1
|
Muller JAI, Bourke LA, Campbell SID, Cardoso FC. Venom peptides regulating Ca 2+ homeostasis: neuroprotective potential. Trends Pharmacol Sci 2025; 46:407-421. [PMID: 40240234 DOI: 10.1016/j.tips.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025]
Abstract
Venom peptides specialized in modulating intracellular calcium ([Ca2+]i) offer a treasure trove of pharmacological properties to regulate aberrant Ca2+ homeostasis in disease. Combined with emerging advances across peptide optimization, disease models, and functional bioassays, these venom peptides could unlock new therapies restoring Ca2+ homeostasis. In this opinion, we explore the pharmacology of venom peptides modulating [Ca2+]i signaling along with recent breakthroughs propelling venom peptide-based drug discovery. We predict a transformative era in therapeutic development harnessing venom peptides targeting dysfunctional Ca2+ signaling in intractable conditions such as neurodegenerative diseases.
Collapse
Affiliation(s)
- Jessica A I Muller
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lachlan A Bourke
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Sam I D Campbell
- School of the Environment, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Fernanda C Cardoso
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia.
| |
Collapse
|
2
|
Mariano XM, de Assis Ferreira LC, Almeida-Leite CM, de Castro Junior CJ, de Lima ME. PnPP-15, a Synthetic Peptide Derived from a Toxin from Phoneutria nigriventer Spider Venom, Alleviates Diabetic Neuropathic Pain and Acts Synergistically with Pregabalin in Mice. Toxins (Basel) 2023; 15:560. [PMID: 37755986 PMCID: PMC10537695 DOI: 10.3390/toxins15090560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Diabetic neuropathic pain is one of the complications that affect a wide variety of the diabetic population and is often difficult to treat. Only a small number of patients experience pain relief, which usually comes with onerous side effects and low levels of satisfaction. The search for new analgesic drugs is necessary, given the limitations that current drugs present. Combining drugs to treat neuropathic pain has been attracting interest to improve their efficacy compared to single-drug monotherapies while also reducing dose sizes to minimize side effects. The aim of our study was to verify the antinociceptive effect of a synthetic peptide, PnPP-15, alone and combined with pregabalin, in male Swiss diabetic mice using the von Frey method. PnPP-15 is a synthetic peptide derived from PnPP19, a peptide representing a discontinuous epitope of the primary structure of the toxin PnTx2-6 from the venom of the spider Phoneutria nigriventer. The antinociceptive activity of both compounds was dose-dependent and showed synergism, which was verified by isobolographic analysis. Treatment with PnPP-15 did not cause spontaneous or forced motor changes and did not cause any damage or signs of toxicity in the analyzed organs (pancreas, lung, heart, kidney, brain, or liver). In conclusion, PnPP-15 is a great candidate for an analgesic drug against neuropathic pain caused by diabetes and exerts a synergistic effect when combined with pregabalin, allowing for even more efficient treatment.
Collapse
Affiliation(s)
- Xavier Maia Mariano
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Luana Caroline de Assis Ferreira
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Camila Megale Almeida-Leite
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Célio José de Castro Junior
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| | - Maria Elena de Lima
- Programa de Pós Graduação em Medicina e Biomedicina da Faculdade Santa Casa de Belo Horizonte, Belo Horizonte 30150-240, MG, Brazil; (X.M.M.); (L.C.d.A.F.); (C.J.d.C.J.)
| |
Collapse
|
3
|
Lyukmanova EN, Mironov PA, Kulbatskii DS, Shulepko MA, Paramonov AS, Chernaya EM, Logashina YA, Andreev YA, Kirpichnikov MP, Shenkarev ZO. Recombinant Production, NMR Solution Structure, and Membrane Interaction of the Phα1β Toxin, a TRPA1 Modulator from the Brazilian Armed Spider Phoneutria nigriventer. Toxins (Basel) 2023; 15:378. [PMID: 37368679 DOI: 10.3390/toxins15060378] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Phα1β (PnTx3-6) is a neurotoxin from the spider Phoneutria nigriventer venom, originally identified as an antagonist of two ion channels involved in nociception: N-type voltage-gated calcium channel (CaV2.2) and TRPA1. In animal models, Phα1β administration reduces both acute and chronic pain. Here, we report the efficient bacterial expression system for the recombinant production of Phα1β and its 15N-labeled analogue. Spatial structure and dynamics of Phα1β were determined via NMR spectroscopy. The N-terminal domain (Ala1-Ala40) contains the inhibitor cystine knot (ICK or knottin) motif, which is common to spider neurotoxins. The C-terminal α-helix (Asn41-Cys52) stapled to ICK by two disulfides exhibits the µs-ms time-scale fluctuations. The Phα1β structure with the disulfide bond patterns Cys1-5, Cys2-7, Cys3-12, Cys4-10, Cys6-11, Cys8-9 is the first spider knottin with six disulfide bridges in one ICK domain, and is a good reference to other toxins from the ctenitoxin family. Phα1β has a large hydrophobic region on its surface and demonstrates a moderate affinity for partially anionic lipid vesicles at low salt conditions. Surprisingly, 10 µM Phα1β significantly increases the amplitude of diclofenac-evoked currents and does not affect the allyl isothiocyanate (AITC)-evoked currents through the rat TRPA1 channel expressed in Xenopus oocytes. Targeting several unrelated ion channels, membrane binding, and the modulation of TRPA1 channel activity allow for considering Phα1β as a gating modifier toxin, probably interacting with S1-S4 gating domains from a membrane-bound state.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Pavel A Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Dmitrii S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Mikhail A Shulepko
- Department of Biology, MSU-BIT Shenzhen University, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
| | - Elizaveta M Chernaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Yulia A Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 119997 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Assessment of local pain and analgesia in envenoming by wandering spiders (Phoneutria spp.). Toxicon 2023; 226:107083. [PMID: 36898505 DOI: 10.1016/j.toxicon.2023.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Phoneutrism (bites by wandering spiders of the genus Phoneutria) frequently results in local pain. We describe a retrospective cohort study of a case series of phoneutrism admitted to our Emergency Department (ED), in which we used the Numeric Pain Rating Scale (NPRS 0-10) to assess the intensity of local pain upon admission, and recorded the analgesic measures used to control this pain. Other criteria for inclusion were: (1) An age ≥8 years, (2) Treatment exclusively at our ED, and (3) Visualization or photographing the spider at the time of the bite and/or bringing the spider for identification. The patients were classified into three groups based on the intensity of pain at admission: group 1 - mild or no pain (NPRS: 0-3), group 2 - moderate pain (NPRS: 4-6), and group 3 - intense or severe pain (NPRS: 7-10). Fifty-two patients fulfilled the inclusion criteria (n = 11, 14 and 27 in groups 1, 2, and 3, respectively), with a median age of 37 years. The median NPRS upon admission was 7 (interquartile range: 5-8). In patients with an NPRS <7 (groups 1 and 2), only dipyrone was used to alleviate the pain, with six cases in group 1 requiring no analgesia. Most of the cases in group 3 (19/27) were treated with a local anesthetic infiltration (2% lidocaine), in association with analgesics given i.v. in 16 cases (dipyrone, 14; tramadol, 2); additional analgesic treatment was required in seven cases, six of which were treated with tramadol i.v. The median time spent in the ED was 18, 58 and 120 min for groups 1, 2 and 3, respectively. These findings show that most cases of envenoming by Phoneturia spp. involved intense local pain (NPRS ≥7), with local anesthetics being used only in these cases, often in association with dipyrone i.v.
Collapse
|
5
|
Ageitos L, Torres MDT, de la Fuente-Nunez C. Biologically Active Peptides from Venoms: Applications in Antibiotic Resistance, Cancer, and Beyond. Int J Mol Sci 2022; 23:ijms232315437. [PMID: 36499761 PMCID: PMC9740984 DOI: 10.3390/ijms232315437] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022] Open
Abstract
Peptides are potential therapeutic alternatives against global diseases, such as antimicrobial-resistant infections and cancer. Venoms are a rich source of bioactive peptides that have evolved over time to act on specific targets of the prey. Peptides are one of the main components responsible for the biological activity and toxicity of venoms. South American organisms such as scorpions, snakes, and spiders are important producers of a myriad of peptides with different biological activities. In this review, we report the main venom-derived peptide families produced from South American organisms and their corresponding activities and biological targets.
Collapse
Affiliation(s)
- Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcelo D. T. Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Departments of Bioengineering and Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute for Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
6
|
Viral vector-mediated expressions of venom peptides as novel gene therapy for anxiety and depression. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Muller JAI, Chan LY, Toffoli-Kadri MC, Mortari MR, Craik DJ, Koehbach J. Antinociceptive peptides from venomous arthropods. TOXIN REV 2022. [DOI: 10.1080/15569543.2022.2065510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Jessica A. I. Muller
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Lai Y. Chan
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Monica C. Toffoli-Kadri
- Laboratory of Pharmacology and Inflammation, FACFAN/Federal University of Mato Grosso do Sul, Mato Grosso do Sul, Brazil
| | - Marcia R. Mortari
- Laboratory of Neuropharmacology, IB/University of Brasilia, Brasilia, Brazil
| | - David J. Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
| | - Johannes Koehbach
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|
8
|
da Silva CN, Nunes KP, Dourado LFN, Vieira TO, Mariano XM, Cunha Junior ADS, de Lima ME. From the PnTx2-6 Toxin to the PnPP-19 Engineered Peptide: Therapeutic Potential in Erectile Dysfunction, Nociception, and Glaucoma. Front Mol Biosci 2022; 9:831823. [PMID: 35480885 PMCID: PMC9035689 DOI: 10.3389/fmolb.2022.831823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The venom of the “armed” spider Phoneutria nigriventer comprises several potent toxins. One of the most toxic components from this venom is the neurotoxin PnTx2-6 (LD50 = ∼ 0.7 μg/mouse, 48 residues, five disulfide bridges, MW = 5,289.31 Da), which slows down the inactivation of various Na+ channels. In mice and rats, this toxin causes priapism, an involuntary and painful erection, similar to what is observed in humans bitten by P. nigriventer. While not completely elucidated, it is clear that PnTx2-6 potentiates erectile function via NO/cGMP signaling, but it has many off-target effects. Seeking to obtain a simpler and less toxic molecule able to retain the pharmacological properties of this toxin, we designed and synthesized the peptide PnPP-19 (19 residues, MW = 2,485.6 Da), representing a discontinuous epitope of PnTx2-6. This synthetic peptide also potentiates erectile function via NO/cGMP, but it does not target Na+ channels, and therefore, it displays nontoxic properties in animals even at high doses. PnPP-19 effectively potentiates erectile function not only after subcutaneous or intravenous administration but also following topical application. Surprisingly, PnPP-19 showed central and peripheral antinociceptive activity involving the opioid and cannabinoid systems, suggesting applicability in nociception. Furthermore, considering that PnPP-19 increases NO availability in the corpus cavernosum, this peptide was also tested in a model of induced intraocular hypertension, characterized by low NO levels, and it showed promising results by decreasing the intraocular pressure which prevents retinal damage. Herein, we discuss how was engineered this smaller active non-toxic peptide with promising results in the treatment of erectile dysfunction, nociception, and glaucoma from the noxious PnTx2-6, as well as the pitfalls of this ongoing journey.
Collapse
Affiliation(s)
- Carolina Nunes da Silva
- Departmentamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| | - Kenia Pedrosa Nunes
- Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, FL, United States
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| | | | - Thayllon Oliveira Vieira
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | - Xavier Maia Mariano
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
| | | | - Maria Elena de Lima
- Departmentamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Programa de Pós-Graduação em Medicina e Biomedicina Faculdade Santa Casa de Belo Horizonte, Belo Horizonte, Brazil
- *Correspondence: Maria Elena de Lima, ; Carolina Nunes da Silva, ; Kenia Pedrosa Nunes,
| |
Collapse
|
9
|
Therapeutic potential of viral vectors that express venom peptides for neurological diseases. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Marchi FC, Mendes-Silva E, Rodrigues-Ribeiro L, Bolais-Ramos LG, Verano-Braga T. Toxinology in the proteomics era: a review on arachnid venom proteomics. J Venom Anim Toxins Incl Trop Dis 2022; 28:20210034. [PMID: 35291269 PMCID: PMC8893269 DOI: 10.1590/1678-9199-jvatitd-2021-0034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/01/2021] [Indexed: 11/22/2022] Open
Abstract
The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000's. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms "(scorpion venom) AND (proteome)" for scorpion venomics, and "(spider venom) AND (proteome)" for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
Collapse
Affiliation(s)
- Filipi Calbaizer Marchi
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Edneia Mendes-Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Rodrigues-Ribeiro
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Gabriel Bolais-Ramos
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Thiago Verano-Braga
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
11
|
Diochot S. Pain-related toxins in scorpion and spider venoms: a face to face with ion channels. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210026. [PMID: 34925480 PMCID: PMC8667759 DOI: 10.1590/1678-9199-jvatitd-2021-0026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Pain is a common symptom induced during envenomation by spiders and scorpions.
Toxins isolated from their venom have become essential tools for studying the
functioning and physiopathological role of ion channels, as they modulate their
activity. In particular, toxins that induce pain relief effects can serve as a
molecular basis for the development of future analgesics in humans. This review
provides a summary of the different scorpion and spider toxins that directly
interact with pain-related ion channels, with inhibitory or stimulatory effects.
Some of these toxins were shown to affect pain modalities in different animal
models providing information on the role played by these channels in the pain
process. The close interaction of certain gating-modifier toxins with membrane
phospholipids close to ion channels is examined along with molecular approaches
to improve selectivity, affinity or bioavailability in vivo for
therapeutic purposes.
Collapse
Affiliation(s)
- Sylvie Diochot
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Centre National de la Recherche Scientifique (CNRS) UMR 7275 et Université Côte d'Azur (UCA), 06560 Valbonne, France. Institut de Pharmacologie Moléculaire et Cellulaire Centre National de la Recherche Scientifique Université Côte d'Azur Valbonne France
| |
Collapse
|
12
|
Aoki CT, Moura RA, Ferreira LA, Mendes MG, Santos DC, Rezende MJ, Gomez MV, Castro-Junior CJ. Isobolographic analysis reveals antinociceptive synergism between Phα1β recombinant toxin and morphine in a model of cancer pain in C57BL/6J mice. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20210027. [PMID: 34512739 PMCID: PMC8388195 DOI: 10.1590/1678-9199-jvatitd-2021-0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Phoneutria nigriventer venom contains Phα1β. This toxin and its recombinant form have a remarkable analgesic potential that is associated with blockage of voltage-gated calcium channels and TRPA1 receptors. Although morphine is a mainstay drug to treat moderate and severe pain related to cancer, it has serious and dose-limiting side effects. Combining recombinant Phα1β and morphine to treat pain is an interesting approach that has been gaining attention. Therefore, a quantitative and reliable method to establish the strength of the antinociceptive interaction between these two substances is necessary. The present study was designed to investigate the nature of the functional antinociceptive (analgesic) interaction between Phα1β recombinant toxin and morphine in a model of cancer pain. Methods: Melanoma was produced by intraplantar inoculation of B16-F10 cells into the right paw of C57BL/6J mice. Von Frey filaments measured the paw-withdrawal threshold after intrathecal administration of morphine, recombinant Phα1β, and their combination. Thermal hyperalgesia was assessed using Hargreaves apparatus. The degree of interaction was evaluated using isobolographic analysis. Spontaneous and forced motor performance was assessed with the open-field and rotarod tests, respectively. Results: Co-administration of recombinant Phα1β and morphine synergistically reverses the melanoma-induced mechanical hyperalgesia. The potency of the mixture, measured as the effective dose to reach 50% of maximum possible effect (MPE) in ameliorating mechanical hyperalgesia, was about twice fold higher than expected if the interaction between morphine and recombinant Phα1β was merely additive. Treatment with the combination at doses necessary to reach 50% of MPE caused no spontaneous nor forced motor alterations. Conclusion: The combinatorial use of recombinant Phα1β and morphine allows significant and effective dose reduction of both agents, which has translational potential for opioid-sparing approaches in pain management related to cancer.
Collapse
Affiliation(s)
- Caio Tavares Aoki
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Rodrigo Andrade Moura
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Luana Assis Ferreira
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Mariana Garcia Mendes
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Duana Carvalho Santos
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Marcio Junior Rezende
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Marcus Vinícius Gomez
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| | - Célio José Castro-Junior
- Graduate Program in Health Sciences, Institute of Education and Research, Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| |
Collapse
|