1
|
Mahmoud YAG, Elkaliny NE, Darwish OA, Ashraf Y, Ebrahim RA, Das SP, Yahya G. Comprehensive review for aflatoxin detoxification with special attention to cold plasma treatment. Mycotoxin Res 2025; 41:277-300. [PMID: 39891869 PMCID: PMC12037664 DOI: 10.1007/s12550-025-00582-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/26/2024] [Accepted: 01/06/2025] [Indexed: 02/03/2025]
Abstract
Aflatoxins are potent carcinogens and pose significant risks to food safety and public health worldwide. Aflatoxins include Aflatoxin B1 (AFB1), Aflatoxin B2 (AFB2), Aflatoxin G1 (AFG1), Aflatoxin G2 (AFG2), and Aflatoxin M1 (AFM1). AFB1 is particularly notorious for its carcinogenicity, classified as a Group 1 human carcinogen by the International Agency for Research on Cancer (IARC). Chronic exposure to aflatoxins through contaminated food and feed can lead to liver cancer, immunosuppression, growth impairment, and other systemic health issues. Efforts to mitigate aflatoxin contamination have traditionally relied on chemical treatments, physical separation methods, and biological degradation. However, these approaches often pose challenges related to safety, efficacy, and impact on food quality. Recently, cold plasma treatment has emerged as a promising alternative. Cold plasma generates reactive oxygen species, which effectively degrade aflatoxins on food surfaces without compromising nutritional integrity or safety. This review consolidates current research and advancements in aflatoxin detoxification, highlighting the potential of cold plasma technology to revolutionize food safety practices. By exploring the mechanisms of aflatoxin toxicity, evaluating existing detoxification methods, and discussing the principles and applications of cold plasma treatment.
Collapse
Affiliation(s)
- Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Nehal E Elkaliny
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Omar A Darwish
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut, 71515, Egypt
| | - Yara Ashraf
- Applied and Analytical Microbiology Department, Faculty of Science, Ain Shams University, Ain Shams, 11772, Egypt
| | - Rumaisa Ali Ebrahim
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Shankar Prasad Das
- Cell Biology & Molecular Genetics, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, 575018, Karnataka, India
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Al Sharqia, 44519, Egypt.
- Molecular Biology Institute of Barcelona (IBMB), CSIC, Barcelona, Spain.
| |
Collapse
|
2
|
García-Ramón DF, Cornelio-Santiago HP, Norabuena E, Sumarriva L, Alvarez-Chancasanampa H, Vega MN, Sotelo-Méndez A, Espinoza-Espinoza LA, Pantoja-Tirado LR, Gonzales-Agama SH, Chavarría-Marquez EY, Castro-Galarza CR. Effective novel and conventional technologies for decontamination of aflatoxin B 1 in foods: a review. Mycotoxin Res 2025; 41:301-321. [PMID: 40172772 DOI: 10.1007/s12550-025-00589-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/04/2025]
Abstract
Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin produced by certain filamentous fungi that contaminate agricultural crops. Conventional decontamination methods are still widely used to ensure food safety; however, novel technologies for AFB1 decontamination, while promising, aim to be efficient, cost-effective, and scalable. This article provides an overview of conventional and novel technologies used over the past decade to achieve AFB1 decontamination rates of 75% or higher, as well as patents related to aflatoxin decontamination. The results highlight various methods and their effectiveness in decontaminating AFB1 in rice, barley, maize, peanuts, millet, nuts, sorghum, wheat bran, pistachios, edible oils, dairy products, and certain culture media. Novel technologies include sorbents, cold atmospheric plasma, essential oils, phenolic compounds, and plant extracts, as well as magnetic materials and nanoparticles for AFB1 decontamination. Limitations associated with conventional methods have driven the search for novel approaches that, while showing great potential, often lack detailed explanations of their mechanisms of action and practical demonstrations on an industrial scale. Cold atmospheric plasma combined with high voltage is believed to hold significant promise for effectively reducing AFB1 in food while minimizing food residues. The new AFB1 decontamination methods described in this review can serve as valuable resources for researchers and industry stakeholders; however, further studies are needed to ensure global food safety.
Collapse
Affiliation(s)
| | | | - Edgar Norabuena
- Facultad de Ingeniería Química y Textil, Universidad Nacional de Ingenieria, Lima, Peru
| | - Liliana Sumarriva
- Facultad de Ciencias, Universidad Nacional de Educación "Enrique Guzmán Valle, Lima, Peru
| | | | - Marlitt Naupay Vega
- Facultad de Ingeniería Geográfica Ambiental y Ecoturismo, Universidad Federico Villareal, Lima, Peru
| | | | | | - Lucia R Pantoja-Tirado
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Peru
| | - Sara H Gonzales-Agama
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Peru
| | - Esmila Y Chavarría-Marquez
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Tayacaja, Peru
| | | |
Collapse
|
3
|
Qian H, Wang Y, Zhou X, Gu T, Wang H, Lyu H, Li Z, Li X, Zhou H, Guo C, Yuan F, Wang Y. ESM-Ezy: a deep learning strategy for the mining of novel multicopper oxidases with superior properties. Nat Commun 2025; 16:3274. [PMID: 40188191 PMCID: PMC11972304 DOI: 10.1038/s41467-025-58521-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
The UniProt database is a valuable resource for biocatalyst discovery, yet predicting enzymatic functions remains challenging, especially for low-similarity sequences. Identifying superior enzymes with enhanced catalytic properties is even harder. To overcome these challenges, we develop ESM-Ezy, an enzyme mining strategy leveraging the ESM-1b protein language model and similarity calculations in semantic space. Using ESM-Ezy, we identify novel multicopper oxidases (MCOs) with superior catalytic properties, achieving a 44% success rate in outperforming query enzymes (QEs) in at least one property, including catalytic efficiency, heat and organic solvent tolerance, and pH stability. Notably, 51% of the MCOs excel in environmental remediation applications, and some exhibited unique structural motifs and unique active centers enhancing their functions. Beyond MCOs, 40% of L-asparaginases identified show higher specific activity and catalytic efficiency than QEs. ESM-Ezy thus provides a promising approach for discovering high-performance biocatalysts with low sequence similarity, accelerating enzyme discovery for industrial applications.
Collapse
Affiliation(s)
- Hui Qian
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
- The Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Yuxuan Wang
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
- The Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Xibin Zhou
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Tao Gu
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
- The Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Hui Wang
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Hao Lyu
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Zhikai Li
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Xiuxu Li
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
- The Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Huan Zhou
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou, 310024, Zhejiang Province, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China
| | - Fajie Yuan
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China.
- The Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310014, Zhejiang, China.
| | - Yajie Wang
- School of Engineering, Westlake University, Hangzhou, 310014, Zhejiang, China.
- The Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou, 310014, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Xihu District, Hangzhou, 310024, Zhejiang Province, China.
- School of Life Science, Westlake University, Hangzhou, 310014, Zhejiang, China.
- Muyuan laboratory, Zhengzhou, Henan, China.
| |
Collapse
|
4
|
Zhang Y, Zhang L, Zhang X, Zhao C, Li M, Guan E, Lv Y, Bian K. Degradation of aflatoxin B 1 in corn by water-assisted microwave irradiation and its kinetic. Toxicon 2025; 255:108239. [PMID: 39824463 DOI: 10.1016/j.toxicon.2025.108239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025]
Abstract
Aflatoxin B1 (AFB1) is a highly toxic, carcinogenic, teratogenic, and mutagenic mycotoxin commonly found in corn. In this work, water-assisted microwave irradiation (WMI1) was used to degrade AFB1 in corn, during which the influencing factors and kinetics of AFB1 degradation were also studied. The results showed that the degree of corn crushing, the heating rate of WMI, the temperature of WMI, the solid-liquid ratio, the initial content of AFB1 and the microwave power were all important factors affecting the degradation of AFB1. With the increase of WMI temperature, AFB1 content in corn, microwave power and the decrease of solid-liquid ratio, the degradation rate of AFB1 in corn by WMI rose continuously. Its maximum degradation rate was more than 90.6%. Meanwhile, the degradation kinetics of AFB1 in corn revealed that the degradation process of WMI followed a pseudo-first-order kinetic equation. It was demonstrated that water molecules not only acted as solvents for AFB1 but also actively participated in its degradation process within corn samples during WMI treatment. Consequently, the results indicated that WMI was an effective method for degrading AFB1 in corn.
Collapse
Affiliation(s)
- Yaolei Zhang
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou, 451460, China; College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Lingling Zhang
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou, 451460, China
| | - Xiaoxia Zhang
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou, 451460, China
| | - Cheng Zhao
- Henan Railway Food Safety Management Engineering Technology Research Center, Zhengzhou, 451460, China
| | - Mengmeng Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Erqi Guan
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
| | - Yangyong Lv
- College of Biological engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Ke Bian
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Wang Y, Zhou A, Yu B, Sun X. Recent Advances in Non-Contact Food Decontamination Technologies for Removing Mycotoxins and Fungal Contaminants. Foods 2024; 13:2244. [PMID: 39063328 PMCID: PMC11276063 DOI: 10.3390/foods13142244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Agricultural food commodities are highly susceptible to contamination by fungi and mycotoxins, which cause great economic losses and threaten public health. New technologies such as gamma ray irradiation, ultraviolet radiation, electron beam irradiation, microwave irradiation, pulsed light, pulsed electric fields, plasma, ozone, etc. can solve the problem of fungal and mycotoxin contamination which cannot be effectively solved by traditional food processing methods. This paper summarizes recent advancements in emerging food decontamination technologies used to control various fungi and their associated toxin contamination in food. It discusses the problems and challenges faced by the various methods currently used to control mycotoxins, looks forward to the new trends in the development of mycotoxin degradation methods in the future food industry, and proposes new research directions.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Aiyun Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Bei Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (A.Z.)
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Ma R, Fan Y, Yang X, Liu C, Wan J, Xu C, Wang R, Feng J, Jiao Z. Detoxification of DON-induced hepatotoxicity in mice by cold atmospheric plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116547. [PMID: 38843744 DOI: 10.1016/j.ecoenv.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins distributed in food and feed, which causes severe liver injury in humans and animals. Cold atmospheric plasma (CAP) has received much attention in mycotoxin degradation due to the advantages of easy operation, high efficiency, and low temperature. So far, the majority of studies have focused on the degradation efficiency and mechanism of CAP on DON, while there is still little information available on the hepatotoxicity of DON after CAP treatment. Herein, this study aimed to investigate the effect of CAP on DON-induced hepatotoxicity both in vitro and in vivo and its underlying mechanisms. The results showed that 120-s CAP treatment achieved 97 % degradation of DON. The vitro hepatotoxicity of DON in L02 cells was significantly reduced with CAP treatment time. Meanwhile, CAP markedly alleviated DON-induced liver injury in mice including the balloon-like degeneration of liver tissues and elevation of AST and ALP level. The underlying mechanism for CAP detoxification of DON-induced hepatotoxicity was further elucidated. The results showed that DON caused severe oxidative stress in cells by suppressing the antioxidant signaling pathway of Nrf2/HO-1/NQO-1, consequently leading to mitochondrial dysfunction and cell apoptosis, accompanied by cellular senescence and inflammation. CAP blocked DON inhibition on the Nrf2/HO-1/NQO-1 signaling pathway through the efficient degradation of DON, accordingly alleviating the oxidative stress and liver injury induced by DON. Therefore, CAP is an effective method to eliminate DON hepatotoxicity, which can be applied in the detoxification of mycotoxin-contaminated food and feed to ensure human and animal health.
Collapse
Affiliation(s)
- Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Yongqin Fan
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Chunli Liu
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China
| | - Cui Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| | - Ruixue Wang
- College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Green Agriculture Bioengineering, Zhengzhou University, Zhengzhou 450001, China; Sanya Institute, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Liu M, Feng J, Yang X, Yu B, Zhuang J, Xu H, Xiang Q, Ma R, Jiao Z. Recent advances in the degradation efficacy and mechanisms of mycotoxins in food by atmospheric cold plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115944. [PMID: 38184978 DOI: 10.1016/j.ecoenv.2024.115944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/09/2024]
Abstract
Food contaminated by mycotoxins has become a worldwide public problem with political and economic implications. Although a variety of traditional methods have been used to eliminate mycotoxins from agri-foods, the results have been somewhat less than satisfactory. As an emerging non-thermal processing technology, atmospheric cold plasma (ACP) has great potential for food decontamination. Herein, this review mainly presents the degradation efficiency of ACP on mycotoxins in vitro and agri-foods as well as its possible degradation mechanisms. Meanwhile, ACP effects on food quality, factors affecting the degradation efficiency and the toxicity of degradation products are also discussed. According to the literatures, ACP could efficiently degrade many mycotoxins (e.g., aflatoxin, deoxynivalenol, zearalenone, ochratoxin A, fumonisin, and T-2 toxin) both in vitro and various foods (e.g., hazelnut, peanut, maize, rice, wheat, barley, oat flour, and date palm fruit) with little effects on the nutritional and sensory properties of food. The degradation efficacy was dependent on many factors including ACP treatment parameter, working gas, mycotoxin property, and food substrate. The mycotoxin degradation by ACP was mainly attributed to the reactive oxygen and nitrogen species in ACP, which can damage the chemical bonds of mycotoxins, consequently reducing the toxicity of mycotoxins.
Collapse
Affiliation(s)
- Mengjie Liu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Junxia Feng
- Huadu District People's Hospital of Guangzhou, Guangzhou 510800, China
| | - Xudong Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Zhuang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Hangbo Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| | - Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Ruonan Ma
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhen Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
8
|
Wang Y, Shang J, Cai M, Liu Y, Yang K. Detoxification of mycotoxins in agricultural products by non-thermal physical technologies: a review of the past five years. Crit Rev Food Sci Nutr 2023; 63:11668-11678. [PMID: 35791798 DOI: 10.1080/10408398.2022.2095554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mycotoxins produced by Aspergillus spp., Penicillium spp. and Fusarium spp. with small molecular weight and thermal stability, are highly toxic and carcinogenic secondary metabolites. Mycotoxins have caused widespread concern regarding food safety internationally because of their adverse effects on the health of humans and animals, and the major economic losses they cause. There is an urgent need to find ways to reduce or eliminate the impact of mycotoxins in food and feed without introducing new safety issues, or reducing nutritional quality. Non-thermal physical technology is the basis for new techniques to degrade mycotoxins, with great potential for practical detoxification applications in the food industry. Compared with conventional thermal treatments, non-thermal physical detoxification technologies are easier to apply and effective, with less adverse impact on the nutritional value of agricultural products. The advantages, limitations and development prospects of these new detoxification technologies are discussed. Further studies are recommended to standardize the treatment conditions for each detoxification technology, evaluate the safety of the degradation products, and to combine different detoxification technologies to achieve synergistic effects. This will facilitate realization of the great potential of the new technologies and the development of practical applications.
Collapse
Affiliation(s)
- Yan Wang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Jie Shang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Ming Cai
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| | - Yang Liu
- School of Food Science and Engineering, Foshan University/South China Food Safety Research Center, Foshan, Guangdong, P. R. China
| | - Kai Yang
- College of Food science and Technology, Zhejiang University of Technology/Key Laboratory of Food Macromolecular Resources Processing Technology Research (Zhejiang University of Technology), China National Light Industry, Hangzhou, Zhejiang, P. R. China
| |
Collapse
|
9
|
Kungsuwan K, Sawangrat C, Ounjaijean S, Chaipoot S, Phongphisutthinant R, Wiriyacharee P. Enhancing Bioactivity and Conjugation in Green Coffee Bean ( Coffea arabica) Extract through Cold Plasma Treatment: Insights into Antioxidant Activity and Phenolic-Protein Conjugates. Molecules 2023; 28:7066. [PMID: 37894545 PMCID: PMC10609076 DOI: 10.3390/molecules28207066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Cold plasma technology is gaining attention as a promising approach to enhancing the bioactivity of plant extracts. However, its impact on green coffee bean extracts (GCBEs) still needs to be explored. In this study, an innovative underwater plasma jet system was employed to investigate the effects of cold plasma on Coffea arabica GCBEs, focusing on the conjugation reflected by the change in composition and bioactivity. The DPPH radical scavenging antioxidant activity exhibited a gradual increase with plasma treatment up to 35 min, followed by a decline. Remarkably, at 35 min, the plasma treatment resulted in a significant 66% increase in the DPPH radical scavenging activity of the GCBE. The total phenolic compound content also displayed a similar increasing trend to the DPPH radical scavenging activity. However, the phenolic profile analysis indicated a significant decrease in chlorogenic acids and caffeine. Furthermore, the chemical composition analysis revealed a decrease in free amino acids, while sucrose remained unchanged. Additionally, the SDS-PAGE results suggested a slight increase in protein size. The observed enhancement in antioxidant activity, despite the reduction in the two major antioxidants in the GCBE, along with the increase in protein size, might suggest the occurrence of conjugation processes induced by plasma, particularly involving proteins and phenolic compounds. Notably, the plasma treatment exhibited no adverse effects on the extract's safety, as confirmed by the MTT assay. These findings indicate that cold plasma treatment holds significant promise in improving the functional properties of GCBE while ensuring its safety. Incorporating cold plasma technology into the processing of natural extracts may offer exciting opportunities for developing novel and potent antioxidant-rich products.
Collapse
Affiliation(s)
- Kuntapas Kungsuwan
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Choncharoen Sawangrat
- Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand;
- Agriculture and Bio Plasma Technology Center (ABPlas), Thai Korean Research Collaboration Center (TKRCC), Science and Technology Park, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sakaewan Ounjaijean
- School of Health Sciences Research, Research Institute for Health Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Supakit Chaipoot
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rewat Phongphisutthinant
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pairote Wiriyacharee
- Division of Product Development Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
- Multidisciplinary Research Institute (MDRI), Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
10
|
Peng Z, Zhang Y, Ai Z, Pandiselvam R, Guo J, Kothakota A, Liu Y. Current physical techniques for the degradation of aflatoxins in food and feed: Safety evaluation methods, degradation mechanisms and products. Compr Rev Food Sci Food Saf 2023; 22:4030-4052. [PMID: 37306549 DOI: 10.1111/1541-4337.13197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
Aflatoxins are the most toxic natural mycotoxins discovered so far, posing a serious menace to the food safety and trading economy of the world, especially developing countries. How to effectively detoxify has persistently occupied a place on the list of "global hot-point" concerns. Among the developed detoxification methods, physical methods, as the authoritative techniques for aflatoxins degradation, could rapidly induce irreversible denaturation of aflatoxins. This review presents a brief overview of aflatoxins detection and degradation product structure identification methods. Four main safety evaluation methods for aflatoxins and degradation product toxicity assessment are highlighted combined with an update on research of aflatoxins decontamination in the last decade. Furthermore, the latest applications, degradation mechanisms and products of physical aflatoxin decontamination techniques including microwave heating, irradiation, pulsed light, cold plasma and ultrasound are discussed in detail. Regulatory issues related to "detoxification" are also explained. Finally, we put forward the challenges and future work in studying aflatoxin degradation based on the existing research. The purpose of supplying this information is to help researchers have a deeper understanding on the degradation of aflatoxins, break through the existing bottleneck, and further improve and innovate the detoxification methods of aflatoxins.
Collapse
Affiliation(s)
- Zekang Peng
- College of Engineering, China Agricultural University, Beijing, China
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - Ziping Ai
- College of Engineering, China Agricultural University, Beijing, China
| | - Ravi Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Jiale Guo
- College of Engineering, China Agricultural University, Beijing, China
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
11
|
Urugo MM, Teka TA, Berihune RA, Teferi SL, Garbaba CA, Adebo JA, Woldemariam HW, Astatkie T. Novel non-thermal food processing techniques and their mechanism of action in mycotoxins decontamination of foods. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
12
|
The Application of Cold Plasma Technology in Low-Moisture Foods. FOOD ENGINEERING REVIEWS 2023. [DOI: 10.1007/s12393-022-09329-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Inactivation of Soybean Trypsin Inhibitor by Dielectric-Barrier Discharge Plasma and Its Safety Evaluation and Application. Foods 2022; 11:foods11244017. [PMID: 36553759 PMCID: PMC9778619 DOI: 10.3390/foods11244017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/14/2022] Open
Abstract
The trypsin inhibitor (TI) is one of the most important anti-nutritive elements in soybeans. As a new nonthermal technology, dielectric-barrier discharge (DBD) cold plasma has attracted increasing attention in food processing. In this research, we investigated the effect of dielectric-barrier discharge (DBD) plasma treatment on soybean trypsin inhibitor content and its structure, evaluated TI toxicity and the safety of its degradation products after treatment with DBD technology in vitro and in vivo, and applied the technology to soybean milk, which was analyzed for quality. Using the statistical analysis of Student’s t-test, the results demonstrated that DBD plasma treatment significantly decreased the content of TI (33.8 kV at 1, 3, or 5 min, p < 0.05, p < 0.01, p < 0.001) and destroyed the secondary and tertiary structures of TI. TI was toxic to Caco-2 cells and could inhibit body weight gain, damage liver and kidney functions, and cause moderate or severe lesions in mouse organ tissues, whereas these phenomena were alleviated in mice treated with degradation products of TI after DBD plasma treatment under the optimal condition (33.8 kV at 5 min). The content of TI in DBD-treated soymilk was also significantly reduced (p < 0.001), while the acidity, alkalinity, conductivity, color, and amino acid composition of soymilk were not affected, and there were no statistical differences (p > 0.05). In summary, DBD plasma is a promising non-thermal processing technology used to eliminate TI from soybean products.
Collapse
|
14
|
Lin SP, Khumsupan D, Chou YJ, Hsieh KC, Hsu HY, Ting Y, Cheng KC. Applications of atmospheric cold plasma in agricultural, medical, and bioprocessing industries. Appl Microbiol Biotechnol 2022; 106:7737-7750. [PMID: 36329134 PMCID: PMC9638309 DOI: 10.1007/s00253-022-12252-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Atmospheric cold plasma (ACP) is a nonthermal technology that is extensively used in several industries. Within the scopes of engineering and biotechnology, some notable applications of ACP include waste management, material modification, medicine, and agriculture. Notwithstanding numerous applications, ACP still encounters a number of challenges such as diverse types of plasma generators and sizes, causing standardization challenges. This review focuses on the uses of ACP in engineering and biotechnology sectors in which the innovation can positively impact the operation process, enhance safety, and reduce cost. Additionally, its limitations are examined. Since ACP is still in its nascent stage, the review will also propose potential research opportunities that can help scientists gain more insights on the technology. KEY POINTS: • ACP technology has been used in agriculture, medical, and bioprocessing industries. • Chemical study on the reactive species is crucial to produce function-specific ACP. • Different ACP devices and conditions still pose standardization problems.
Collapse
Affiliation(s)
- Shin-Ping Lin
- School of Food Safety, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan
| | - Darin Khumsupan
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yu-Jou Chou
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Kuan-Chen Hsieh
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Hsien-Yi Hsu
- School of Energy and Environment & Department of Materials Science and Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yuwen Ting
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
| | - Kuan-Chen Cheng
- Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Institute of Food Science and Technology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan.
- Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung, 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
15
|
Wang T, Li N, Luo S, Wang L, Jiang L, Han C, Yu D. Catalyst activation by cold plasma technology and its effect on isomerization of safflower seed oil. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.102942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
Xiang Q, Huangfu L, Dong S, Ma Y, Li K, Niu L, Bai Y. Feasibility of atmospheric cold plasma for the elimination of food hazards: Recent advances and future trends. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34761962 DOI: 10.1080/10408398.2021.2002257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In recent decades, food safety has emerged as a worldwide public health issue with economic and political implications. Pesticide residues, mycotoxins, allergens, and antinutritional factors are the primary concerns associated with food products due to their potential adverse health effects. Although various conventional processing methods (such as washing, peeling, and cooking) have been used to reduce or eliminate these hazards from agricultural food materials, the results obtained are not quite satisfactory. Recently, atmospheric cold plasma (ACP), an emerging low -temperature and green processing technology, has shown great potential for mitigating food hazards. However, detailed descriptions of the effects of ACP treatment on food hazards are still not available. Thus, the current review aims to highlight recent studies on the efficacy and application of ACP in the reduction or elimination of pesticide residues, mycotoxins, allergens, and antinutritional factors in various food products. The possible working mechanisms of ACP and its effect on food quality, and the toxicity of degradation products are emphatically discussed. In addition, multiple factors affecting the efficacy of ACP are summarized in detail. At the same time, the major technical challenges for practical application and future development prospects of this emerging technology are also highlighted.
Collapse
Affiliation(s)
- Qisen Xiang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Lulu Huangfu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Shanshan Dong
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Yunfang Ma
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Ke Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Liyuan Niu
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| | - Yanhong Bai
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, PR China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou, PR China
| |
Collapse
|
17
|
Sidhu H, Capalash N. Synergistic anti-cancer action of salicylic acid and cisplatin on HeLa cells elucidated by network pharmacology and in vitro analysis. Life Sci 2021; 282:119802. [PMID: 34237314 DOI: 10.1016/j.lfs.2021.119802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/13/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023]
Abstract
AIM To investigate the anti-cancer potential of salicylic acid and cisplatin combination in HeLa cells and the underlying mechanism. MAIN METHODS Drugs and disease targets were extracted from DrugBank, BATMAN-TCM, STITCH, PharmMapper and Comparative Toxigenomics Database. Cytoscape 3.8.2 was used to merge the protein-protein interaction networks and select core targets. GO and KEGG analysis was done using Metascape and WebGestalt. Effect of salicylic acid and cisplatin alone and in combination on cells viability was studied by MTT assay. The type of interaction between salicylic acid and cisplatin was determined by CompuSyn. Apoptosis was evaluated by molecular docking, Rhodamine-123, DAPI, AO/EtBr staining, flow cytometry, qRT-PCR and western blotting. Metastasis was studied using scratch assay and western blotting. UHRF1 transient silencing was performed by siRNA. KEY FINDINGS Out of 420, 1863 and 1362 respective targets of salicylic acid, cisplatin and cervical cancer, 18 core proteins were enriched in apoptosis and cell migration related pathways. IC50 value of cisplatin was reduced by 14 fold in combination with salicylic acid at IC20 (4 μM). There was loss of mitochondrial membrane potential and downregulation of UHRF1, pAkt, full length PARP and pro-caspase 3 expression. Transient silencing of UHRF1 also induced mitochondrial depolarization and apoptosis. The combination also exhibited anti-metastasis effect as it suppressed migration, upregulated PAX1 and downregulated MMP-2. SIGNIFICANCE Reduction in cisplatin concentration, enhanced anti-cancer effects and UHRF1 downregulation due to synergistic interaction between salicylic acid and cisplatin underscores the therapeutic importance of the combination to overcome chemo-resistance and side effects of cisplatin.
Collapse
Affiliation(s)
- Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
18
|
Pei F, Feng S, Wu Y, Lv X, Wang H, Chen SM, Hao Q, Cao Y, Lei W, Tong Z. Label-free photoelectrochemical immunosensor for aflatoxin B1 detection based on the Z-scheme heterojunction of g-C 3N 4/Au/WO 3. Biosens Bioelectron 2021; 189:113373. [PMID: 34090152 DOI: 10.1016/j.bios.2021.113373] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Aflatoxin B1 (AFB1) is the most toxic mycotoxin, is widely found in foods and animal feeds, and can pose a serious threat to our lives. A label-free photoelectrochemical (PEC) immunosensor was fabricated for the sensitive detection of AFB1. A Z-scheme heterojunction of gold nanoparticles (Au NPs) loaded on graphitic carbon nitride sheet and tungsten trioxide sphere composite (g-C3N4/Au/WO3) acted as the highly sensitive platform. The g-C3N4/Au/WO3 is capable, not only of immobilizing antibodies via Au NPs, but also enhancing the separation of electron-hole pairs due to its good energy band matching efficiency. The mechanism of photo-generated electron/hole transfer on g-C3N4/Au/WO3 was explored using scavengers to eliminate active components. On this basis, an electron transfer pathway for the immunosensor was deduced. The PEC immunosensor displayed a linear concentration range from 1.0 pg mL-1 to 100 ng mL-1 and a low detection limit of 0.33 pg mL-1 (S/N = 3) for AFB1. Good reproducibility, stability, and specificity provide a solid foundation for the practical application of this immunosensor.
Collapse
Affiliation(s)
- Fubin Pei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shasha Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China
| | - Yi Wu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China
| | - Xuchu Lv
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China
| | - Hualai Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Qingli Hao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China
| | - Yang Cao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China
| | - Wu Lei
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, JiangSu, China.
| | - Zhaoyang Tong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|