1
|
Melo PA, Nogueira-Souza PD, Romanelli MA, Strauch MA, Cesar MDO, Monteiro-Machado M, Patrão-Neto FC, Gonsalez SR, Siqueira NG, Schaeffer E, Costa PRR, da Silva AJM. Plant-Derived Lapachol Analogs as Selective Metalloprotease Inhibitors Against Bothrops Venom: A Review. Int J Mol Sci 2025; 26:3950. [PMID: 40362190 PMCID: PMC12071312 DOI: 10.3390/ijms26093950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Plant compounds that inhibit snake venom activities are relevant and can provide active molecules to counteract snake venom effects. Numerous studies on snake viperid venoms found that metalloproteinases play a significant role in the pathophysiology of hemorrhage that occurs on envenomation. Preclinical studies using vitro and in vivo protocols investigated natural compounds and viperid snake venoms, evaluating the enzymatic, procoagulant, hemorrhagic, edematogenic, myotoxic, and lethal activities. Many studies focused on Bothrops venoms and ascribed that angiorrhexis and hemorrhage resulted from the metalloproteinase action on collagen in the basal lamina. This effect resulted in a combined action with phospholipase A2 and hyaluronidase, inducing hemorrhage, edema, and necrosis. Due to the lack of efficient antivenoms in remote areas, traditional native plant treatments remain common, especially in the Amazon. Our group studied plant extracts, isolated compounds, and lapachol synthetic derivative analogs with selective inhibition for Bothrops venom proteolytic and hemorrhagic activity and devoid of phospholipase activity. We highlight those new synthetic naphthoquinones which inhibit snake venom metalloproteinases and that are devoid of other venom enzyme inhibition. This review shows the potential use of snake venom effects, mainly Bothrops venom metalloproteinase activity, as a tool to identify and develop new active molecules against hemorrhagic effects.
Collapse
Affiliation(s)
- Paulo A. Melo
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Pâmella Dourila Nogueira-Souza
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Mayara Amorim Romanelli
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Marcelo A. Strauch
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica 23890-000, Brazil;
| | - Marcelo de Oliveira Cesar
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
- Instituto Vital Brazil, Niterói 24230-410, Brazil
| | - Marcos Monteiro-Machado
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Fernando Chagas Patrão-Neto
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (P.D.N.-S.); (M.A.R.); (M.d.O.C.); (M.M.-M.); (F.C.P.-N.)
| | - Sabrina R. Gonsalez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro 21941-901, Brazil;
| | - Nilton Ghiotti Siqueira
- Centro de Ciências da Saúde e do Desporto, Universidade Federal do Acre, Rio Branco 69920-900, Brazil;
| | - Edgar Schaeffer
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (E.S.); (P.R.R.C.); (A.J.M.d.S.)
| | - Paulo R. R. Costa
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (E.S.); (P.R.R.C.); (A.J.M.d.S.)
| | - Alcides J. M. da Silva
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-590, Brazil; (E.S.); (P.R.R.C.); (A.J.M.d.S.)
| |
Collapse
|
2
|
de Souza FS, de Veras BO, Lucena LDM, Casoti R, Martins RD, Ximenes RM. Antivenom potential of the latex of Jatropha mutabilis baill. (Euphorbiaceae) against Tityus stigmurus venom: Evaluating its ability to neutralize toxins and local effects in mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 335:118642. [PMID: 39098623 DOI: 10.1016/j.jep.2024.118642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of the Jatropha genus (Euphorbiaceae) are used indiscriminately in traditional medicine to treat accidents involving venomous animals. Jatropha mutabilis Baill., popularly known as "pinhão-de-seda," is found in the semi-arid region of Northeastern Brazil. It is widely used as a vermifuge, depurative, laxative, and antivenom. AIM OF THE STUDY Obtaining the phytochemical profile of the latex of Jatropha mutabilis (JmLa) and evaluate its acute oral toxicity and inhibitory effects against the venom of the scorpion Tityus stigmurus (TstiV). MATERIALS AND METHODS The latex of J. mutabilis (JmLa) was obtained through in situ incisions in the stem and characterized using HPLC-ESI-QToF-MS. Acute oral toxicity was investigated in mice. The protein profile of T. stigmurus venom was obtained by electrophoresis. The ability of latex to interact with venom components (TstiV) was assessed using SDS-PAGE, UV-Vis scanning spectrum, and the neutralization of fibrinogenolytic and hyaluronidase activities. Additionally, the latex was evaluated in vivo for its ability to inhibit local edematogenic and nociceptive effects induced by the venom. RESULTS The phytochemical profile of the latex revealed the presence of 75 compounds, including cyclic peptides, glycosides, phenolic compounds, alkaloids, coumarins, and terpenoids, among others. No signs of acute toxicity were observed at a dose of 2000 mg/kg (p.o.). The latex interacted with the protein profile of TstiV, inhibiting the venom's fibrinogenolytic and hyaluronidase activities by 100%. Additionally, the latex was able to mitigate local envenomation effects, reducing nociception by up to 56.5% and edema by up to 50% compared to the negative control group. CONCLUSIONS The latex of Jatropha mutabilis exhibits a diverse phytochemical composition, containing numerous classes of metabolites. It does not present acute toxic effects in mice and has the ability to inhibit the enzymatic effects of Tityus stigmurus venom in vitro. Additionally, it reduces nociception and edema in vivo. These findings corroborate popular reports regarding the antivenom activity of this plant and indicate that the latex has potential for treating scorpionism.
Collapse
Affiliation(s)
- Felipe Santana de Souza
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - Bruno Oliveira de Veras
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil; Department of Biochemistry, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50670-420, Brazil
| | - Lorena de Mendonça Lucena
- Laboratory of Natural Products and Metabolomics Analysis, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - Rosana Casoti
- Laboratory of Natural Products and Metabolomics Analysis, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil
| | - René Duarte Martins
- Nucleus of Public Health, Academic Center of Vitória, Federal University of Pernambuco, Vitória de Santo Antão, PE, 55608-680, Brazil
| | - Rafael Matos Ximenes
- Laboratory of Ethnopharmacology and Phytochemistry, Department of Antibiotics, Center for Biosciences, Federal University of Pernambuco, Recife, PE, 50740-525, Brazil.
| |
Collapse
|
3
|
Konrath EL, Strauch I, Boeff DD, Arbo MD. The potential of Brazilian native plant species used in the therapy for snakebites: A literature review. Toxicon 2022; 217:17-40. [PMID: 35952835 DOI: 10.1016/j.toxicon.2022.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 01/14/2023]
Abstract
Snakebite envenoming is a potentially fatal disease categorized as a neglected public health issue for not receiving the appropriate attention from national and international health authorities. The most affected people by this problem usually live in poor rural communities, where medical resources are often sparse and, in some instances, there is even a scarcity of serum therapy. The administration of the appropriate antivenom is the only specific treatment available, however it has limited efficacy against venom-induced local effects. In this scenario, various plant species are used as local first aid for the treatment of snakebite accidents in Brazil, and some of them can effectively inhibit lethality, neurotoxicity, hemorrhage, and venom enzymes activities. This review compiles a list of plants used in the treatment of snakebites in Brazil, focusing on the native Brazilian species registered in the databases Pubmed, Scielo, Scopus and Google Scholar. All these searches were limited to peer-reviewed journals written in English, with the exception of a few articles written in Portuguese. The most cited native plant species were Casearia sylvestris Sw., Eclipta prostrata (L.) L., Mikania glomerata Spreng., Schizolobium parahyba (Vell.) S.F.Blake and Dipteryx alata Vogel, all used to decrease the severity of toxic signs, inhibit proteolytic and hemorrhagic activities, thus increasing survival time and neutralizing myotoxicity effects. Different active compounds showing important activity against the snake venoms and their toxins include flavonoids, alkaloids and tannins. Although some limitations to the experimental studies with medicinal plants were observed, including lack of comparison with control drugs and unknown active extracts compounds, species with anti-venom characteristics are effective and considered as candidates for the development of adjuvants in the treatment of snake envenomation. Further studies on the chemistry and pharmacology of traditionally used plant species will help to understand the role that snakebite herbal remedies may display in local medical health systems. It might also contribute to the development of alternative or complementary treatments to reduce the number of severe disabilities and deaths.
Collapse
Affiliation(s)
- Eduardo Luis Konrath
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| | - Iara Strauch
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90620-170, Porto Alegre, RS, Brazil
| | - Daiana Daniele Boeff
- Laboratório de Farmacognosia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, 90620-170, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, 90610-000, Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Vera-Palacios AL, Sacoto-Torres JD, Hernández-Altamirano JA, Moreno A, Peñuela-Mora MC, Salazar-Valenzuela D, Mogollón NGS, Almeida JR. A First Look at the Inhibitory Potential of Urospatha sagittifolia (Araceae) Ethanolic Extract for Bothrops atrox Snakebite Envenomation. Toxins (Basel) 2022; 14:496. [PMID: 35878234 PMCID: PMC9315696 DOI: 10.3390/toxins14070496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/03/2022] Open
Abstract
Bothrops atrox snakebites are a relevant problem in the Amazon basin. In this biodiverse region, the ethnomedicinal approach plays an important role as an alternative to antivenom therapy. Urospatha sagittifolia (Araceae) is a plant used for this purpose; however, its neutralizing properties have not been scientifically accessed. To fill this gap, we investigated the ability of U. sagittifolia to modulate the catalytic activity of Bothrops atrox venom, and their toxic consequences, such as local damage and lethality. The venom profile of B. atrox was assessed by chromatography and electrophoresis. Inhibition of the three main enzymatic and medically important toxins from the venom was evaluated using synthetic substrates and quantified by chromogenic activity assays. Additionally, the neutralization of lethality, hemorrhage and edema were investigated by in vivo assays. The possible interactions between venom proteins and plant molecules were visualized by polyacrylamide gel electrophoresis. Finally, the phytochemical constituents present in the ethanolic extract were determined by qualitative and quantitative analyses. The ethanolic extract reduced the activity of the three main enzymes of venom target, achieving ranges from 19% to 81% of inhibition. Our in vivo venom neuralizations assays showed a significant inhibition of edema (38.72%) and hemorrhage (42.90%). Additionally, lethality was remarkably counteracted. The highest extract ratio evaluated had a 75% survival rate. Our data support the biomedical value of U. sagittifolia as a source of natural enzyme inhibitors able to neutralize catalytically active B. atrox venom toxins and their toxic effects.
Collapse
Affiliation(s)
- Antonio L. Vera-Palacios
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - Juan D. Sacoto-Torres
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - Josselin A. Hernández-Altamirano
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - Andres Moreno
- Facultad de Ingeniería en Sistemas, Electrónica e Industrial, Universidad Técnica de Ambato, Ambato 180207, Ecuador;
| | - Maria C. Peñuela-Mora
- Grupo de Ecosistemas Tropicales y Cambio Global, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador;
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Tecnológica Indoamérica, Quito 180103, Ecuador;
| | - Noroska G. S. Mogollón
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| | - José R. Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Km 8 Via Muyuna, Tena 150101, Ecuador; (A.L.V.-P.); (J.D.S.-T.); (J.A.H.-A.); (N.G.S.M.)
| |
Collapse
|
5
|
Adrião AAX, dos Santos AO, de Lima EJSP, Maciel JB, Paz WHP, da Silva FMA, Pucca MB, Moura-da-Silva AM, Monteiro WM, Sartim MA, Koolen HHF. Plant-Derived Toxin Inhibitors as Potential Candidates to Complement Antivenom Treatment in Snakebite Envenomations. Front Immunol 2022; 13:842576. [PMID: 35615352 PMCID: PMC9126284 DOI: 10.3389/fimmu.2022.842576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Snakebite envenomations (SBEs) are a neglected medical condition of global importance that mainly affect the tropical and subtropical regions. Clinical manifestations include pain, edema, hemorrhage, tissue necrosis, and neurotoxic signs, and may evolve to functional loss of the affected limb, acute renal and/or respiratory failure, and even death. The standard treatment for snake envenomations is antivenom, which is produced from the hyperimmunization of animals with snake toxins. The inhibition of the effects of SBEs using natural or synthetic compounds has been suggested as a complementary treatment particularly before admission to hospital for antivenom treatment, since these alternative molecules are also able to inhibit toxins. Biodiversity-derived molecules, namely those extracted from medicinal plants, are promising sources of toxin inhibitors that can minimize the deleterious consequences of SBEs. In this review, we systematically synthesize the literature on plant metabolites that can be used as toxin-inhibiting agents, as well as present the potential mechanisms of action of molecules derived from natural sources. These findings aim to further our understanding of the potential of natural products and provide new lead compounds as auxiliary therapies for SBEs.
Collapse
Affiliation(s)
- Asenate A. X. Adrião
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Aline O. dos Santos
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Emilly J. S. P. de Lima
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
| | - Jéssica B. Maciel
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Weider H. P. Paz
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| | - Felipe M. A. da Silva
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
- Multidisciplinary Support Center, Federal University of Amazonas, Manaus, Brazil
| | - Manuela B. Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Ana M. Moura-da-Silva
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Laboratory of Immunopathology, Institute Butantan, São Paulo, Brazil
| | - Wuelton M. Monteiro
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Marco A. Sartim
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- University Nilton Lins, Manaus, Brazil
| | - Hector H. F. Koolen
- Post Graduate Program in Biodiversity and Biotechnology BIONORTE, Superior School of Health Sciences, Amazonas State University, Manaus, Brazil
- Post Graduate Program in Tropical Medicine, Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
- Post Graduate Program in Chemistry, Department of Chemistry, Federal University of Amazonas, Manaus, Brazil
| |
Collapse
|
6
|
Chakkinga Thodi R, Ibrahim JM, Nair AS, Thacheril Sukumaran S. Exploring the potent inhibitor β-stigmasterol from Pittosporum dasycaulon Miq. leaves against snake venom phospholipase A2 protein through in vitro and molecular dynamics behavior approach. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.2021946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | - Junaida M. Ibrahim
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | - Achuthsankar S. Nair
- Department of Computational Biology and Bioinformatics, University of Kerala, Kariavattom, India
| | | |
Collapse
|
7
|
Heimfarth L, Nascimento LDS, Amazonas da Silva MDJ, Lucca Junior WD, Lima ES, Quintans-Junior LJ, Veiga-Junior VFD. Neuroprotective and anti-inflammatory effect of pectolinarigenin, a flavonoid from Amazonian Aegiphila integrifolia (Jacq.), against lipopolysaccharide-induced inflammation in astrocytes via NFκB and MAPK pathways. Food Chem Toxicol 2021; 157:112538. [PMID: 34500010 DOI: 10.1016/j.fct.2021.112538] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/21/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases affect millions of people worldwide. Regardless of the underlying cause, neuroinflammation is the greatest risk factor for developing any of these disorders. Pectolinarigenin (PNG) is an active flavonoid with several biological properties, anti-metastatic and anti-inflammatory activity. This study investigate the biological effects of PNG in macrophage and astrocyte cultures, with focus on elucidating the molecular mechanisms involved in the PNG activity. J774A.1 murine macrophage or cerebral cortex primary astrocytes primary cultures were treated with different concentration of PNG (1-160 μM) and the inflammatory process was stimulated by LPS (1 μg/ml) and the effect of PNG in different inflammatory markers were determined. PNG did not affect astrocyte or macrophage viability. Moreover, this flavonoid reduced NO• release in macrophages, attenuated astrocyte activation by preventing the overexpression of glial fibrillary acidic protein, and decreased the release of inflammatory mediators, IL-1β and IL-6 induced by LPS by the glial cell, as well as enhanced basal levels of IL-10. In addition, PNG suppressed NFκB, p38MAPK and ERK1/2 phosphorylation in astrocytes culture induced by LPS. The results show clear evidence that this novel flavonoid protects astrocytes against LPS-induced inflammatory toxicity. In conclusion, PNG presents neuroprotective and anti-inflammatory property through the inhibition of inflammatory signaling pathways.
Collapse
Affiliation(s)
- Luana Heimfarth
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | - Emerson Silva Lima
- Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus, AM, Brazil
| | | | | |
Collapse
|
8
|
Silva GM, Berto DH, Lima CA, Waitman KB, Lima CFG, Prezoto BC, Vieira ML, Rocha MMT, Gonçalves LRC, Andrade SA. Synergistic effect of serine protease inhibitors and a bothropic antivenom in reducing local hemorrhage and coagulopathy caused by Bothrops jararaca venom. Toxicon 2021; 199:87-93. [PMID: 34126124 DOI: 10.1016/j.toxicon.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/05/2021] [Accepted: 06/10/2021] [Indexed: 01/11/2023]
Abstract
Snakebite accidents are a public health problem that affects the whole world, causing thousands of deaths and amputations each year. In Brazil, snakebite envenomations are caused mostly by snakes from the Bothrops genus. The local symptoms are characterized by pain, swelling, ecchymosis, and hemorrhages. Systemic disturbances can lead to necrosis and amputations. The present treatment consists of intravenous administration of bothropic antivenom, which is capable of reversing most of the systemic symptoms, while presenting limitations to treat the local effects, such as hemorrhage and to neutralize the snake venom serine protease (SVSP). In this context, we aimed to evaluate the activity of selective serine protease inhibitors (pepC and pepB) in combination with the bothropic antivenom in vivo. Further, we assessed their possible synergistic effect in the treatment of coagulopathy and hemorrhage induced by Bothrops jararaca venom. For this, we evaluated the in vivo activity in mouse models of local hemorrhage and a series of in vitro hemostasis assays. Our results showed that pepC and pepB, when combinated with the antivenom, increase its protective activity in vivo and decrease the hemostatic disturbances in vitro with high selectivity, possibly by inhibiting botropic proteases. These data suggest that the addition of serine protease inhibitor to the antivenom can improve its overall potential.
Collapse
Affiliation(s)
- G M Silva
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil.
| | - D H Berto
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - C A Lima
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - K B Waitman
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - C F G Lima
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| | - B C Prezoto
- Laboratory of Pharmacology - Butantan Institute, São Paulo, Brazil
| | - M L Vieira
- Department of Microbiology, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - M M T Rocha
- Laboratory of Herpetology - Butantan Institute, São Paulo, Brazil
| | - L R C Gonçalves
- Laboratory of Pathophysiology - Butantan Institute, São Paulo, Brazil
| | - S A Andrade
- Laboratory of Pain and Signaling - Butantan Institute, São Paulo, Brazil
| |
Collapse
|