1
|
Eskin A, Demirtürk Z, Yusufoğlu F, Uçkan F. Oxidative, Genotoxic and Epigenotoxic Effects of Pimpla turionellae Venom at Pharmacological Perspective. NEOTROPICAL ENTOMOLOGY 2025; 54:69. [PMID: 40402420 PMCID: PMC12098430 DOI: 10.1007/s13744-025-01283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 04/22/2025] [Indexed: 05/23/2025]
Abstract
Insects and mammals share a similar innate immune system. Galleria mellonella (L.), a beekeeping pest, is an alternative model organism for human health studies due to its immune response similarity and ability to be maintained at 37 °C. While oxidative stress and genotoxicity cause diseases, antioxidant enzymes and epigenetic mechanisms are effective in immunological response processes. Although parasitoid venoms are potential candidates for pharmacological applications such as anticoagulant, antibiotic, painkiller, antiviral and anticancer agents, the information pool is scarce to reflect their effects in humans. In an attempt to reveal the pharmaceutical significance of parasitoid venoms and their potential effects on human health, different venom doses of Pimpla turionellae (L.), the solitary endoparasitoid of G. mellonella, were injected into the host. Then, the levels of protein content, advanced oxidised protein products, lipid peroxidation, antioxidant power and glutathione in host haemolymph, and the amounts of methylation marker 5-methyldeoxycytidine monophosphate and strand breakage rates under neutral and alkaline conditions in host DNA were analysed. Principal component analysis was performed to determine the number of components that oxidative parameters depend on, and multivariate correlation analysis was applied to evaluate the effects of the parameters on each other. It was concluded that P. turionellae venom appeared to be one of the most effective pharmaceutical agents among parasitoid venoms. Also, the 0.01 venom reservoir equivalent dose qualified as immunotherapeutic dose.
Collapse
Affiliation(s)
- Aslı Eskin
- Department of Biology, Kocaeli University, İzmit, Kocaeli, Türkiye
| | | | - Famil Yusufoğlu
- Department of Biology, Kocaeli University, İzmit, Kocaeli, Türkiye
| | - Fevzi Uçkan
- Department of Biology, Kocaeli University, İzmit, Kocaeli, Türkiye.
| |
Collapse
|
2
|
Zhang S, Huang J, Wang Q, You M, Xia X. Changes in the Host Gut Microbiota during Parasitization by Parasitic Wasp Cotesia vestalis. INSECTS 2022; 13:760. [PMID: 36135461 PMCID: PMC9506224 DOI: 10.3390/insects13090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Parasites attack the host insects and possibly impact the host-gut microbiota, which leads to provision of a suitable host environment for parasites' development. However, little is known about whether and how the parasitic wasp Cotesia vestalis alters the gut microbiota of the host Plutella xylostella. In this study, 16S rDNA microbial profiling, combined with a traditional isolation and culture method, were used to assess changes in the bacterial microbiome of parasitized and non-parasitized hosts at different developmental stages of C. vestalis larvae. Parasitization affected both the diversity and structure of the host-gut microbiota, with a significant reduction in richness on the sixth day post parasitization (6 DPP) and significant differences in bacterial structure between parasitized and non-parasitized hosts on the third day. The bacterial abundance of host-gut microbiota changed significantly as the parasitization progressed, resulting in alteration of potential functional contribution. Notably, the relative abundance of the predominant family Enterobacteriaceae was significantly decreased on the third day post-parasitization. In addition, the results of traditional isolation and culture of bacteria indicated differences in the bacterial composition between the three DPP and CK3 groups, as with 16S microbial profiling. These findings shed light on the interaction between a parasitic wasp and gut bacteria in the host insect during parasitization.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qiuping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
3
|
Pinto CPG, Walker AA, Robinson SD, Chin YKY, King GF, Rossi GD. Venom composition of the endoparasitoid wasp Cotesia flavipes (Hymenoptera: Braconidae) and functional characterization of a major venom peptide. Toxicon 2021; 202:1-12. [PMID: 34547307 DOI: 10.1016/j.toxicon.2021.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/23/2021] [Accepted: 09/12/2021] [Indexed: 10/20/2022]
Abstract
Endoparasitoid wasps use complex biochemical arsenals to suppress the normal humoral and cellular immune responses of their hosts in order to transform them into a suitable environment for development of their eggs and larvae. Venom injected during oviposition is a key component of this arsenal, but the functions of individual venom toxins are still poorly understood. Furthermore, there has been little investigation of the potential biotechnological use of these venom toxins, for example for control of agricultural pests. The endoparasitoid Cotesia flavipes (Hymenoptera: Braconidae) is a biocontrol agent reared in biofactories and released extensively in Brazil to control the sugarcane borer Diatraea saccharalis (Lepidoptera: Crambidae). The objectives of this work were to reveal venom components produced by C. flavipes and explore the function of a major venom peptide, Cf4. Using a combined proteomic/transcriptomic approach, we identified 38 putative venom toxins including both linear and disulfide-rich peptides, hydrolases, protease inhibitors, apolipophorins, lipid-binding proteins, and proteins of the odorant binding families. Because of its high abundance in the venom, we selected Cf4, a 33-residue peptide with three disulfide bonds, for synthesis and further characterization. We found that synthetic Cf4 reduced the capacity of D. saccharalis hemocytes to encapsulate foreign bodies without any effect on phenoloxidase activity, consistent with a role in disruption of the cellular host immune response. Feeding leaves coated with Cf4 to neonate D. saccharalis resulted in increased mortality and significantly reduced feeding compared to caterpillars fed untreated leaves, indicating that Cf4 is a potential candidate for insect pest control through ingestion. This study adds to our knowledge of endoparasitoid wasp venoms composition, host regulation mechanisms and their biotechnological potential for pest management.
Collapse
Affiliation(s)
- Ciro P G Pinto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil
| | - Andrew A Walker
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Samuel D Robinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Yanni K-Y Chin
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Guilherme D Rossi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, 14884-900, Brazil.
| |
Collapse
|
4
|
Wang J, Jin H, Schlenke T, Yang Y, Wang F, Yao H, Fang Q, Ye G. Lipidomics reveals how the endoparasitoid wasp Pteromalus puparum manipulates host energy stores for its young. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158736. [PMID: 32438058 DOI: 10.1016/j.bbalip.2020.158736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/06/2020] [Indexed: 02/02/2023]
Abstract
Endoparasitoid wasps inject venom along with their eggs to adjust the physiological and nutritional environment inside their hosts to benefit the development of their offspring. In particular, wasp venoms are known to modify host lipid metabolism, lipid storage in the fat body, and release of lipids into the hemolymph, but how venoms accomplish these functions remains unclear. Here, we use an UPLC-MS-based lipidomics approach to analyze the identities and concentrations of lipids in both fat body and hemolymph of host cabbage butterfly (Pieris rapae) infected by the pupal endoparasitoid Pteromalus puparum. During infection, host fat body levels of highly unsaturated, soluble triacylglycerides (TAGs) increased while less unsaturated, less soluble forms decreased. Furthermore, in infected host hemolymph, overall levels of TAG and phospholipids (the major component of cell membranes) increased, suggesting that fat body cells are destroyed and their contents are dispersed. Altogether, these data suggest that wasp venom induces host fat body TAGs to be transformed into lower melting point (more liquid) forms and released into the host hemolymph following infection, allowing simple absorption and nutritional acquisition by wasp larvae. Finally, cholesteryl esters (CEs, a dietary lipid derived from cholesterol) increased in host hemolymph following infection with no concomitant decrease in host cholesterol, implying that the wasp may provide this necessary food resource to its offspring via its venom. This study provides novel insight into how parasitoid infection alters lipid metabolism in insect hosts, and begins to uncover the wasp venom proteins responsible for host physiological changes and offspring development.
Collapse
Affiliation(s)
- Jiale Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China; Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Hongxia Jin
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Todd Schlenke
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yi Yang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongwei Yao
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|