1
|
Espino S, Watkins M, Probst R, Koch TL, Chase K, Imperial J, Robinson SD, Flórez Salcedo P, Taylor D, Gajewiak J, Yandell M, Safavi-Hemami H, Olivera BM. χ-Conotoxins are an Evolutionary Innovation of Mollusk-Hunting Cone Snails as a Counter-Adaptation to Prey Defense. Mol Biol Evol 2024; 41:msae226. [PMID: 39470581 PMCID: PMC11568388 DOI: 10.1093/molbev/msae226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/05/2024] [Accepted: 10/24/2024] [Indexed: 10/30/2024] Open
Abstract
Mollusk-hunting (molluscivorous) cone snails belong to a monophyletic group in Conus, a genus of venomous marine snails. The molluscivorous lineage evolved from ancestral worm-hunting (vermivorous) snails ∼18 Ma. To enable the shift to a molluscivorous lifestyle, molluscivorous cone snails must solve biological problems encountered when hunting other gastropods, namely: (i) preventing prey escape and (ii) overcoming the formidable defense of the prey in the form of the molluscan shell, a problem unique to molluscivorous Conus. Here, we show that χ-conotoxins, peptides exclusively expressed in the venoms of molluscivorous Conus, provide solutions to the above problems. Injecting χ-conotoxins into the gastropod mollusk Aplysia californica results in impaired locomotion and uncoordinated hyperactivity. Impaired locomotion impedes escape, and a hyperactive snail will likely emerge from its shell, negating the protection the shell provides. Thus, χ-conotoxins are an evolutionary innovation that accompanied the emergence of molluscivory in Conus and provide solutions to problems posed by hunting other snails.
Collapse
Affiliation(s)
- Samuel Espino
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Maren Watkins
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodolfo Probst
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Science Research Initiative, College of Science, University of Utah, Salt Lake City, UT 84112, USA
| | - Thomas Lund Koch
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomolecular Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Kevin Chase
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Julita Imperial
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD 4072, Australia
| | | | - Dylan Taylor
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT 84112, USA
| | - Helena Safavi-Hemami
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biomolecular Sciences, University of Copenhagen, Copenhagen N 2200, Denmark
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Guo L, Zhang Y, Fang G, Tie L, Zhuang Y, Xue C, Liu Q, Zhang M, Zhu K, You C, Xu P, Yuan Q, Zhang C, Liu L, Rong N, Peng S, Liu Y, Wang C, Luo X, Lv Z, Kang D, Yu X, Zhang C, Jiang Y, Dong X, Zhou J, Liu Z, Yang F, Eric Xu H, Sun JP. Ligand recognition and G protein coupling of the human itch receptor MRGPRX1. Nat Commun 2023; 14:5004. [PMID: 37591889 PMCID: PMC10435460 DOI: 10.1038/s41467-023-40705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal "RF/RY" motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.
Collapse
Affiliation(s)
- Lulu Guo
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guoxing Fang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yuming Zhuang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chenyang Xue
- Department of Immunology and Microbiology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qi Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Zhang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Kongkai Zhu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Chongzhao You
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peiyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Lei Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Naikang Rong
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Shengxuan Peng
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanzheng Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Luo
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongyao Lv
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Fan Yang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| |
Collapse
|
3
|
Gan B, Yu L, Yang H, Jiao H, Pang B, Chen Y, Wang C, Lv R, Hu H, Cao Z, Ren R. Mechanism of agonist-induced activation of the human itch receptor MRGPRX1. PLoS Biol 2023; 21:e3001975. [PMID: 37347749 DOI: 10.1371/journal.pbio.3001975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023] Open
Abstract
Mas-related G-protein-coupled receptors X1-X4 (MRGPRX1-X4) are 4 primate-specific receptors that are recently reported to be responsible for many biological processes, including itch sensation, pain transmission, and inflammatory reactions. MRGPRX1 is the first identified human MRGPR, and its expression is restricted to primary sensory neurons. Due to its dual roles in itch and pain signaling pathways, MRGPRX1 has been regarded as a promising target for itch remission and pain inhibition. Here, we reported a cryo-electron microscopy (cryo-EM) structure of Gq-coupled MRGPRX1 in complex with a synthetic agonist compound 16 in an active conformation at an overall resolution of 3.0 Å via a NanoBiT tethering strategy. Compound 16 is a new pain-relieving compound with high potency and selectivity to MRGPRX1 over other MRGPRXs and opioid receptor. MRGPRX1 was revealed to share common structural features of the Gq-mediated receptor activation mechanism of MRGPRX family members, but the variable residues in orthosteric pocket of MRGPRX1 exhibit the unique agonist recognition pattern, potentially facilitating to design MRGPRX1-specific modulators. Together with receptor activation and itch behavior evaluation assays, our study provides a structural snapshot to modify therapeutic molecules for itch relieving and analgesia targeting MRGPRX1.
Collapse
Affiliation(s)
- Bing Gan
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- The Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Leiye Yu
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Haifeng Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| | - Haizhan Jiao
- The Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Bin Pang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Yian Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chen Wang
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Rui Lv
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
| | - Hongli Hu
- The Kobilka Institute of Innovative Drug Discovery, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| | - Ruobing Ren
- Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai, China
- Shanghai Qi Zhi Institute, Shanghai, China
| |
Collapse
|
4
|
Mießner H, Seidel J, Smith ESJ. In vitro models for investigating itch. Front Mol Neurosci 2022; 15:984126. [PMID: 36385768 PMCID: PMC9644192 DOI: 10.3389/fnmol.2022.984126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Itch (pruritus) is a sensation that drives a desire to scratch, a behavior observed in many animals. Although generally short-lasting and not causing harm, there are several pathological conditions where chronic itch is a hallmark symptom and in which prolonged scratching can induce damage. Finding medications to counteract the sensation of chronic itch has proven difficult due to the molecular complexity that involves a multitude of triggers, receptors and signaling pathways between skin, immune and nerve cells. While much has been learned about pruritus from in vivo animal models, they have limitations that corroborate the necessity for a transition to more human disease-like models. Also, reducing animal use should be encouraged in research. However, conducting human in vivo experiments can also be ethically challenging. Thus, there is a clear need for surrogate models to be used in pre-clinical investigation of the mechanisms of itch. Most in vitro models used for itch research focus on the use of known pruritogens. For this, sensory neurons and different types of skin and/or immune cells are stimulated in 2D or 3D co-culture, and factors such as neurotransmitter or cytokine release can be measured. There are however limitations of such simplistic in vitro models. For example, not all naturally occurring cell types are present and there is also no connection to the itch-sensing organ, the central nervous system (CNS). Nevertheless, in vitro models offer a chance to investigate otherwise inaccessible specific cell–cell interactions and molecular pathways. In recent years, stem cell-based approaches and human primary cells have emerged as viable alternatives to standard cell lines or animal tissue. As in vitro models have increased in their complexity, further opportunities for more elaborated means of investigating itch have been developed. In this review, we introduce the latest concepts of itch and discuss the advantages and limitations of current in vitro models, which provide valuable contributions to pruritus research and might help to meet the unmet clinical need for more refined anti-pruritic substances.
Collapse
Affiliation(s)
- Hendrik Mießner
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Judith Seidel
- Dermatological Skin Care, Beiersdorf AG, Hamburg, Germany
| | - Ewan St. John Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Ewan St. John Smith,
| |
Collapse
|
5
|
MAS-related G protein-coupled receptors X (MRGPRX): Orphan GPCRs with potential as targets for future drugs. Pharmacol Ther 2022; 238:108259. [DOI: 10.1016/j.pharmthera.2022.108259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022]
|
6
|
Van Baelen AC, Robin P, Kessler P, Maïga A, Gilles N, Servent D. Structural and Functional Diversity of Animal Toxins Interacting With GPCRs. Front Mol Biosci 2022; 9:811365. [PMID: 35198603 PMCID: PMC8859281 DOI: 10.3389/fmolb.2022.811365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Peptide toxins from venoms have undergone a long evolutionary process allowing host defense or prey capture and making them highly selective and potent for their target. This has resulted in the emergence of a large panel of toxins from a wide diversity of species, with varied structures and multiple associated biological functions. In this way, animal toxins constitute an inexhaustible reservoir of druggable molecules due to their interesting pharmacological properties. One of the most interesting classes of therapeutic targets is the G-protein coupled receptors (GPCRs). GPCRs represent the largest family of membrane receptors in mammals with approximately 800 different members. They are involved in almost all biological functions and are the target of almost 30% of drugs currently on the market. Given the interest of GPCRs in the therapeutic field, the study of toxins that can interact with and modulate their activity with the purpose of drug development is of particular importance. The present review focuses on toxins targeting GPCRs, including peptide-interacting receptors or aminergic receptors, with a particular focus on structural aspects and, when relevant, on potential medical applications. The toxins described here exhibit a great diversity in size, from 10 to 80 amino acids long, in disulfide bridges, from none to five, and belong to a large panel of structural scaffolds. Particular toxin structures developed here include inhibitory cystine knot (ICK), three-finger fold, and Kunitz-type toxins. We summarize current knowledge on the structural and functional diversity of toxins interacting with GPCRs, concerning first the agonist-mimicking toxins that act as endogenous agonists targeting the corresponding receptor, and second the toxins that differ structurally from natural agonists and which display agonist, antagonist, or allosteric properties.
Collapse
Affiliation(s)
- Anne-Cécile Van Baelen
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Philippe Robin
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pascal Kessler
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Arhamatoulaye Maïga
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- CHU Sainte Justine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas Gilles
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Denis Servent
- CEA, Département Médicaments et Technologies pour La Santé (DMTS), SIMoS, Université Paris-Saclay, Gif-sur-Yvette, France
- *Correspondence: Denis Servent,
| |
Collapse
|
7
|
Misery L, Brenaut E, Pierre O, Le Garrec R, Gouin O, Lebonvallet N, Abasq-Thomas C, Talagas M, Le Gall-Ianotto C, Besner-Morin C, Fluhr JW, Leven C. Chronic itch: emerging treatments following new research concepts. Br J Pharmacol 2021; 178:4775-4791. [PMID: 34463358 DOI: 10.1111/bph.15672] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Until recently, itch pathophysiology was poorly understood and treatments were poorly effective in relieving itch. Current progress in our knowledge of the itch processing, the numerous mediators and receptors involved has led to a large variety of possible therapeutic pathways. Currently, inhibitors of IL-31, IL-4/13, NK1 receptors, opioids and cannabinoids, JAK, PDE4 or TRP are the main compounds involved in clinical trials. However, many new targets, such as Mas-related GPCRs and unexpected new pathways need to be also explored.
Collapse
Affiliation(s)
- Laurent Misery
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Emilie Brenaut
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | | | - Olivier Gouin
- LIEN, Univ Brest, Brest, France.,INSERM UMR 1163, Laboratory of Genetic Skin Diseases, Imagine Institute, Paris, France.,University of Paris, Paris, France
| | | | - Claire Abasq-Thomas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | - Matthieu Talagas
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France
| | | | - Catherine Besner-Morin
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Division of Dermatology, McGill University Health Centre, Montreal General Hospital, Montreal, Quebec, Canada
| | - Joachim W Fluhr
- LIEN, Univ Brest, Brest, France.,Department of Dermatology, University Hospital of Brest, Brest, France.,Department of Dermatology, Charité Universitätsmedizin, Berlin, Germany
| | - Cyril Leven
- LIEN, Univ Brest, Brest, France.,EA3878, FCRIN INNOVTE, groupe d'étude thrombose Bretagne Occidentale, Brest, France.,Department of Biochemistry and Pharmaco-Toxicology, University Hospital of Brest, Brest, France
| |
Collapse
|
8
|
Bosse GD, Urcino C, Watkins M, Flórez Salcedo P, Kozel S, Chase K, Cabang A, Espino SS, Safavi-Hemami H, Raghuraman S, Olivera BM, Peterson RT, Gajewiak J. Discovery of a Potent Conorfamide from Conus episcopatus Using a Novel Zebrafish Larvae Assay. JOURNAL OF NATURAL PRODUCTS 2021; 84:1232-1243. [PMID: 33764053 DOI: 10.1021/acs.jnatprod.0c01297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural products such as conotoxins have tremendous potential as tools for biomedical research and for the treatment of different human diseases. Conotoxins are peptides present in the venoms of predatory cone snails that have a rich diversity of pharmacological functions. One of the major bottlenecks in natural products research is the rapid identification and evaluation of bioactive molecules. To overcome this limitation, we designed a set of light-induced behavioral assays in zebrafish larvae to screen for bioactive conotoxins. We used this screening approach to test several unique conotoxins derived from different cone snail clades and discovered that a conorfamide from Conus episcopatus, CNF-Ep1, had the most dramatic alterations in the locomotor behavior of zebrafish larvae. Interestingly, CNF-Ep1 is also bioactive in several mouse assay systems when tested in vitro and in vivo. Our novel screening platform can thus accelerate the identification of bioactive marine natural products, and the first compound discovered using this assay has intriguing properties that may uncover novel neuronal circuitry.
Collapse
Affiliation(s)
- Gabriel D Bosse
- Department of Pharmacology and Toxicology, University of Utah, 201 Skaggs Hall 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Cristoval Urcino
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Maren Watkins
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Paula Flórez Salcedo
- Department of Neurobiology and Anatomy, University of Utah, 20 S 2030 E, BPRB 490D, Salt Lake City, Utah 84112, United States
| | - Sabrina Kozel
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Kevin Chase
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - April Cabang
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Samuel S Espino
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Helena Safavi-Hemami
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
- Department of Biochemistry, University of Utah, 15 N Medical Drive, Salt Lake City, Utah 84112, United States
- Department of Biomedical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Shrinivasan Raghuraman
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Baldomero M Olivera
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| | - Randall T Peterson
- Department of Pharmacology and Toxicology, University of Utah, 201 Skaggs Hall 30 S 2000 E, Salt Lake City, Utah 84112, United States
| | - Joanna Gajewiak
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, Utah 84112, United States
| |
Collapse
|
9
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
10
|
A group of cationic amphiphilic drugs activates MRGPRX2 and induces scratching behavior in mice. J Allergy Clin Immunol 2021; 148:506-522.e8. [PMID: 33617860 DOI: 10.1016/j.jaci.2020.12.655] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/10/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mas gene-related G protein-coupled receptors (MRGPRs) are a G protein-coupled receptor family responsive to various exogenous and endogenous agonists, playing a fundamental role in pain and itch sensation. The primate-specific family member MRGPRX2 and its murine orthologue MRGPRB2 are expressed by mast cells mediating IgE-independent signaling and pseudoallergic drug reactions. OBJECTIVES Our aim was to increase knowledge about the function and regulation of MRGPRX2/MRGPRB2, which is of major importance in prevention of drug hypersensitivity reactions and drug-induced pruritus. METHODS To identify novel MRGPR (ant)agonists, we screened a library of pharmacologically active compounds by utilizing a high-throughput calcium mobilization assay. The identified hit compounds were analyzed for their pseudoallergic and pruritogenic effects in mice and human. RESULTS We found a class of commonly used drugs activating MRGPRX2 that, to a large extent, consists of antidepressants, antiallergic drugs, and antipsychotics. Three-dimensional pharmacophore modeling revealed structural similarities of the identified agonists, classifying them as cationic amphiphilic drugs. Mast cell activation was investigated by using the 3 representatively selected antidepressants clomipramine, paroxetine, and desipramine. Indeed, we were able to show a concentration-dependent activation and MRGPRX2-dependent degranulation of the human mast cell line LAD2 (Laboratory of Allergic Diseases-2). Furthermore, clomipramine, paroxetine, and desipramine were able to induce degranulation of human skin and murine peritoneal mast cells. These substances elicited dose-dependent scratching behavior following intradermal injection into C57BL/6 mice but less so in MRGPRB2-mutant mice, as well as wheal-and-flare reactions following intradermal injections in humans. CONCLUSION Our results contribute to the characterization of structure-activity relationships and functionality of MRGPRX2 ligands and facilitate prediction of adverse reactions such as drug-induced pruritus to prevent severe drug hypersensitivity reactions.
Collapse
|
11
|
Turner A, Kaas Q, Craik DJ. Hormone-like conopeptides - new tools for pharmaceutical design. RSC Med Chem 2020; 11:1235-1251. [PMID: 34095838 PMCID: PMC8126879 DOI: 10.1039/d0md00173b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/11/2020] [Indexed: 12/24/2022] Open
Abstract
Conopeptides are a diverse family of peptides found in the venoms of marine cone snails and are used in prey capture and host defence. Because of their potent activity on a range of mammalian targets they have attracted interest as leads in drug design. Until recently most focus had been on studying conopeptides having activity at ion channels and related neurological targets but, with recent discoveries that some conopeptides might play hormonal roles, a new area of conopeptide research has opened. In this article we first summarize the canonical pharmaceutical families of Conus venom peptides and then focus on new research relating to hormone-like conopeptides and their potential applications. Finally, we briefly examine methods of chemically stabilizing conopeptides to improve their pharmacological properties. A summary is presented of conopeptides in clinical trials and a call for future work on hormone-like conopeptides.
Collapse
Affiliation(s)
- Ashlin Turner
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|