1
|
Scholten B, Westerhout J, Pronk A, Stierum R, Vlaanderen J, Vermeulen R, Jones K, Santonen T, Portengen L. A physiologically-based kinetic (PBK) model for work-related diisocyanate exposure: Relevance for the design and reporting of biomonitoring studies. ENVIRONMENT INTERNATIONAL 2023; 174:107917. [PMID: 37062159 DOI: 10.1016/j.envint.2023.107917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Diisocyanates are highly reactive substances and known causes of occupational asthma. Exposure occurs mainly in the occupational setting and can be assessed through biomonitoring which accounts for inhalation and dermal exposure and potential effects of protective equipment. However the interpretation of biomonitoring data can be challenging for chemicals with complex kinetic behavior and multiple exposure routes, as is the case for diisocyanates. To better understand the relation between external exposure and urinary concentrations of metabolites of diisocyanates, we developed a physiologically based kinetic (PBK) model for methylene bisphenyl isocyanate (MDI) and toluene di-isocyanate (TDI). The PBK model covers both inhalation and dermal exposure, and can be used to estimate biomarker levels after either single or chronic exposures. Key parameters such as absorption and elimination rates of diisocyanates were based on results from human controlled exposure studies. A global sensitivity analysis was performed on model predictions after assigning distributions reflecting a mixture of parameter uncertainty and population variability. Although model-based predictions of urinary concentrations of the degradation products of MDI and TDI for longer-term exposure scenarios compared relatively well to empirical results for a limited set of biomonitoring studies in the peer-reviewed literature, validation of model predictions was difficult because of the many uncertainties regarding the precise exposure scenarios that were used. Sensitivity analyses indicated that parameters with a relatively large impact on model estimates included the fraction of diisocyanates absorbed and the binding rate of diisocyanates to albumin relative to other macro molecules.We additionally investigated the effects of timing of exposure and intermittent urination, and found that both had a considerable impact on estimated urinary biomarker levels. This suggests that these factors should be taken into account when interpreting biomonitoring data and included in the standard reporting of isocyanate biomonitoring studies.
Collapse
Affiliation(s)
- B Scholten
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands.
| | - J Westerhout
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands
| | - A Pronk
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands
| | - R Stierum
- Risk Assessment for Products in Development, TNO Quality of Life, the Netherlands
| | - J Vlaanderen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - R Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| | - K Jones
- Health and Safety Executive (HSE), Harpur Hill, Buxton, UK
| | - T Santonen
- Finnish Institute of Occupational Health (FIOH), Finland
| | - L Portengen
- Institute for Risk Assessment Sciences, Utrecht University, the Netherlands
| |
Collapse
|
2
|
Harari H, Bello D, Woskie S, Redlich CA. Assessment of personal inhalation and skin exposures to polymeric methylene diphenyl diisocyanate during polyurethane fabric coating. Toxicol Ind Health 2022; 38:622-635. [PMID: 35694796 DOI: 10.1177/07482337221107243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylene diphenyl diisocyanate (MDI) monomers and polymeric MDI (pMDI) are aromatic isocyanates widely used in the production of polyurethanes. These isocyanates can cause occupational asthma, hypersensitivity pneumonitis, as well as contact dermatitis. Skin exposure likely contributes toward initial sensitization but is challenging to monitor and quantitate. In this work, we characterized workers' personal inhalation and skin exposures to pMDI in a polyurethane fabric coating factory for subsequent health effect studies. Full-shift personal and area air samples were collected from eleven workers in representative job areas daily for 1-2 weeks. Skin exposure to hands was evaluated concomitantly with a newly developed reagent-impregnated cotton glove dosimeter. Samples were analyzed for pMDI by liquid chromatography-tandem mass spectrometry. In personal airborne samples, the concentration of 4,4'-MDI isomer, expressed as total NCO, had a geometric mean (GM) and geometric standard deviation (GSD) of 5.1 and 3.3 ng NCO/m3, respectively (range: 0.5-1862 ng NCO/m3). Other MDI isomers were found at much lower concentrations. Analysis of 4,4'-MDI in the glove dosimeters exhibited much greater exposures (GM: 10 ng/cm2) and substantial variability (GSD: 20 ng NCO/cm2; range: 0-295 ng NCO/cm2). MDI inhalation exposure was well below occupational limits for MDI for all the job areas. However, MDI skin exposure to hands was substantial. These findings demonstrated the potential for substantial isocyanate skin exposure in work settings with very low airborne levels. This exposure characterization should inform future studies that aim to assess the health effects of work exposures to MDI and the effectiveness of protective measures.
Collapse
Affiliation(s)
- Homero Harari
- Department of Environmental Medicine and Public Health, 5925Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dhimiter Bello
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, Lowell, MA, USA
| | - Susan Woskie
- Department of Public Health, Zuckerberg College of Health Sciences, Lowell, MA, USA
| | - Carrie A Redlich
- Yale Occupational and Environmental Medicine Program, 12228Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Hamid OIA, Domouky AM, El-Fakharany YM. Molecular evidence of the amelioration of toluene induced encephalopathy by human breast milk mesenchymal stem cells. Sci Rep 2022; 12:9194. [PMID: 35654991 PMCID: PMC9163168 DOI: 10.1038/s41598-022-13173-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/18/2022] [Indexed: 11/09/2022] Open
Abstract
Toluene was widely used volatile organic compound that accumulates in tissues with high lipid content. Stem cells have been proposed as an increasingly attractive approach for repair of damaged nervous system, we aimed to evaluate the ability of breast milk mesenchymal stem cells (MSc) to ameliorate toluene-induced encephalopathy. Sixty adult male albino rats were assigned to 3 groups, control, toluene, and toluene/breast milk-MSc. Neurological assessment was evaluated as well as serum levels of glial fibrillary acidic protein (GFAP), tumor necrosis factor-alpha (TNF-α), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), tissue dopamine and oxidative markers. Gene expression of peroxisome Proliferator-Activated Receptor-Gamma (PPAR-ɣ), nuclear factor-kappaB (NF-kB), and interleukin-6 (IL-6) were evaluated. Moreover, histological and immunohistochemical investigation were done. Results revealed that toluene caused cerebral injury, as evidenced by a significant increase in serum GFAP, TNF-α, malondialdehyde (MDA) and nitric oxide (NO), a significant decrease in serum NGF, tissue dopamine and oxidative markers, besides, a non-significant change in VEGF. Toluene also caused changes in normal cerebral structure and cellular degeneration, including a significant decrease in the total number of neurons and thickness of frontal cortex. Meninges showing signs of inflammation with inflammatory cell infiltration and exudation, a significant decrease in MBP immunoreactivity, and increase in the percent of high motility group box protein-1 (HMGB1) positive cells. PPAR- ɣ, NF-kB, and IL-6 gene expression were all considerably elevated by toluene. These changes were greatly improved by breast milk MSc. Therefore, we conclude that breast milk MSc can attenuate toluene-induced encephalopathy.
Collapse
Affiliation(s)
- Omaima I Abdel Hamid
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| | - Ayat M Domouky
- Human Anatomy and Embryology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt.
| | - Yara M El-Fakharany
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Alsharquiah, 44519, Egypt
| |
Collapse
|
4
|
West RJ, Burleson S, Gulledge T, Miller JW, Chappelle AH, Krieger S, Graham C, Snyder S, Simon G, Plehiers PM. Exploring structure/property relationships to health and environmental hazards of polymeric polyisocyanate prepolymer substances-2. Dermal sensitization potential in the mouse local lymph node assay. Toxicol Ind Health 2022; 38:556-577. [PMID: 35624531 DOI: 10.1177/07482337221089587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The sensitization potencies of twenty custom-designed monomer-depleted polymeric polyisocyanate prepolymer substances and their associated toluene diisocyanate (TDI), methylene diphenyl diisocyanate (MDI), hexamethylene diisocyanate (HDI), and isophorone diisocyanate (IPDI) monomer precursors were investigated by means of the mouse Local Lymph Node Assay (LLNA). These polymeric prepolymers were designed to represent the structural features and physical-chemical properties exhibited by a broad range of commercial polymeric polyisocyanate prepolymers that are produced from the reaction of aromatic and aliphatic diisocyanate monomers with aliphatic polyether and polyester polyols. The normalization of LLNA responses to the applied (15-45-135 mM) concentrations showed that the skin sensitization potency of polymeric polyisocyanate prepolymers is at least 300 times less than that of the diisocyanate monomers from which they are derived. The sensitization potency of the prepolymers was shown to be mainly governed by their hydrophobicity (as expressed by the calculated octanol-water partition coefficient, log Kow) and surfactant properties. Neither hydrophilic (log Kow <0) nor very hydrophobic (log Kow >25) prepolymers stimulated lymphocyte proliferation beyond that of the dosing vehicle control. The findings of this investigation challenge the generally held assumption that all isocyanate (-N=C=O) bearing substances are potential skin (and respiratory) sensitizers. Further, these findings can guide the future development of isocyanate chemistries and associated polyurethane applications toward reduced exposure and health hazard potentials.
Collapse
Affiliation(s)
- Robert J West
- 550512International Isocyanate Institute, Inc, Mountain Lakes, NJ, USA
| | | | - Travis Gulledge
- Currently Burleson Research Technologies, StrideBio Inc, Durham, NC, USA
| | - Jason W Miller
- Environmental Analytics, Covestro LLC, Pittsburgh, PA, USA
| | - Anne H Chappelle
- 550512International Isocyanate Institute, Inc, Mountain Lakes, NJ, USA
| | - Shannon Krieger
- 5470Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, USA
| | | | - Stephanie Snyder
- Environmental Analytics, Covestro LLC, Pittsburgh, PA, USA.,Product Safety and Regulatory Affairs, Covestro LLC, Pittsburgh, PA, USA
| | - Glenn Simon
- Simon Toxicology, LLC, Raleigh, NC, USA (Consultant to Vencorex US, Inc.)
| | | |
Collapse
|
5
|
Schupp T, Plehiers PM. Absorption, distribution, metabolism, and excretion of methylene diphenyl diisocyanate and toluene diisocyanate: Many similarities and few differences. Toxicol Ind Health 2022; 38:500-528. [PMID: 35301910 DOI: 10.1177/07482337211060133] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Methylene diphenyl diisocyanate (MDI) and toluene diisocyanate (TDI) are high production volume chemicals used for the manufacture of polyurethanes. For both substances, the most relevant adverse health effects after overexposure in the workplace are isocyanate-induced asthma, lung function decrement and, to a much lesser extent, skin effects. Over the last two decades many articles have addressed the reactivity of MDI and TDI in biological media and the associated biochemistry, which increased the understanding of their biochemical and physiological behavior. In this review, these new insights with respect to similarities and differences concerning the adsorption, distribution, metabolism, and excretion (ADME) of these two diisocyanates and the implications on their toxicities are summarized. Both TDI and MDI show very similar behavior in reactivity to biological macromolecules, distribution, metabolism, and excretion. Evidence suggests that the isocyanate (NCO) group is scavenged at the portal-of-entry and is not systemically available in unbound reactive form. This explains the lack of other than portal-of-entry toxicity observed in repeated-dose inhalation tests.
Collapse
Affiliation(s)
- Thomas Schupp
- 39002Münster University of Applied Sciences, Steinfurt, Germany
| | | |
Collapse
|
6
|
Lynch HN, Prueitt RL, Goodman JE. Critique of the ACGIH 2016 derivation of toluene diisocyanate Threshold Limit Values. Regul Toxicol Pharmacol 2018; 97:189-196. [PMID: 29964120 DOI: 10.1016/j.yrtph.2018.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/26/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
In 2016, the American Conference of Governmental Industrial Hygienists (ACGIH) lowered the 8-hr Threshold Limit Value - time-weighted average (TLV-TWA) for toluene diisocyanate (TDI) from 5 ppb to 1 ppb, and the 15-min short-term exposure limit (STEL) from 20 ppb to 5 ppb. We evaluated ACGIH's basis for lowering these values. It is our opinion that the ACGIH's evaluation of the evidence for occupational asthma and respiratory effects from TDI exposure does not fully integrate the results of all the available human and animal studies. We found that some studies reported occupational asthma cases at TWAs less than 5 ppb, but these cases were likely caused by peak exposures above 20 ppb. Advances in industrial hygiene have reduced peak exposures and the incidence of upset conditions, such as spills and accidents, in modern TDI facilities. Taken together, the human evidence indicates that adherence to the previous 8-hr TLV-TWA and 15-min STEL (5 ppb and 20 ppb, respectively) prevents most, if not all, cases of occupational asthma, and eliminates or reduces the risk of lung function decrements and other respiratory effects. While limited, the animal literature supports the human evidence and indicates that TDI-induced asthma is a threshold phenomenon. We conclude that ACGIH's decision to lower the TLV-TWA and STEL values for TDI is not adequately supported.
Collapse
|
7
|
Prueitt RL, Lynch HN, Zu K, Shi L, Goodman JE. Dermal exposure to toluene diisocyanate and respiratory cancer risk. ENVIRONMENT INTERNATIONAL 2017; 109:181-192. [PMID: 28967432 DOI: 10.1016/j.envint.2017.09.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
Human exposure to toluene diisocyanate (TDI) occurs mainly through inhalation of vapors in occupational settings where TDI is produced or used, but dermal exposure to TDI is also possible during some operations. Because of a recent epidemiology study reporting a possible association with lung cancer risk in workers with potential dermal exposure to TDI, we evaluated the evidence from epidemiological, toxicological, and toxicokinetic studies to assess whether it is likely that dermal exposure to TDI can cause human respiratory cancers. We found that the reported associations with respiratory cancers in the epidemiology studies do not support TDI as a causal factor, as there are other explanations that are more likely than causation, such as confounding by smoking and low socioeconomic status. Experimental animal and genotoxicity studies indicate that the carcinogenic potential of TDI depends on its conversion to toluene diamine (TDA), and there is no evidence of systemic availability of TDA after dermal or inhalation exposure to TDI. Also, systemic uptake of TDI is very low after dermal exposure, and any absorbed TDI is more likely to react with biomolecules on or below the skin surface than to form TDA. Even if some TDA formation occurred after dermal exposure to TDI, TDA does not induce respiratory tract tumors in experimental animals after either dermal or oral exposure. We conclude that the available evidence indicates that dermal TDI exposure does not cause respiratory cancers in humans.
Collapse
Affiliation(s)
- Robyn L Prueitt
- Gradient, 600 Stewart Street, Seattle, WA 98101, United States
| | - Heather N Lynch
- Gradient, 20 University Road, Cambridge, MA 02138, United States
| | - Ke Zu
- Gradient, 20 University Road, Cambridge, MA 02138, United States
| | - Liuhua Shi
- Gradient, 20 University Road, Cambridge, MA 02138, United States
| | - Julie E Goodman
- Gradient, 20 University Road, Cambridge, MA 02138, United States.
| |
Collapse
|
8
|
Goodman JE, Zu K, Loftus CT, Prueitt R. Dermal TDI exposure is not associated with lung cancer risk. Am J Ind Med 2017; 60:221-222. [PMID: 28079276 DOI: 10.1002/ajim.22677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ke Zu
- Gradient; 20 University Road Cambridge Massachusetts
| | | | - Robyn Prueitt
- Gradient; 600 Stewart Street, Suite 1900 Seattle Washington
| |
Collapse
|
9
|
Pinkerton LE, Yiin JH, Daniels RD, Fent KW. Response to Goodman et al. Am J Ind Med 2017; 60:223-225. [PMID: 28079281 DOI: 10.1002/ajim.22681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Lynne E. Pinkerton
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| | - James H. Yiin
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| | - Robert D. Daniels
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| | - Kenneth W. Fent
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| |
Collapse
|
10
|
Pinkerton LE, Yiin JH, Daniels RD, Fent KW. Mortality among workers exposed to toluene diisocyanate in the US polyurethane foam industry: Update and exposure-response analyses. Am J Ind Med 2016; 59:630-43. [PMID: 27346061 DOI: 10.1002/ajim.22622] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 11/08/2022]
Abstract
BACKGROUND Mortality among 4,545 toluene diisocyante (TDI)-exposed workers was updated through 2011. The primary outcome of interest was lung cancer. METHODS Life table analyses, including internal analyses by exposure duration and cumulative TDI exposure, were conducted. RESULTS Compared with the US population, all cause and all cancer mortality was increased. Lung cancer mortality was increased but was not associated with exposure duration or cumulative TDI exposure. In post hoc analyses, lung cancer mortality was associated with employment duration in finishing jobs, but not in finishing jobs involving cutting polyurethane foam. CONCLUSIONS Dermal exposure, in contrast to inhalational exposure, to TDI is expected to be greater in finishing jobs and may play a role in the observed increase in lung cancer mortality. Limitations include the lack of smoking data, uncertainty in the exposure estimates, and exposure estimates that reflected inhalational exposure only. Am. J. Ind. Med. 59:630-643, 2016. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Lynne E. Pinkerton
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| | - James H. Yiin
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| | - Robert D. Daniels
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| | - Kenneth W. Fent
- Industrywide Studies Branch, Division of Surveillance, Hazard Evaluations, and Field Studies; National Institute for Occupational Safety and Health; Cincinnati Ohio
| |
Collapse
|
11
|
Henriks-Eckerman ML, Mäkelä EA, Laitinen J, Ylinen K, Suuronen K, Vuokko A, Sauni R. Role of dermal exposure in systemic intake of methylenediphenyl diisocyanate (MDI) among construction and boat building workers. Toxicol Lett 2014; 232:595-600. [PMID: 25542146 DOI: 10.1016/j.toxlet.2014.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/19/2014] [Accepted: 12/19/2014] [Indexed: 11/19/2022]
Abstract
The causal relationship between inhalation exposure to methylenediphenyl diisocyanate (MDI) and the risk of occupational asthma is well known, but the role of dermal exposure and dermal uptake of MDI in this process is still unclear. The aims of this study were to measure dermal exposure to and the dermal uptake of MDI among workers (n=24) who regularly handle MDI-urethanes. Dermal exposure was measured by the tape-strip technique from four sites on the dominant hand and arm. The workers with the highest exposure (n=5) were biomonitored immediately after their work shift, in the evening and the next morning, using urinary 4,4´methylenedianiline (MDA) as a marker. Dermal uptake was evaluated by comparing workers' MDA excretions both when they were equipped with respiratory protective devices (RPDs) and when they did not use them. The measured amounts of MDI on their hands varied from below 0.1 to 17 μg/10 cm(2) during the test. MDI concentrations were in the range of 0.08 to 27 μg m(-3) in the breathing zone outside the RPDs. MDA concentrations varied from 0.1 to 0.2 μmol mol(-1) creatinine during the test period. The decreasing effect of RPDs on inhalation exposure was absent in the next morning urine samples; this excretion pattern might be an indication of dermal uptake of MDI.
Collapse
Affiliation(s)
| | - Erja A Mäkelä
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Juha Laitinen
- Finnish Institute of Occupational Health, Kuopio, Finland
| | | | - Katri Suuronen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Aki Vuokko
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - Riitta Sauni
- Finnish Institute of Occupational Health, Tampere, Finland
| |
Collapse
|
12
|
Pauluhn J. Development of a respiratory sensitization/elicitation protocol of toluene diisocyanate (TDI) in Brown Norway rats to derive an elicitation-based occupational exposure level. Toxicology 2014; 319:10-22. [PMID: 24572447 DOI: 10.1016/j.tox.2014.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/21/2014] [Accepted: 02/16/2014] [Indexed: 11/29/2022]
Abstract
Toluene diisocyanate (TDI), a known human asthmagen, was investigated in skin-sensitized Brown Norway rats for its concentration×time (C×t)-response relationship on elicitation-based endpoints. The major goal of study was to determine the elicitation inhalation threshold dose in sensitized, re-challenged Brown Norway rats, including the associated variables affecting the dosimetry of inhaled TDI-vapor in rats and as to how these differences can be translated to humans. Attempts were made to duplicate at least some traits of human asthma by using skin-sensitized rats which were subjected to single or multiple inhalation-escalation challenge exposures. Two types of dose-escalation protocols were used to determine the elicitation-threshold C×t; one used a variable C (Cvar) and constant t (tconst), the other a constant C (Cconst) and variable t (tvar). The selection of the "minimal irritant" C was based an ancillary pre-studies. Neutrophilic granulocytes (PMNs) in bronchoalveolar lavage fluid (BAL) were considered as the endpoint of choice to integrate the allergic pulmonary inflammation. These were supplemented by physiological measurements characterizing nocturnal asthma-like responses and increased nitric oxide in exhaled breath (eNO). The Cconst×tvar regimen yielded the most conclusive dose-response relationship as long C was high enough to overcome the scrubbing capacity of the upper airways. Based on ancillary pre-studies in naïve rats, the related human-equivalent respiratory tract irritant threshold concentration was estimated to be 0.09ppm. The respective 8-h time-adjusted asthma-related human-equivalent threshold C×t-product (dose), in 'asthmatic' rats, was estimated to be 0.003ppm. Both thresholds are in agreement of the current ACGIH TLV(®) of TDI and published human evidence. In summary, the findings from this animal model suggest that TDI-induced respiratory allergy is likely to be contingent on two interlinked, sequentially occurring mechanisms: first, dermal sensitizing encounters high enough to cause systemic sensitization. Second, when followed by inhalation exposure(s) high enough to initiate and amplify an allergic airway inflammation, then a progression into asthma may occur. This bioassay requires an in-depth knowledge on respiratory tract dosimetry and irritation of the involved test substance to clearly understand the dosimetry causing C- and/or C×t-dependent respiratory tract irritation and eventually asthma.
Collapse
|
13
|
Premaraj T, Simet S, Beatty M, Premaraj S. Oral epithelial cell reaction after exposure to Invisalign plastic material. Am J Orthod Dentofacial Orthop 2014; 145:64-71. [PMID: 24373656 DOI: 10.1016/j.ajodo.2013.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/01/2013] [Accepted: 09/01/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Invisalign plastic aligners (Align Technology, Santa Clara, Calif) are used to correct malocclusions. The aligners wrap around the teeth and are in contact with gingival epithelium during treatment. The purpose of this study was to evaluate the cellular responses of oral epithelium exposed to Invisalign plastic in vitro. METHODS Oral epithelial cells were exposed to eluate obtained by soaking Invisalign plastic in either saline solution or artificial saliva for 2, 4, and 8 weeks. Cells grown in media containing saline solution or saliva served as controls. Morphologic changes were assessed by light microscopy. The 3-[4, 5-dimethythiazol- 2-yl]-2, 5-diphenyl tetrazolium bromide assay and flow cytometry were used to determine cell viability and membrane integrity, respectively. Cellular adhesion and micromotion of epithelial cells were measured in real time by electrical cell-substrate impedance sensing. RESULTS Cells exposed to saline-solution eluate appeared rounded, were lifted from the culture plates, and demonstrated significantly increased metabolic inactivity or cell death (P <0.05). Saliva eluates did not induce significant changes in cell viability compared with untreated cells. Flow cytometry and electric cell-substrate impedance sensing showed that cells treated with saline-solution eluate exhibited compromised membrane integrity, and reduced cell-to-cell contact and mobility when compared with saliva-eluate treatment. CONCLUSIONS Exposure to Invisalign plastic caused changes in viability, membrane permeability, and adhesion of epithelial cells in a saline-solution environment. Microleakage and hapten formation secondary to compromised epithelial integrity might lead to isocyanate allergy, which could be systemic or localized to gingiva. However, these results suggest that saliva might offer protection.
Collapse
Affiliation(s)
- Thyagaseely Premaraj
- Assistant professor, Orthodontic Section, Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Lincoln, Neb.
| | - Samantha Simet
- Postdoctoral research associate, Department of Internal Medicine, Pulmonary, Critical Care, Sleep & Allergy Division, University of Nebraska Medical Center, Omaha, Neb
| | - Mark Beatty
- Associate professor and graduate program director, Orthodontic Section, Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, Lincoln, Neb
| | - Sundaralingam Premaraj
- Professor and director, Section of Biomaterials, Department of Adult Restorative Dentistry, College of Dentistry, University of Nebraska Medical Center, Lincoln, Neb
| |
Collapse
|
14
|
Guo YH, Guo JJ, Li SC, Li X, Wang GS, Huang Z. Properties and paper sizing application of waterborne polyurethane emulsions synthesized with TDI and IPDI. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2013.03.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Prueitt RL, Rhomberg LR, Goodman JE. Hypothesis-based weight-of-evidence evaluation of the human carcinogenicity of toluene diisocyanate. Crit Rev Toxicol 2013; 43:391-435. [DOI: 10.3109/10408444.2013.790877] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
16
|
Arnold SM, Collins MA, Graham C, Jolly AT, Parod RJ, Poole A, Schupp T, Shiotsuka RN, Woolhiser MR. Risk assessment for consumer exposure to toluene diisocyanate (TDI) derived from polyurethane flexible foam. Regul Toxicol Pharmacol 2012; 64:504-15. [DOI: 10.1016/j.yrtph.2012.07.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/18/2012] [Accepted: 07/20/2012] [Indexed: 10/28/2022]
|