1
|
Li T, Chen Z, Chen H, Si T. Development of a cell-based assay coupled HPLC micro-fractionation technology for identification of anticancer natural products from plants. J Chromatogr A 2025; 1745:465745. [PMID: 39908952 DOI: 10.1016/j.chroma.2025.465745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Natural products represent one of the vital sources of anticancer drugs. However, the rapid screening of anticancer active compounds from complex extracts continues to pose a significant challenge. Although microplate-based high-resolution inhibition profiling have demonstrated their effectiveness in rapidly pinpoint individual bioactive components in extracts, the majority of these assays rely on chemical or enzymatic reactions. This study presents a new analytical screening method combining cellular assays and HPLC micro-fractionation to identify anticancer compounds in complex plant extracts. The method development involved optimizing 96-well plate configurations and DMSO transfer volumes for the cell-based assay using standard natural molecules and an artificial mixture. The optimized method was applied to profile anticancer compound in ethyl acetate extracts of Eomecon chionantha and Tacca plantaginea. Through repeated chromatographic separation and structural elucidation, we isolated two anticancer compounds from E. chionantha and eight from T. plantaginea, including three new molecules. Our method overcomes the toxicity associated with organic solvents used in HPLC fractionation on cell models and optimizes the volume of DMSO required for transferring materials into cell culture plates, enabling the profiling of anticancer molecules through the widely used MTT assay.
Collapse
Affiliation(s)
- Tuo Li
- College of Life and Health, Dalian University, Dalian, 116622, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Zhicong Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hong Chen
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
2
|
Deikumah JP, Biney RP, Awoonor-Williams JK, Gyakobo MK. Compendium of medically important snakes, venom activity and clinical presentations in Ghana. PLoS Negl Trop Dis 2023; 17:e0011050. [PMID: 37506181 PMCID: PMC10411737 DOI: 10.1371/journal.pntd.0011050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/09/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Snake bite envenoming (SBE) is one neglected tropical disease that has not received the needed attention. The sequelae of burdensome disability and mortality impact the socioeconomic life of communities adversely with little documentation of SBE in health facility records in Ghana. This study details SBE and snake distribution, habits/habitats, type of venom expressed and clinical manifestations. METHODOLOGY We conducted a structured thematic desk review of peer reviewed papers, books and reports from repositories including PubMed, World Health Organization (WHO) and Women's & Children's Hospital (WCH) Clinical Toxinology Resources using bibliographic software EndNote and search engine Google Scholar with the following key words; snakes, medical importance, snake bites, venom and venom type, envenomation, symptoms and signs, vaccines, venom expenditure, strike behaviour and venom-metering + Ghana, West Africa, Africa, World. We also reviewed data from the District Health Information Management System (DHIMS) of the Ghana Health Service (GHS). Outcome variables were organized as follows: common name (s), species, habitat/habit, species-specific toxin, clinical manifestation, antivenom availability, WHO category. FINDINGS Snake bites and SBE were grouped by the activity of the expressed venom into neurotoxic, cardiotoxic, haemorrhagic, cytotoxic, myotoxic, nephrotoxic and procoagulants. Neurotoxic snake bites were largely due to elapids. Expressed venoms with cardiotoxic, haemorrhagic, nephrotoxic and procoagulant activities principally belonged to the family Viperidae. Snakes with venoms showing myotoxic activity were largely alien to Ghana and the West African sub-region. Venoms showing cytotoxic activity are expressed by a wide range of snakes though more prevalent among the Viperidae family. Snakes with neurotoxic and haemorrhagic venom activities are prevalent across all the agro-ecological zones in Ghana. CONCLUSION/SIGNIFICANCE Understanding the characteristics of snakes and their venoms is useful in the management of SBE. The distribution of snakes by their expressed venoms across the agro-ecological zones is also instructive to species identification and diagnosis of SBE.
Collapse
Affiliation(s)
- Justus Precious Deikumah
- Department of Conservation Biology and Entomology, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Robert Peter Biney
- Department of Pharmacotherapeutics and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Mawuli Kotope Gyakobo
- Department of Internal Medicine and Therapeutics, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
3
|
Wachtel E, Bittenbinder MA, van de Velde B, Slagboom J, de Monts de Savasse A, Alonso LL, Casewell NR, Vonk FJ, Kool J. Application of an Extracellular Matrix-Mimicking Fluorescent Polymer for the Detection of Proteolytic Venom Toxins. Toxins (Basel) 2023; 15:toxins15040294. [PMID: 37104232 PMCID: PMC10143632 DOI: 10.3390/toxins15040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
The cytotoxicity caused by snake venoms is a serious medical problem that greatly contributes to the morbidity observed in snakebite patients. The cytotoxic components found in snake venoms belong to a variety of toxin classes and may cause cytotoxic effects by targeting a range of molecular structures, including cellular membranes, the extracellular matrix (ECM) and the cytoskeleton. Here, we present a high-throughput assay (384-well plate) that monitors ECM degradation by snake venom toxins via the application of fluorescent versions of model ECM substrates, specifically gelatin and collagen type I. Both crude venoms and fractionated toxins of a selection of medically relevant viperid and elapid species, separated via size-exclusion chromatography, were studied using the self-quenching, fluorescently labelled ECM-polymer substrates. The viperid venoms showed significantly higher proteolytic degradation when compared to elapid venoms, although the venoms with higher snake venom metalloproteinase content did not necessarily exhibit stronger substrate degradation than those with a lower one. Gelatin was generally more readily cleaved than collagen type I. In the viperid venoms, which were subjected to fractionation by SEC, two (B. jararaca and C. rhodostoma, respectively) or three (E. ocellatus) active proteases were identified. Therefore, the assay allows the study of proteolytic activity towards the ECM in vitro for crude and fractionated venoms.
Collapse
Affiliation(s)
- Eric Wachtel
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Matyas A Bittenbinder
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Bas van de Velde
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Julien Slagboom
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Axel de Monts de Savasse
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Luis L Alonso
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Freek J Vonk
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands
| | - Jeroen Kool
- AIMMS, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
- Centre for Analytical Sciences Amsterdam (CASA), 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
|
5
|
Hayashi MAF, Campeiro JD, Yonamine CM. Revisiting the potential of South American rattlesnake Crotalus durissus terrificus toxins as therapeutic, theranostic and/or biotechnological agents. Toxicon 2021; 206:1-13. [PMID: 34896407 DOI: 10.1016/j.toxicon.2021.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
The potential biotechnological and biomedical applications of the animal venom components are widely recognized. Indeed, many components have been used either as drugs or as templates/prototypes for the development of innovative pharmaceutical drugs, among which many are still used for the treatment of human diseases. A specific South American rattlesnake, named Crotalus durissus terrificus, shows a venom composition relatively simpler compared to any viper or other snake species belonging to the Crotalus genus, although presenting a set of toxins with high potential for the treatment of several still unmet human therapeutic needs, as reviewed in this work. In addition to the main toxin named crotoxin, which is under clinical trials studies for antitumoral therapy and which has also anti-inflammatory and immunosuppressive activities, other toxins from the C. d. terrificus venom are also being studied, aiming for a wide variety of therapeutic applications, including as antinociceptive, anti-inflammatory, antimicrobial, antifungal, antitumoral or antiparasitic agent, or as modulator of animal metabolism, fibrin sealant (fibrin glue), gene carrier or theranostic agent. Among these rattlesnake toxins, the most relevant, considering the potential clinical applications, are crotamine, crotalphine and gyroxin. In this narrative revision, we propose to organize and present briefly the updates in the accumulated knowledge on potential therapeutic applications of toxins collectively found exclusively in the venom of this specific South American rattlesnake, with the objective of contributing to increase the chances of success in the discovery of drugs based on toxins.
Collapse
Affiliation(s)
- Mirian A F Hayashi
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| | - Joana D Campeiro
- Department of Pharmacology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil
| | - Camila M Yonamine
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brazil.
| |
Collapse
|
6
|
Trim CM, Byrne LJ, Trim SA. Utilisation of compounds from venoms in drug discovery. PROGRESS IN MEDICINAL CHEMISTRY 2021; 60:1-66. [PMID: 34147202 DOI: 10.1016/bs.pmch.2021.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Difficult drug targets are becoming the normal course of business in drug discovery, sometimes due to large interacting surfaces or only small differences in selectivity regions. For these, a different approach is merited: compounds lying somewhere between the small molecule and the large antibody in terms of many properties including stability, biodistribution and pharmacokinetics. Venoms have evolved over millions of years to be complex mixtures of stable molecules derived from other somatic molecules, the stability comes from the pressure to be ready for delivery at a moment's notice. Snakes, spiders, scorpions, jellyfish, wasps, fish and even mammals have evolved independent venom systems with complex mixtures in their chemical arsenal. These venom-derived molecules have been proven to be useful tools, such as for the development of antihypotensive angiotensin converting enzyme (ACE) inhibitors and have also made successful drugs such as Byetta® (Exenatide), Integrilin® (Eptifibatide) and Echistatin. Only a small percentage of the available chemical space from venoms has been investigated so far and this is growing. In a new era of biological therapeutics, venom peptides present opportunities for larger target engagement surface with greater stability than antibodies or human peptides. There are challenges for oral absorption and target engagement, but there are venom structures that overcome these and thus provide substrate for engineering novel molecules that combine all desired properties. Venom researchers are characterising new venoms, species, and functions all the time, these provide great substrate for solving the challenges presented by today's difficult targets.
Collapse
Affiliation(s)
- Carol M Trim
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | - Lee J Byrne
- Faculty of Science, Engineering and Social Sciences, Natural and Applied Sciences, School of Psychology and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, United Kingdom
| | | |
Collapse
|
7
|
Kazandjian TD, Arrahman A, Still KBM, Somsen GW, Vonk FJ, Casewell NR, Wilkinson MC, Kool J. Anticoagulant Activity of Naja nigricollis Venom Is Mediated by Phospholipase A2 Toxins and Inhibited by Varespladib. Toxins (Basel) 2021; 13:toxins13050302. [PMID: 33922825 PMCID: PMC8145175 DOI: 10.3390/toxins13050302] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/07/2021] [Accepted: 04/18/2021] [Indexed: 12/03/2022] Open
Abstract
Bites from elapid snakes typically result in neurotoxic symptoms in snakebite victims. Neurotoxins are, therefore, often the focus of research relating to understanding the pathogenesis of elapid bites. However, recent evidence suggests that some elapid snake venoms contain anticoagulant toxins which may help neurotoxic components spread more rapidly. This study examines the effects of venom from the West African black-necked spitting cobra (Naja nigricollis) on blood coagulation and identifies potential coagulopathic toxins. An integrated RPLC-MS methodology, coupled with nanofractionation, was first used to separate venom components, followed by MS, proteomics and coagulopathic bioassays. Coagulation assays were performed on both crude and nanofractionated N. nigricollis venom toxins as well as PLA2s and 3FTx purified from the venom. Assays were then repeated with the addition of either the phospholipase A2 inhibitor varespladib or the snake venom metalloproteinase inhibitor marimastat to assess whether either toxin inhibitor is capable of neutralizing coagulopathic venom activity. Subsequent proteomic analysis was performed on nanofractionated bioactive venom toxins using tryptic digestion followed by nanoLC-MS/MS measurements, which were then identified using Swiss-Prot and species-specific database searches. Varespladib, but not marimastat, was found to significantly reduce the anticoagulant activity of N. nigricollis venom and MS and proteomics analyses confirmed that the anticoagulant venom components mostly consisted of PLA2 proteins. We, therefore, conclude that PLA2s are the most likely candidates responsible for anticoagulant effects stimulated by N. nigricollis venom.
Collapse
Affiliation(s)
- Taline D. Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Arif Arrahman
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Faculty of Pharmacy, Kampus Baru UI, Universitas Indonesia, Depok 16424, Indonesia
| | - Kristina B. M. Still
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Govert W. Somsen
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
| | - Freek J. Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333CR Leiden, The Netherlands;
| | - Nicholas R. Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
| | - Mark C. Wilkinson
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (T.D.K.); (N.R.C.)
- Correspondence: (M.C.W.); (J.K.)
| | - Jeroen Kool
- Department of Chemistry and Pharmaceutical Sciences, Division of Bioanalytical Chemistry, Faculty of Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands; (A.A.); (K.B.M.S.); (G.W.S.)
- Centre for Analytical Sciences Amsterdam (CASA), 1012WX Amsterdam, The Netherlands
- Correspondence: (M.C.W.); (J.K.)
| |
Collapse
|
8
|
Kazandjian TD, Petras D, Robinson SD, van Thiel J, Greene HW, Arbuckle K, Barlow A, Carter DA, Wouters RM, Whiteley G, Wagstaff SC, Arias AS, Albulescu LO, Plettenberg Laing A, Hall C, Heap A, Penrhyn-Lowe S, McCabe CV, Ainsworth S, da Silva RR, Dorrestein PC, Richardson MK, Gutiérrez JM, Calvete JJ, Harrison RA, Vetter I, Undheim EAB, Wüster W, Casewell NR. Convergent evolution of pain-inducing defensive venom components in spitting cobras. Science 2021; 371:386-390. [PMID: 33479150 PMCID: PMC7610493 DOI: 10.1126/science.abb9303] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
Convergent evolution provides insights into the selective drivers underlying evolutionary change. Snake venoms, with a direct genetic basis and clearly defined functional phenotype, provide a model system for exploring the repeated evolution of adaptations. While snakes use venom primarily for predation, and venom composition often reflects diet specificity, three lineages of cobras have independently evolved the ability to spit venom at adversaries. Using gene, protein, and functional analyses, we show that the three spitting lineages possess venoms characterized by an up-regulation of phospholipase A2 (PLA2) toxins, which potentiate the action of preexisting venom cytotoxins to activate mammalian sensory neurons and cause enhanced pain. These repeated independent changes provide a fascinating example of convergent evolution across multiple phenotypic levels driven by selection for defense.
Collapse
Affiliation(s)
- T D Kazandjian
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - D Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093, USA
| | - S D Robinson
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - J van Thiel
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - H W Greene
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - K Arbuckle
- Department of Biosciences, College of Science, Swansea University, Swansea SA2 8PP, UK
| | - A Barlow
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - D A Carter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
| | - R M Wouters
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - G Whiteley
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - S C Wagstaff
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
- Research Computing Unit, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A S Arias
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - L-O Albulescu
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - A Plettenberg Laing
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C Hall
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - A Heap
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - S Penrhyn-Lowe
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - C V McCabe
- School of Earth Sciences, University of Bristol, Bristol BS8 1RL, UK
| | - S Ainsworth
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - R R da Silva
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Molecular Sciences Department, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - P C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - M K Richardson
- Institute of Biology, University of Leiden, Leiden 2333BE, Netherlands
| | - J M Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - J J Calvete
- Evolutionary and Translational Venomics Laboratory, Consejo Superior de Investigaciones Científicas, 46010 Valencia, Spain
| | - R A Harrison
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - I Vetter
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- School of Pharmacy, University of Queensland, Woolloongabba, QLD 4102, Australia
| | - E A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4072, Australia
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Blindern, 0316 Oslo, Norway
| | - W Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor LL57 2UW, UK
| | - N R Casewell
- Centre for Snakebite Research and Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK.
| |
Collapse
|