1
|
Brasileiro-Martins LM, Cavalcante SA, Nascimento TP, Silva-Neto AV, Mariano Santos MD, Camillo-Andrade AC, da Gama Fischer JDS, Ferreira CC, Oliveira LB, Sartim MA, Costa AG, Pucca MB, Wen FH, Moura-da-Silva AM, Sachett J, Carvalho PC, de Aquino PF, Monteiro WM. Urinary proteomics reveals biological processes related to acute kidney injury in Bothrops atrox envenomings. PLoS Negl Trop Dis 2024; 18:e0012072. [PMID: 38536893 PMCID: PMC11020875 DOI: 10.1371/journal.pntd.0012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/16/2024] [Accepted: 03/14/2024] [Indexed: 04/18/2024] Open
Abstract
Acute kidney injury (AKI) is a critical systemic complication caused by Bothrops envenoming, a neglected health problem in the Brazilian Amazon. Understanding the underlying mechanisms leading to AKI is crucial for effectively mitigating the burden of this complication. This study aimed to characterize the urinary protein profile of Bothrops atrox snakebite victims who developed AKI. We analyzed three groups of samples collected on admission: healthy subjects (controls, n = 10), snakebite victims who developed AKI (AKI, n = 10), and those who did not evolve to AKI (No-AKI, n = 10). Using liquid-chromatography tandem mass spectrometry, we identified and quantified (label-free) 1190 proteins. A panel of 65 proteins was identified exclusively in the urine of snakebite victims, with 32 exclusives to the AKI condition. Proteins more abundant or exclusive in AKI's urine were associated with acute phase response, endopeptidase inhibition, complement cascade, and inflammation. Notable proteins include serotransferrin, SERPINA-1, alpha-1B-glycoprotein, and NHL repeat-containing protein 3. Furthermore, evaluating previously reported biomarkers candidates for AKI and renal injury, we found retinol-binding protein, beta-2-microglobulin, cystatin-C, and hepcidin to be significant in cases of AKI induced by Bothrops envenoming. This work sheds light on physiological disturbances caused by Bothrops envenoming, highlighting potential biological processes contributing to AKI. Such insights may aid in better understanding and managing this life-threatening complication.
Collapse
Affiliation(s)
- Lisele Maria Brasileiro-Martins
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| | | | - Thaís Pinto Nascimento
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Leonidas and Maria Deane Institute, Oswaldo Cruz Foundation, Manaus, Brazil
| | - Alexandre Vilhena Silva-Neto
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Marlon Dias Mariano Santos
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | - Amanda C. Camillo-Andrade
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | | | | | - Marco Aurelio Sartim
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Department of Research, Nilton Lins University, Manaus, Brazil
| | - Allyson Guimarães Costa
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
- Nursing School, Amazonas Federal University, Manaus, Brazil
| | - Manuela B. Pucca
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, Brazil
| | - Fan Hui Wen
- Immunopathology Laboratory, Butantan Institute, São Paulo, Brazil
| | | | - Jacqueline Sachett
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Immunopathology Laboratory, Butantan Institute, São Paulo, Brazil
| | - Paulo Costa Carvalho
- Structural and Computational Proteomics Laboratory, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Brazil
| | | | - Wuelton M. Monteiro
- Department of Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- School of Health Sciences, Amazonas State University, Manaus, Brazil
| |
Collapse
|
2
|
Liu ZT, Zhang Y, Fang R, Simmonds M, Zhang XJ, Zhang TT, Sun TT, Chen XQ. Evaluation of Saxifraga stolonifera phenolic extracts as a potential antivenom against Deinagkistrodon acutus venom: In vitro and in vivo studies. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116964. [PMID: 37495028 DOI: 10.1016/j.jep.2023.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In the snake-infested mountainous regions of China, Saxifraga stolonifera [L.] Meeb is widely utilized as an immediate remedy for venomous snake bites. However, the scientific understanding of S. stolonifera's efficacy in snakebite treatment remains limited and requires further investigation. AIM OF THE STUDY The aim of this study was to assess the inhibitory effects of Saxifraga stolonifera phenolic extracts (SSPE) on Deinagkistrodon acutus venom (DAV) and explore the potential of S. stolonifera as a valuable candidate for antivenom development. MATERIALS AND METHODS We employed our previously optimized extraction conditions to obtain SSPE. In vitro experiments utilizing diverse models were conducted to assess the inhibitory effects of the extracted phenolic compounds on DAV, specifically targeting phospholipase A2 (PLA2), proteolytic, fibrinolytic, and hyaluronidase enzymes. Furthermore, in vivo investigations were conducted to evaluate the inhibitory potential of the extracted compounds against DAV-induced hemorrhagic and edematogenic activity. To elucidate the chemical composition of the phenolic extracts, Ultra Performance Liquid Chromatography-mass spectrometry (UPLC-MS) analysis was performed. RESULTS Our in vitro inhibition study showed that S. stolonifera was able to inhibit the activities of PLA2 enzyme, proteolytic enzyme, hyaluronidase and fibrinogenolytic. The median effective dose (ED50) values of SSPE for inhibiting PLA2 enzyme, proteolytic enzyme and hyaluronidase activities were 0.115 mg/mL, 0.026 mg/mL and 0.238 mg/mL, respectively. The DAV-induced hemorrhagic and edematogenic effects of the SSPE were also successfully inhibited in vivo, and the high SSPE concentration was able to completely inhibit the hemorrhage and edema. It is noteworthy that the mice suffered no harm from the high SSPE concentration. The composition analysis showed that the phenolic substances contained in SSPE are gallic acid, protocatechuic acid, chlorogenic acid, rutin, kaempferol-3-O-ɑ-L-rhamnoside, kaempferol-3-O-β-D-glucopyranoside, quercetin and kaempferol. CONCLUSIONS This study provides scientific validation of the inhibitory efficacy of S. stolonifera as an emergency treatment for venomous snake bites, offering a theoretical foundation for future drug development strategies targeting snakebite.
Collapse
Affiliation(s)
- Zhi-Ting Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China; School of Medicine and Health, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Ying Zhang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, People's Republic of China; National Engineering Laboratory of BioResource EcoUtilization, Harbin, 150040, People's Republic of China; Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
| | - Rui Fang
- Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AB, UK.
| | | | - Xiu-Juan Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| | - Tong-Tong Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| | - Tong-Tong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China.
| | - Xiao-Qiang Chen
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, People's Republic of China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, People's Republic of China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-based Active Substances, Harbin, 150040, People's Republic of China; National Engineering Laboratory of BioResource EcoUtilization, Harbin, 150040, People's Republic of China; College of Resources and Environment, Tibet Agriculture & Animal Husbandry University, Nyingchi, 860000, People's Republic of China.
| |
Collapse
|
3
|
Vilca-Quispe A, Alvarez-Risco A, Gomes Heleno MA, Ponce-Fuentes EA, Vera-Gonzales C, Zegarra-Aragon HFE, Aquino-Puma JL, Talavera-Núñez ME, Del-Aguila-Arcentales S, Yáñez JA, Ponce-Soto LA. Biochemical and hemostatic description of a thrombin-like enzyme TLBro from Bothrops roedingeri snake venom. Front Chem 2023; 11:1217329. [PMID: 38099189 PMCID: PMC10720248 DOI: 10.3389/fchem.2023.1217329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Objective: The current study's objective is to characterize a new throm-bin-like enzyme called TLBro that was obtained from Bothrops roedingeris snake from a biochemical and hemostatic perspective. Methodology: One chromatographic step was used to purify it, producing the serine protease TLBro. Molecular mass was estimated by SDS-PAGE to be between reduced and unreduced by 35 kDa. Tryptic peptide sequencing using Swiss Prot provided the complete amino acid sequence. Expasy.org by conducting a search that is limited to Crotalinae snake serine proteases and displaying a high degree of amino acid sequence. Results: Ser (182) is inhibited by phenylmethylsulfonyl fluoride (PMSF), and TLBro demonstrated the presence of Asp (88) residues. It also deduced the positions of His (43) and Ser (182) in the set of three coordinated amino acids in serine proteases. It was discovered that this substrate had high specificity for BANA, Michaelis-Menten behavior with KM 0 point85 mM and Vmax 1 point89 nmoles -NA/L/min, and high stability between temperatures (15 to 70°C) and pHs (2 point0 to 10 point0). According to doses and incubation times, TLBro degraded fibrin preferentially on the B-chain; additionally, its activities were significantly diminished after preincubation with divalent ions (Zn2 and Cd2). When incubated with PMSF, a particular serine protease inhibitor, enzymatic activities and platelet aggregation were inhibited. Conclusion: The findings revealed distinct structural and functional differences between the serine proteases, adding to the information and assisting in the improvement of the structure-function relationship.
Collapse
Affiliation(s)
- Augusto Vilca-Quispe
- Department of Biochemistry, Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Aldo Alvarez-Risco
- Facultad de Administración y Negocios, Universidad Tecnológica del Perú, Lima, Perú
| | - Mauricio Aurelio Gomes Heleno
- Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP), Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Botucatu, SP, Brazil
| | | | - Corina Vera-Gonzales
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | | | - Juan Luis Aquino-Puma
- Facultad de Medicina, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | - María Elena Talavera-Núñez
- Departamento Académico de Química, Facultad de Ciencias Naturales y Formales, Universidad Nacional de San Agustín de Arequipa, Arequipa, Perú
| | | | - Jaime A. Yáñez
- Facultad de Educación, Carrera de Educación y Gestión del Aprendizaje, Universidad Peruana de Ciencias Aplicadas, Lima, Perú
| | | |
Collapse
|
4
|
Offor BC, Muller B, Piater LA. A Review of the Proteomic Profiling of African Viperidae and Elapidae Snake Venoms and Their Antivenom Neutralisation. Toxins (Basel) 2022; 14:723. [PMID: 36355973 PMCID: PMC9694588 DOI: 10.3390/toxins14110723] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Snakebite envenoming is a neglected tropical disease (NTD) that results from the injection of snake venom of a venomous snake into animals and humans. In Africa (mainly in sub-Saharan Africa), over 100,000 envenomings and over 10,000 deaths per annum from snakebite have been reported. Difficulties in snakebite prevention and antivenom treatment are believed to result from a lack of epidemiological data and underestimated figures on snakebite envenoming-related morbidity and mortality. There are species- and genus-specific variations associated with snake venoms in Africa and across the globe. These variations contribute massively to diverse differences in venom toxicity and pathogenicity that can undermine the efficacy of adopted antivenom therapies used in the treatment of snakebite envenoming. There is a need to profile all snake venom proteins of medically important venomous snakes endemic to Africa. This is anticipated to help in the development of safer and more effective antivenoms for the treatment of snakebite envenoming within the continent. In this review, the proteomes of 34 snake venoms from the most medically important snakes in Africa, namely the Viperidae and Elipdae, were extracted from the literature. The toxin families were grouped into dominant, secondary, minor, and others based on the abundance of the protein families in the venom proteomes. The Viperidae venom proteome was dominated by snake venom metalloproteinases (SVMPs-41%), snake venom serine proteases (SVSPs-16%), and phospholipase A2 (PLA2-17%) protein families, while three-finger toxins (3FTxs-66%) and PLA2s (16%) dominated those of the Elapidae. We further review the neutralisation of these snake venoms by selected antivenoms widely used within the African continent. The profiling of African snake venom proteomes will aid in the development of effective antivenom against snakebite envenoming and, additionally, could possibly reveal therapeutic applications of snake venom proteins.
Collapse
Affiliation(s)
- Benedict C. Offor
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| | - Beric Muller
- South Africa Venom Suppliers CC, Louis Trichardt 0920, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
5
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
6
|
Yusuf AJ, Aleku GA, Bello UR, Liman DU. Prospects and Challenges of Developing Plant-Derived Snake Antivenin Natural Products: A Focus on West Africa. ChemMedChem 2021; 16:3635-3648. [PMID: 34585514 DOI: 10.1002/cmdc.202100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Snakebite envenomation (SBE) is an important public health issue that is now receiving renewed attention following its reclassification as a Neglected Tropical Disease (NTD). Most incidences occur in rural areas of resource-limited countries, as such, timely and appropriate medical care for SBE is often inaccessible. The administration of anti-snake venom serum (ASV) is the only effective definitive treatment of SBE, but treatment failure to available ASVs is not uncommon. Emerging evidence highlights the potential of small-molecule compounds as inhibitors against toxins of snake venom. This presents an encouraging prospect to develop an alternative therapeutic option for the treatment SBE, that may be amenable for use at the point of care in resource-constraint settings. In view of the pivotal role of natural products in modern drug discovery programmes, there is considerable interest in ethno-pharmacological mining of medicinal plants and plant-derived medicinal compounds toward developing novel snake venom-neutralising therapeutics. In this review, we compile a collection of medicinal plants used in the treatment of SBE in West Africa and highlight their promise as potential botanical drugs or as sources of novel small-molecule compounds for the treatment of SBE. The challenges that must be surmounted to bring this to fruition including the need for (sub) regional collaboration have been discussed.
Collapse
Affiliation(s)
- Amina J Yusuf
- Department of Pharmaceutical & Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Godwin A Aleku
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
| | - Usman Rabiu Bello
- Biotechnology unit, Department of Life Sciences, Mewar University, Gangrar, Chittorgarh, Rajasthan, India
| | - Dahiru Umar Liman
- Department of Pharmaceutical & Medicinal Chemistry, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|