1
|
Hassan H, Mirza MR, Jabeen A, Alam M, Kori JA, Sultan R, Rahman SU, Choudhary MI. Yellow scorpion (Buthus sinidicus) venom peptides induce mitochondrial-mediated apoptosis in cervical, prostate and brain tumor cell lines. PLoS One 2024; 19:e0296636. [PMID: 38394321 PMCID: PMC10890731 DOI: 10.1371/journal.pone.0296636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/16/2023] [Indexed: 02/25/2024] Open
Abstract
Scorpion venoms are known to contain over 100,000 biologically active constituents. However, only a few of them have been studied. The major constituents of venom are proteins and peptides, which exhibit various biological and pharmacological properties, including anticancer activities. In the current study, the venom of yellow scorpions (Buthus sindicus) found in Sindh, Pakistan, was extracted and evaluated for its anti-cancer and anti-inflammatory activities. The crude venom showed a dose dependent inhibition of phagocyte oxidative burst from human whole blood cells (28.3% inhibition at highest tested concentration of 300 μg/mL). In-vitro cytotoxicity of crude venom was evaluated against human prostrate (PC3), cervical (HeLa) and neuroblastoma (U87-MG) cell lines, along with cytotoxicity against normal human fibroblast (BJ) cells. Crude venom was cytotoxic to all cell lines, with prominent inhibitory effect on PC3 cells. Crude venom was fractionated through RP-UPLC, resulted in fifteen fractions, followed by evaluation of their anticancer potential. Among all, the fraction I significantly (P < 0.001) reduced the cell viability of all three cancer cell lines, and exhibited insignificant cytotoxicity against normal cell line. Furthermore, the apoptotic cell death pathway was evaluated for crude venom, and fraction I, in most sensitive cell line PC3, by using flow-cytometry analysis. Both crude venom and its fraction I caused a mitochondrial-mediated apoptosis in prostate cancer cells (PC3). To the best of our knowledge, this is the first report of the anticancer and anti-inflammatory activity of venom of Pakistani yellow scorpions. Results indicate their therapeutic potential, and a case for further purification and validation studies.
Collapse
Affiliation(s)
- Humaira Hassan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Almas Jabeen
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Mehtab Alam
- Dr. Zafar H. Zaidi, Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Junaid Ahmed Kori
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Rabia Sultan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - M Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
2
|
Shui Y, Wang H, Chen Y, Hao Y, Li S, Zhang W, Deng B, Li W, Wu P, Li Z. Antifungal efficacy of scorpion derived peptide K1K8 against Candida albicans in vitro and in vivo. Toxicon 2024; 238:107593. [PMID: 38163461 DOI: 10.1016/j.toxicon.2023.107593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
As an alternative class of antimicrobial agents, antimicrobial peptides (AMPs) have gained significant attention. In this study, K1K8, a scorpion AMP derivative, showed effective activity against Candida albicans including clinically resistant strains. K1K8 killed C. albicans cells mainly by damaging the cell membrane and inducing necrosis via an ROS-related pathway. K1K8 could also interact with DNA after damaging the nuclear envelope. Moreover, K1K8 inhibited hyphal development and biofilm formation of C. albicans in a dose-dependent manner. In the mouse skin infection model, K1K8 significantly decreased the counts of C. albicans cells in the infection area. Overall, K1K8 is a potential anti-infective agent against skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Yingbin Shui
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Huayi Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yunqi Chen
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yixuan Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wenlu Zhang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Pengfei Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
3
|
Souza E Silva P, Ferreira MA, de Moraes LFR, de Barros E, Preza SLE, Cardoso MH, Franco OL, Migliolo L. Synthetic peptides bioinspired in temporin-PTa with antibacterial and antibiofilm activity. Chem Biol Drug Des 2022; 100:51-63. [PMID: 35377553 DOI: 10.1111/cbdd.14052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/15/2022] [Accepted: 03/31/2022] [Indexed: 12/25/2022]
Abstract
Several antimicrobial peptides (AMPs) have been reported in amphibian toxins, as temporin-PTa from Hylarana picturata. The amino acid distribution within a helical structure of AMPs favors the design of new bioactive peptides. Therefore, this work reports the rational design of two new synthetic peptides denominated Hp-MAP1 and Hp-MAP2 derived from temporin-PTa. These peptides present an amphipathic helix with positive charges of +4 and +5, hydrophobic moment (<µH>) of 0.66 and 0.72 and hydrophobicity (<H>) of 0.49 and 0.41, respectively. Hp-MAP1 and Hp-MAP2 displayed in vitro activity against Gram-negative and Gram-positive bacteria from 2.8 to 92 µM, without presenting hemolytic effects. Molecular dynamics simulation suggested that the parent and designed temporin-like peptides lack structural stability in an aqueous solution. By contrast, α-helical structures were predicted in hydrophobic and anionic environments. Additionally, the peptides were simulated on mimetic membranes composed of anionic and neutral phospholipids 1,2-dipalmitoylsn-glycerol-3-phosphatidylglycerol (DPPG-anionic), 1,2-dipalmitoyl-sn-lyco-3 phosphatidylethanolamine (DPPE-neutral). When in contact with DPPG/DPPE (90:10) and DPPG/DPPE (50:50) temporin-PTa, Hp-MAP1 and Hp-MAP2 established interactions guided by hydrogen and saline bounds. Therefore, the findings described here reveal that the optimization of the amphipathic α-helical cationic peptides Hp-MAP1 and Hp-MAP2 enabled the generation of new synthetic antimicrobial agents to combat pathogenic microorganisms.
Collapse
Affiliation(s)
- Patrícia Souza E Silva
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | - Marcos Antonio Ferreira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil
| | | | - Elizângela de Barros
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil
| | | | - Marlon Henrique Cardoso
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Biotecnologia e Ciências Genômicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Biotecnologia e Ciências Genômicas, Universidade Católica de Brasília, Brasília, Brazil.,Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Ludovico Migliolo
- S-Inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil.,Programa de Pós-Graduação em Bioquímica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
4
|
Li Z, Jing X, Yuan Y, Shui Y, Li S, Zhao Z, Deng B, Zhang W. In vitro and in vivo Activity of Phibilin Against Candida albicans. Front Microbiol 2022; 13:862834. [PMID: 35633688 PMCID: PMC9130856 DOI: 10.3389/fmicb.2022.862834] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The increase in the occurrence of antifungal-resistant Candida albicans infections necessitates more research to explore alternative effective and safe agents against this fungus. In this work, Phibilin, a new antimicrobial peptide obtained from Philomycus bilineatus and used in traditional Chinese medicine, effectively inhibits the growth and activities of C. albicans, including the clinical resistant strains. Phibilin is a fungicidal antimicrobial peptide that exhibited its antimicrobial effect against C. albicans mainly by disrupting the membrane and interacting with the DNA of the fungi. In particular, Phibilin induces the necrosis of C. albicans via the ROS-related pathway. Moreover, this antifungal compound inhibited the biofilm formation of C. albicans by preventing the development of hyphae in a dose-dependent manner. Furthermore, Phibilin and clotrimazole displayed a synergistic effect in inhibiting the growth of the fungi. In the mouse cutaneous infection model, Phibilin significantly inhibited the formation of skin abscesses and decreased the counts of C. albicans cells in the infected area. Overall, Phibilin is potentially an effective agent against skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xiaoyuan Jing
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yingbin Shui
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Zhuoran Zhao
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|