1
|
Quintanilha MVT, Gobbo GDAM, Pinheiro GB, de Souza ACB, Camargo LC, Mortari MR. Evaluating a Venom-Bioinspired Peptide, NOR-1202, as an Antiepileptic Treatment in Male Mice Models. Toxins (Basel) 2024; 16:342. [PMID: 39195752 PMCID: PMC11359417 DOI: 10.3390/toxins16080342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Epilepsy, a neurological disorder characterized by excessive neuronal activity and synchronized electrical discharges, ranks among the most prevalent global neurological conditions. Despite common use, antiepileptic drugs often result in adverse effects and lack effectiveness in controlling seizures in temporal lobe epilepsy (TLE) patients. Recent research explored the potential of occidentalin-1202, a peptide inspired by Polybia occidentalis venom, in safeguarding Wistar rats from chemically induced seizures. The present study evaluated the new analog from occidentalin-1202 named NOR-1202 using acute and chronic pilocarpine-induced models and an acute kainic acid (KA) male mice model. NOR-1202 was administered through the intracerebroventricular (i.c.v.), subcutaneous, or intraperitoneal routes, with stereotaxic procedures for the i.c.v. injection. In the acute pilocarpine-induced model, NOR-1202 (i.c.v.) protected against generalized seizures and mortality but lacked systemic antiepileptic activity. In the KA model, it did not prevent generalized seizures but improved survival. In the chronic TLE model, NOR-1202's ED50 did not differ significantly from the epileptic or healthy groups regarding time spent in spontaneous recurrent seizures during the five-day treatment. However, the NOR-1202 group exhibited more seizures than the healthy group on the second day of treatment. In summary, NOR-1202 exhibits antiepileptic effects against chemoconvulsant-induced seizures, but no effect was observed when administered systemically.
Collapse
Affiliation(s)
| | | | | | | | - Luana Cristina Camargo
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (M.V.T.Q.); (G.d.A.M.G.); (G.B.P.); (A.C.B.d.S.); (M.R.M.)
| | | |
Collapse
|
2
|
Zainal Abidin SA, Liew AKY, Othman I, Shaikh F. Animal Venoms as Potential Source of Anticonvulsants. F1000Res 2024; 13:225. [PMID: 38919947 PMCID: PMC11196940 DOI: 10.12688/f1000research.147027.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 06/27/2024] Open
Abstract
Epilepsy affects millions of people worldwide, and there is an urgent need to develop safe and effective therapeutic agents. Animal venoms contain diverse bioactive compounds like proteins, peptides, and small molecules, which may possess medicinal properties against epilepsy. In recent years, research has shown that venoms from various organisms such as spiders, ants, bees, wasps, and conus snails have anticonvulsant and antiepileptic effects by targeting specific receptors and ion channels. This review underscores the significance of purified proteins and toxins from these sources as potential therapeutic agents for epilepsy. In conclusion, this review emphasizes the valuable role of animal venoms as a natural resource for further exploration in epilepsy treatment research.
Collapse
Affiliation(s)
- Syafiq Asnawi Zainal Abidin
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Anthony Kin Yip Liew
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Iekhsan Othman
- Monash University Malaysia, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Bandar Sunway, Selangor, 47500, Malaysia
| | - Farooq Shaikh
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia
| |
Collapse
|
3
|
Mayer AB, Amaral HDO, de Oliveira DGR, Campos GAA, Ribeiro PG, Fernandes SCR, de Souza ACB, de Castro RJA, Bocca AL, Mortari MR. New fraternine analogues: Evaluation of the antiparkinsonian effect in the model of Parkinson's disease. Neuropeptides 2024; 103:102390. [PMID: 37984248 DOI: 10.1016/j.npep.2023.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Venom-derived peptides are important sources for the development of new therapeutic molecules, especially due to their broad pharmacological activity. Previously, our research group identified a novel natural peptide, named fraternine, with promising effects for the treatment of Parkinson's disease. In the present paper, we synthesized three peptides bioinspired in fraternine: fra-10, fra-14, and fra-24. They were tested in the 6-OHDA-induced model of parkinsonism, quantifying motor coordination, levels of TH+ neurons in the substantia nigra pars compacta (SN), and inflammation mediators TNF-α, IL-6, and IL-1ß in the cortex. Peptides fra-14 and fra-10 improved the motor coordination in relation to 6-OHDA lesioned animals. However, most of the peptides were toxic in the doses applied. All three peptides reduced the intensity of the lesion induced rotations in the apomorphine test. Fra-24 higher dose increased the number of TH+ neurons in SN and reduced the concentration of TNF-α in the cortex of 6-OHDA lesioned mice. Overall, only the peptide fra-24 presented a neuroprotection effect on dopaminergic neurons of SN and a reduction of cytokine TNF-α levels, making it worthy of consideration for the treatment of PD.
Collapse
Affiliation(s)
- Andréia Biolchi Mayer
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Henrique de Oliveira Amaral
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Danilo Gustavo R de Oliveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Gabriel Avohay Alves Campos
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Priscilla Galante Ribeiro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Solange Cristina Rego Fernandes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Adolfo Carlos Barros de Souza
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Raffael Júnio Araújo de Castro
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Anamélia Lorenzetti Bocca
- Laboratory of Applied Immunology, Department of Cellular Biology, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
4
|
Bastos V, Pascoal S, Lopes K, Mortari M, Oliveira H. Cytotoxic effects of Chartergellus communis wasp venom peptide against melanoma cells. Biochimie 2024; 216:99-107. [PMID: 37879427 DOI: 10.1016/j.biochi.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
Cancer is a huge public health problem being one of the main causes of death globally. Specifically, melanoma is one of the most threatening cancer types due to the metastatic capacity, treatment resistance and mortality rates. It is evident the urgent need for research on new agents with pharmacological potential for cancer treatment, in order to develop new cancer therapeutic strategies and overcome drug resistance. The present work investigated the anti-tumoral potential of Chartergellus-CP1 peptide, isolated from Chartergellus communis wasp venom on human melanoma cell lines with different pigmentation degrees, namely the amelanotic cell line A375 and pigmented cell line MNT-1. Chartergellus-CP1 induced selective cytotoxicity to melanoma cell lines when compared to the lower induced cytotoxicity towards to nontumorigenic keratinocytes. Chartergellus-CP1 peptide induced apoptosis in both melanoma cell lines, cell cycle impairment in amelanotic A375 cells and intracellular ROS increase in pigmented MNT-1 cells. The amelanotic A375 cell line showed higher sensitivity to the peptide than the pigmented cell line MNT-1. From our knowledge, this is the first study reporting the cytotoxic effects of Chartergellus-CP1 on melanoma cells.
Collapse
Affiliation(s)
- Verónica Bastos
- CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Simone Pascoal
- CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Kamila Lopes
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Márcia Mortari
- Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, Brazil
| | - Helena Oliveira
- CESAM & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
5
|
Lima LSD, Loyola V, Bicca JVML, Faro L, Vale CLC, Lotufo Denucci B, Mortari MR. Innovative treatments for epilepsy: Venom peptides, cannabinoids, and neurostimulation. J Neurosci Res 2022; 100:1969-1986. [PMID: 35934922 DOI: 10.1002/jnr.25114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/13/2022] [Accepted: 07/22/2022] [Indexed: 11/07/2022]
Abstract
Antiepileptic drugs have been successfully treating epilepsy and providing individuals sustained seizure freedom. However, about 30% of the patients with epilepsy present drug resistance, which means they are not responsive to the pharmacological treatment. Considering this, it becomes extremely relevant to pursue alternative therapeutic approaches, in order to provide appropriate treatment for those patients and also improve their quality of life. In the light of that, this review aims to discuss some innovative options for the treatment of epilepsy, which are currently under investigation, addressing strategies that go from therapeutic compounds to clinical procedures. For instance, peptides derived from animal venoms, such as wasps, spiders, and scorpions, demonstrate to be promising antiepileptic molecules, acting on a variety of targets. Other options are cannabinoids and compounds that modulate the endocannabinoid system, since it is now known that this network is involved in the pathophysiology of epilepsy. Furthermore, neurostimulation is another strategy, being an alternative clinical procedure for drug-resistant patients who are not eligible for palliative surgeries.
Collapse
Affiliation(s)
- Larissa Silva de Lima
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Vinícius Loyola
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - João Victor Montenegro Luzardo Bicca
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Lucas Faro
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Camilla Lepesqueur Costa Vale
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruna Lotufo Denucci
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
6
|
Antitumoral potential of Chartergellus-CP1 peptide from Chartergellus communis wasp venom in two different breast cancer cell lines (HR+ and triple-negative). Toxicon 2022; 216:148-156. [PMID: 35839869 DOI: 10.1016/j.toxicon.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 07/08/2022] [Indexed: 02/07/2023]
Abstract
Breast cancer represents the most incident cancer in women. Surgery, chemotherapy, radiation therapy, and hormone therapy remain the main treatment for this type of cancer. However, increasing resistance to anti-cancer drugs through poor response for some types of breast cancer to treatments highlights the need to develop new therapeutic agents to fight the disease. In this study, we evaluated the anti-tumor potential of the Chartergellus-CP1 peptide isolated from the wasp venom of Chartergellus communis in human breast cancer cell lines MCF-7 (HR+) and MDA-MB-231 (triple-negative). Cells viability, morphology, cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis were assessed for both cell lines after exposure to Chartergellus-CP1 during 24 and 48h. The results showed that Chartergellus-CP1 led to a significant increase of cells in the S phase in addition to a high generation of ROS (being more evident in the MCF-7 cell line) associated with apoptotic cell death. This work demonstrates, for the first time, the cytotoxic effects of Chatergellus-CP1 on human breast cancer cell lines including cell cycle profile, oxidative stress generation, and cell death mechanisms.
Collapse
|