B.-M.S.); (G.P.P.)
| | - Gerhard P. Püschel
- Institute of Nutritional Science, Department of Nutritional Biochemistry, University of Potsdam, 14558 Nuthetal, Germany; (B.-M.S.); (G.P.P.)
| | - Bettina Seeger
- Institute for Food Toxicology, Department of Food Toxicology and Replacement/Complementary Methods to Animal Testing, University of Veterinary Medicine, 30173 Hannover, Germany;
- Correspondence:
| |
Collapse
|
7
|
Poulain B, Lemichez E, Popoff MR. Neuronal selectivity of botulinum neurotoxins. Toxicon 2020; 178:20-32. [PMID: 32094099 DOI: 10.1016/j.toxicon.2020.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
Botulinum neurotoxins (BoNTs) are highly potent toxins responsible for a severe disease, called botulism. They are also efficient therapeutic tools with an increasing number of indications ranging from neuromuscular dysfunction to hypersecretion syndrome, pain release, depression as well as cosmetic application. BoNTs are known to mainly target the motor-neurons terminals and to induce flaccid paralysis. BoNTs recognize a specific double receptor on neuronal cells consisting of gangliosides and synaptic vesicle protein, SV2 or synaptotagmin. Using cultured neuronal cells, BoNTs have been established blocking the release of a wide variety of neurotransmitters. However, BoNTs are more potent in motor-neurons than in the other neuronal cell types. In in vivo models, BoNT/A impairs the cholinergic neuronal transmission at the motor-neurons but also at neurons controlling secretions and smooth muscle neurons, and blocks several neuronal pathways including excitatory, inhibitory, and sensitive neurons. However, only a few reports investigated the neuronal selectivity of BoNTs in vivo. In the intestinal wall, BoNT/A and BoNT/B target mainly the cholinergic neurons and to a lower extent the other non-cholinergic neurons including serotonergic, glutamatergic, GABAergic, and VIP-neurons. The in vivo effects induced by BoNTs on the non-cholinergic neurons remain to be precisely investigated. We report here a literature review of the neuronal selectivity of BoNTs.
Collapse
Affiliation(s)
- Bernard Poulain
- Université de Strasbourg, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | | | | |
Collapse
|
8
|
Matak I, Bölcskei K, Bach-Rojecky L, Helyes Z. Mechanisms of Botulinum Toxin Type A Action on Pain. Toxins (Basel) 2019; 11:E459. [PMID: 31387301 PMCID: PMC6723487 DOI: 10.3390/toxins11080459] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Already a well-established treatment for different autonomic and movement disorders, the use of botulinum toxin type A (BoNT/A) in pain conditions is now continuously expanding. Currently, the only approved use of BoNT/A in relation to pain is the treatment of chronic migraines. However, controlled clinical studies show promising results in neuropathic and other chronic pain disorders. In comparison with other conventional and non-conventional analgesic drugs, the greatest advantages of BoNT/A use are its sustained effect after a single application and its safety. Its efficacy in certain therapy-resistant pain conditions is of special importance. Novel results in recent years has led to a better understanding of its actions, although further experimental and clinical research is warranted. Here, we summarize the effects contributing to these advantageous properties of BoNT/A in pain therapy, specific actions along the nociceptive pathway, consequences of its central activities, the molecular mechanisms of actions in neurons, and general pharmacokinetic parameters.
Collapse
Affiliation(s)
- Ivica Matak
- Department of Pharmacology, University of Zagreb School of Medicine, Šalata 11, 10000 Zagreb, Croatia.
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| | - Lidija Bach-Rojecky
- Department of Pharmacology, University of Zagreb Faculty of Pharmacy and Biochemistry, Domagojeva 2, 10000 Zagreb, Croatia
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti út 12, 7624 Pécs, Hungary
- János Szentágothai Research Center, Center for Neuroscience, University of Pécs, Ifjúság útja 20, 7624 Pécs, Hungary
| |
Collapse
|
9
|
Morhenn VB. The Relationship of Wound Healing with Psoriasis and Multiple Sclerosis. Adv Wound Care (New Rochelle) 2018; 7:185-188. [PMID: 29892495 DOI: 10.1089/wound.2017.0773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/17/2018] [Indexed: 12/12/2022] Open
Abstract
Significance: Better understanding of wound healing could lead to improved treatment(s) of multiple sclerosis (MS) and psoriasis (Pso). Recent Advances: New concepts in the events of wound healing, such as the roles of the innate and adaptive immune systems, have generated targets for treating these debilitating diseases. Innovation: That in MS and Pso defective wound healing is responsible for the diseases' progression has not been hypothesized to date. Conclusion: Impaired initiation of wound repair by oligodendrocyte precursor cells or oligodendrocytes may play a role in MS, and a lack of inhibition of the proliferative phase in wound healing may explain the pathophysiology involved in Pso.
Collapse
Affiliation(s)
- Vera B Morhenn
- Department of Dermatology, San Francisco VA Medical Center, San Francisco, California
| |
Collapse
|