1
|
Orhan DE, Yildiz MM, Aybi EN, Dogan Topal B. Recent Advances in Electrochemical Affinity Biosensors: Detection of Biological Toxin Agents. Crit Rev Anal Chem 2025:1-20. [PMID: 40388323 DOI: 10.1080/10408347.2025.2501709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Biological toxins are metabolic products produced by living organisms. They exert deleterious effects on another organism through food, drinking water, inhalation, injection, ingestion, and absorption through the skin or mucous membranes. Health effects such as respiratory distress, muscle weakness, seizures, paralysis, and death depend on the amount and route of exposure to toxins. They act quickly and are fatal even in low doses, and can be considered bioterror agents due to their high potency, the reasonably long latency period before symptoms are exhibited, the difficulty in detecting or diagnosing their presence and identity, and their relative ease in production and stability in the environment. The development of selective and sensitive electrochemical biosensors has been of main importance for the quantification of biological toxins in low amounts in biological samples. This review examined the detection of various biological toxin agents using aptasensors and immunosensors from 2019 to 2025. This study provided information on the effect of the mechanism of biological toxins on another organism, modification of various electrochemical affinity biosensors, and smartphone-based and portable electrochemical biosensors used in the analysis of biological toxins.
Collapse
Affiliation(s)
- Doga Ekin Orhan
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Gulhane Faculty of Pharmacy, Department of Analytical Chemistry, University of Health Sciences, Ankara, Turkey
| | - Manolya Mujgan Yildiz
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
- Faculty of Pharmacy, Department of Analytical Chemistry, Lokman Hekim University, Ankara, Turkey
| | - Eda Nur Aybi
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Burcu Dogan Topal
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
2
|
Arratia LM, Bermudes-Contreras JD, Juarez-Monroy JA, Romero-Macías EA, Luna-Rojas JC, López-Hidalgo M, Vega AV, Zamorano-Carrillo A. Experimental and computational evidence that Calpain-10 binds to the carboxy terminus of Na V1.2 and Na V1.6. Sci Rep 2024; 14:6761. [PMID: 38514708 PMCID: PMC10957924 DOI: 10.1038/s41598-024-57117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
Voltage-gated sodium channels (NaV) are pivotal proteins responsible for initiating and transmitting action potentials. Emerging evidence suggests that proteolytic cleavage of sodium channels by calpains is pivotal in diverse physiological scenarios, including ischemia, brain injury, and neuropathic pain associated with diabetes. Despite this significance, the precise mechanism by which calpains recognize sodium channels, especially given the multiple calpain isoforms expressed in neurons, remains elusive. In this work, we show the interaction of Calpain-10 with NaV's C-terminus through a yeast 2-hybrid assay screening of a mouse brain cDNA library and in vitro by GST-pulldown. Later, we also obtained a structural and dynamic hypothesis of this interaction by modeling, docking, and molecular dynamics simulation. These results indicate that Calpain-10 interacts differentially with the C-terminus of NaV1.2 and NaV1.6. Calpain-10 interacts with NaV1.2 through domains III and T in a stable manner. In contrast, its interaction with NaV1.6 involves domains II and III, which could promote proteolysis through the Cys-catalytic site and C2 motifs.
Collapse
Affiliation(s)
- Luis Manuel Arratia
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Juan David Bermudes-Contreras
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Jorge Armando Juarez-Monroy
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Erik Alan Romero-Macías
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Doctorado en Ciencias Biomédicas, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla Edo, Mexico City, Mexico
| | - Julio Cesar Luna-Rojas
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico
- Maestría en Neurobiología, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla Edo, Mexico City, Mexico
| | - Marisol López-Hidalgo
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico
| | - Ana Victoria Vega
- Carrera de Médico Cirujano, FES Iztacala, UNAM, Av. de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Edo. Mex, Mexico.
| | - Absalom Zamorano-Carrillo
- Laboratorio de Biofísica Computacional, Doctorado en Biotecnología, SEPI-ENMH Instituto Politécnico Nacional, Av. Guillermo Massieu Helguera 239, Fracc. La Escalera, Ticomán, Gustavo A. Madero, 07320, Mexico City, Mexico.
| |
Collapse
|
3
|
Sanches K, Ashwood LM, Olushola-Siedoks AAM, Wai DCC, Rahman A, Shakeel K, Naseem MU, Panyi G, Prentis PJ, Norton RS. Structure-function relationships in ShKT domain peptides: ShKT-Ts1 from the sea anemone Telmatactis stephensoni. Proteins 2024; 92:192-205. [PMID: 37794633 DOI: 10.1002/prot.26594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/14/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
Diverse structural scaffolds have been described in peptides from sea anemones, with the ShKT domain being a common scaffold first identified in ShK toxin from Stichodactyla helianthus. ShK is a potent blocker of voltage-gated potassium channels (KV 1.x), and an analog, ShK-186 (dalazatide), has completed Phase 1 clinical trials in plaque psoriasis. The ShKT domain has been found in numerous other species, but only a tiny fraction of ShKT domains has been characterized functionally. Despite adopting the canonical ShK fold, some ShKT peptides from sea anemones inhibit KV 1.x, while others do not. Mutagenesis studies have shown that a Lys-Tyr (KY) dyad plays a key role in KV 1.x blockade, although a cationic residue followed by a hydrophobic residue may also suffice. Nevertheless, ShKT peptides displaying an ShK-like fold and containing a KY dyad do not necessarily block potassium channels, so additional criteria are needed to determine whether new ShKT peptides might show activity against potassium channels. In this study, we used a combination of NMR and molecular dynamics (MD) simulations to assess the potential activity of a new ShKT peptide. We determined the structure of ShKT-Ts1, from the sea anemone Telmatactis stephensoni, examined its tissue localization, and investigated its activity against a range of ion channels. As ShKT-Ts1 showed no activity against KV 1.x channels, we used MD simulations to investigate whether solvent exposure of the dyad residues may be informative in rationalizing and potentially predicting the ability of ShKT peptides to block KV 1.x channels. We show that either a buried dyad that does not become exposed during MD simulations, or a partially exposed dyad that becomes buried during MD simulations, correlates with weak or absent activity against KV 1.x channels. Therefore, structure determination coupled with MD simulations, may be used to predict whether new sequences belonging to the ShKT family may act as potassium channel blockers.
Collapse
Affiliation(s)
- Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Arfatur Rahman
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kashmala Shakeel
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Chandy KG, Sanches K, Norton RS. Structure of the voltage-gated potassium channel K V1.3: Insights into the inactivated conformation and binding to therapeutic leads. Channels (Austin) 2023; 17:2253104. [PMID: 37695839 PMCID: PMC10496531 DOI: 10.1080/19336950.2023.2253104] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023] Open
Abstract
The voltage-gated potassium channel KV1.3 is an important therapeutic target for the treatment of autoimmune and neuroinflammatory diseases. The recent structures of KV1.3, Shaker-IR (wild-type and inactivating W434F mutant) and an inactivating mutant of rat KV1.2-KV2.1 paddle chimera (KVChim-W362F+S367T+V377T) reveal that the transition of voltage-gated potassium channels from the open-conducting conformation into the non-conducting inactivated conformation involves the rupture of a key intra-subunit hydrogen bond that tethers the selectivity filter to the pore helix. Breakage of this bond allows the side chains of residues at the external end of the selectivity filter (Tyr447 and Asp449 in KV1.3) to rotate outwards, dilating the outer pore and disrupting ion permeation. Binding of the peptide dalazatide (ShK-186) and an antibody-ShK fusion to the external vestibule of KV1.3 narrows and stabilizes the selectivity filter in the open-conducting conformation, although K+ efflux is blocked by the peptide occluding the pore through the interaction of ShK-Lys22 with the backbone carbonyl of KV1.3-Tyr447 in the selectivity filter. Electrophysiological studies on ShK and the closely-related peptide HmK show that ShK blocks KV1.3 with significantly higher potency, even though molecular dynamics simulations show that ShK is more flexible than HmK. Binding of the anti-KV1.3 nanobody A0194009G09 to the turret and residues in the external loops of the voltage-sensing domain enhances the dilation of the outer selectivity filter in an exaggerated inactivated conformation. These studies lay the foundation to further define the mechanism of slow inactivation in KV channels and can help guide the development of future KV1.3-targeted immuno-therapeutics.
Collapse
Affiliation(s)
- K. George Chandy
- LKCMedicine-ICESing Ion Channel Platform, Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore, Singapore
| | - Karoline Sanches
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Li H, Liang Z, Li Y, Wen J, Zhang R. Molecular docking and molecular dynamics simulation study on the toxicity mechanism of bongkrekic acid. Toxicon 2023; 223:107021. [PMID: 36621683 DOI: 10.1016/j.toxicon.2023.107021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/14/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
BKA belongs to gram-negative brevibacterium. It can cause poisoning in humans or animals and can be fatal in severe cases. There are few investigations on toxic mechanisms of BKA because of foodborne factors. MD simulations were used to study the stability and intermolecular interactions of BKA and ANT complexes to reveal the mechanism of BKA in this paper. BKA blocked ANT protein translocation mainly through Van der Waals force, hydrophobic and hydrogen bonding interactions by the MD simulations. The conformational flexibility of the complex system during different simulation times indicated that BKA affected the conformational changes of ANT through strong interactions of hydrogen bonds with active domain residues Gln-93, Tyr-196, Arg-287 and Arg-245. The results of binding free energy, principal component analysis, hydrophobic interactions and root-mean-square fluctuation showed that the prominent binding force of Tyr-196 with C26 of BKA was significant to the toxicity. The active site interactions analysis indicated that the essential positively charged polar amino acids which play a crucial role within the active site of the ANT protein undergo conformational changes with BKA as the branch point.
Collapse
Affiliation(s)
- Hongmei Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhen Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ying Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiazhen Wen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Rong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|