1
|
Qin P, He C, Ye P, Li Q, Cai C, Li Y. PKCδ regulates the vascular biology in diabetic atherosclerosis. Cell Commun Signal 2023; 21:330. [PMID: 37974282 PMCID: PMC10652453 DOI: 10.1186/s12964-023-01361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Diabetes mellitus, known for its complications, especially vascular complications, is becoming a globally serious social problem. Atherosclerosis has been recognized as a common vascular complication mechanism in diabetes. The diacylglycerol (DAG)-protein kinase C (PKC) pathway plays an important role in atherosclerosis. PKCs can be divided into three subgroups: conventional PKCs (cPKCs), novel PKCs (nPKCs), and atypical PKCs (aPKCs). The aim of this review is to provide a comprehensive overview of the role of the PKCδ pathway, an isoform of nPKC, in regulating the function of endothelial cells, vascular smooth muscle cells, and macrophages in diabetic atherosclerosis. In addition, potential therapeutic targets regarding the PKCδ pathway are summarized. Video Abstract.
Collapse
Affiliation(s)
- Peiliang Qin
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Changhuai He
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pin Ye
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qin Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chuanqi Cai
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yiqing Li
- Department of Vascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
2
|
Liang ST, Chen C, Chen RX, Li R, Chen WL, Jiang GH, Du LL. Michael acceptor molecules in natural products and their mechanism of action. Front Pharmacol 2022; 13:1033003. [PMID: 36408214 PMCID: PMC9666775 DOI: 10.3389/fphar.2022.1033003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/17/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: Michael receptor molecules derived from plants are biologically active due to electrophilic groups in their structure. They can target nucleophilic residues on disease-related proteins, with significant therapeutic effects and low toxicity for many diseases. They provide a good option for relevant disease treatment. The aim of this study is to summarize the existing MAMs and their applications, and lay a foundation for the application of Michael receptor molecules in life science in the future. Methods: This review summarizes the published studies on Michael receptor molecules isolated from plants in literature databases such as CNKI, Wanfang Data, PubMed, Web of Science, ScienceDirect, and Wiley. Latin names of plants were verified through https://www.iplant.cn/. All relevant compound structures were verified through PubChem and literature, and illustrated with ChemDraw 20.0. Result: A total of 50 Michael receptor molecules derived from various plants were discussed. It was found that these compounds have similar pharmacological potential, most of them play a role through the Keap1-Nrf2-ARE pathway and the NF-κB pathway, and have biological activities such as antioxidant and anti-inflammatory. They can be used to treat inflammatory diseases and tumors. Conclusion: The Michael receptor molecule has electrophilicity due to its unsaturated aldehyde ketone structure, which can combine with nucleophilic residues on the protein to form complexes and activate or inhibit the protein pathway to play a physiological role. Michael receptor molecules can regulate the Keap1-Nrf2-ARE pathway and the NF-κB pathway. Michael receptor molecules can be used to treat diseases such as inflammation, cancer, oxidative stress, etc.
Collapse
Affiliation(s)
- Song-Ting Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chu Chen
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Rui-Xin Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wen-Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gui-Hua Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei-Lei Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Xie MZ, Liu JL, Gao QZ, Bo DY, Wang L, Zhou XC, Zhao MM, Zhang YC, Zhang YJ, Zhao GA, Jiao LY. Proteomics-based evaluation of the mechanism underlying vascular injury via DNA interstrand crosslinks, glutathione perturbation, mitogen-activated protein kinase, and Wnt and ErbB signaling pathways induced by crotonaldehyde. Clin Proteomics 2022; 19:33. [PMID: 36002804 PMCID: PMC9400244 DOI: 10.1186/s12014-022-09369-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Crotonaldehyde (CRA)—one of the major environmental pollutants from tobacco smoke and industrial pollution—is associated with vascular injury (VI). We used proteomics to systematically characterize the presently unclear molecular mechanism of VI and to identify new related targets or signaling pathways after exposure to CRA. Cell survival assays were used to assess DNA damage, whereas oxidative stress was determined using colorimetric assays and by quantitative fluorescence study; additionally, cyclooxygenase-2, mitogen-activated protein kinase pathways, Wnt3a, β-catenin, phospho-ErbB2, and phospho-ErbB4 were assessed using ELISA. Proteins were quantitated via tandem mass tag-based liquid chromatography-mass spectrometry and bioinformatics analyses, and 34 differentially expressed proteins were confirmed using parallel reaction monitoring, which were defined as new indicators related to the mechanism underlying DNA damage; glutathione perturbation; mitogen-activated protein kinase; and the Wnt and ErbB signaling pathways in VI based on Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and protein–protein interaction network analyses. Parallel reaction monitoring confirmed significant (p < 0.05) upregulation (> 1.5-fold change) of 23 proteins and downregulation (< 0.667-fold change) of 11. The mechanisms of DNA interstrand crosslinks; glutathione perturbation; mitogen-activated protein kinase; cyclooxygenase-2; and the Wnt and ErbB signaling pathways may contribute to VI through their roles in DNA damage, oxidative stress, inflammation, vascular dysfunction, endothelial dysfunction, vascular remodeling, coagulation cascade, and the newly determined signaling pathways. Moreover, the Wnt and ErbB signaling pathways were identified as new disease pathways involved in VI. Taken together, the elucidated underlying mechanisms may help broaden existing understanding of the molecular mechanisms of VI induced by CRA.
Collapse
Affiliation(s)
- Ming-Zhang Xie
- Department of Genetics, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| | - Jun-Li Liu
- Henan Key Laboratory of Neurorestoratology, Henan International Joint Laboratory of Neurorestoratology for Senile Dementia, The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, People's Republic of China
| | - Qing-Zu Gao
- Department of Pathology, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - De-Ying Bo
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Lei Wang
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Xiao-Chun Zhou
- Department of Genetics, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Meng-Meng Zhao
- Department of Genetics, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Yu-Chao Zhang
- Department of Genetics, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Yu-Jing Zhang
- Department of Genetics, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China
| | - Guo-An Zhao
- Department of Cardiovascular, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| | - Lu-Yang Jiao
- Department of Laboratory, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453000, Henan, China.
| |
Collapse
|
4
|
The Inhibitory Effect of Corni Fructus against Oxidative Stress-induced Cellular Damage in C2C12 Murine Myoblasts. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0349-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Shen P, Qi H. Cell Models to Evaluate Antioxidant Properties of the Phlorotannins in Brown Seaweed: A Review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1967379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Ping Shen
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
6
|
Liu Y, Liu Y, Wang J, Huang F, Du P, Wu L, Guo F, Song Y, Qin G. LncRNA FENDRR promotes apoptosis of Leydig cells in late-onset hypogonadism by facilitating the degradation of Nrf2. Cell Tissue Res 2021; 386:379-389. [PMID: 34278519 DOI: 10.1007/s00441-021-03497-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/23/2021] [Indexed: 12/23/2022]
Abstract
This study aimed to investigate the role of lncRNA FENDRR in apoptosis of Leydig cells and the further mechanism. The apoptosis of Leydig cells (TM3 cell line) was induced by H2O2-treatment and detected by flow cytometry. The function of FENDRR was determined by in vitro and in vivo silencing experiments. The mechanism of FENDRR in regulating the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) was assessed by RNA immunoprecipitation, RNA pull-down, and ubiquitination assays. FENDRR expression was up-regulated in H2O2-treated TM3 cells. Knockdown of FENDRR augmented Nrf2 and HO-1 protein levels and testosterone production in H2O2-treated TM3 cells, whereas the apoptosis rate and caspase 3 activity were decreased. Mechanically, FENDRR bound to Nrf2 and promoted its ubiquitination and degradation. Nrf2 overexpression reversed the effects FENDRR overexpression on apoptosis, caspase 3 activity, and testosterone concentration in H2O2-treated TM3 cells. The in vivo experiments showed that FENDRR silence increased serum testosterone level and improved testosterone-related anti-depression behaviors of late-onset hypogonadism (LOH) mice. Our findings suggested that FENDRR could promote apoptosis of Leydig cells in LOH partly through facilitating Nrf2 degradation.
Collapse
Affiliation(s)
- Yanling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanxia Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fengjiao Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Peijie Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lina Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
7
|
Zhang S, Zhang B, Zhang Q, Zhang Z. Crotonaldehyde exposure induces liver dysfunction and mitochondrial energy metabolism disorder in rats. Toxicol Mech Methods 2021; 31:425-436. [PMID: 33749501 DOI: 10.1080/15376516.2021.1904073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Crotonaldehyde is a highly toxic pollutant, widely present in tobacco smoke and automobile exhaust. Exposure to crotonaldehyde can cause hepatotoxicity and induce liver tumors in rats; however, the underlying mechanism is unclear. Liver cells contain many mitochondria, which serve to maintain energy levels in the body. We hypothesized that the energy metabolism disorder caused by mitochondrial dysfunction is an important cause of liver injury in rats exposed to crotonaldehyde. To test this, we randomly divided 40 male Wistar rats into four groups, and provided crotonaldehyde at 0, 2.5, 4.5, and 8.5 mg/kg for 90 days by intragastric administration. The results showed that crotonaldehyde exposure caused damage to liver mitochondrial structure, reduced electron-transport chain activity and ATP levels, and interfered with mitochondrial DNA transcription. In response to increased crotonaldehyde exposure, rats exhibited increased reactive oxygen species levels, decreased superoxide dismutase and glutathione activity, and activation of the caspase-mediated apoptosis pathway, as well as elevated levels of alanine aminotransferase, aspartate aminotransferase, total bilirubin, and histopathological damage. Our findings, together with those of previous reports, should help elucidate the underlying mechanism of crotonaldehyde-induced mitochondrial dysfunction and energy metabolism disorder, and provide an important direction for the prevention and clinical intervention of liver diseases caused by crotonaldehyde and aldehydes with similar structures.
Collapse
Affiliation(s)
- Shuman Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Biao Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qi Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
8
|
Li S, Wei P, Zhang B, Chen K, Shi G, Zhang Z, Du Z. Apoptosis of lung cells regulated by mitochondrial signal pathway in crotonaldehyde-induced lung injury. ENVIRONMENTAL TOXICOLOGY 2020; 35:1260-1273. [PMID: 32639093 DOI: 10.1002/tox.22991] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 05/25/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Crotonaldehyde, a highly toxic α, β-unsaturated aldehyde, is a ubiquitous hazardous pollutant. Because of its extreme toxicity and ubiquity in all types of smoke, most current research focuses on the lung toxicity of such air pollutants. However, the specific mechanism of pulmonary toxicity caused by crotonaldehyde remains unclear, especially after long-term exposure to crotonaldehyde at low dose. Therefore, the aim of the present study is to determine whether crotonaldehyde-induced oxidative damage and inflammation promote apoptosis in rats via the mitochondrial pathway using histopathology, immunohistochemistry, biochemistry analysis and Western blot analysis. The results show that crotonaldehyde elicited oxidative damage and inflammation in rats in a concentration-dependent manner. Crotonaldehyde-induced lung injury which was confirmed by H&E, Masson's trichrome staining and TUNEL. And crotonaldehyde-induced lung cell apoptosis showed a concentration-response relationship. Immunohistochemistry and Western blot results showed that apoptotic mitochondrial signaling pathway is abnormally activated in crotonaldehyde-induced lung injury. Collectively, this study demonstrates that exposure of rats to crotonaldehyde induces lung injury by inducing apoptosis, which is related to oxidative damage and inflammation through mitochondrial pathway.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Ping Wei
- Shandong Tumor Hospital and institute, Jinan, Shandong Province, China
| | - Biao Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Kechuan Chen
- Jinan Emergency Center, Jinan, Shandong Province, China
| | - Gengsheng Shi
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhihu Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| | - Zhongjun Du
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
| |
Collapse
|
9
|
Park C, Cha HJ, Hong SH, Kim GY, Kim S, Kim HS, Kim BW, Jeon YJ, Choi YH. Protective Effect of Phloroglucinol on Oxidative Stress-Induced DNA Damage and Apoptosis through Activation of the Nrf2/HO-1 Signaling Pathway in HaCaT Human Keratinocytes. Mar Drugs 2019; 17:md17040225. [PMID: 31013932 PMCID: PMC6520966 DOI: 10.3390/md17040225] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/28/2022] Open
Abstract
Phloroglucinol (PG) is a component of phlorotannins, which are abundant in marine brown alga species. Recent studies have shown that PG is beneficial in protecting cells from oxidative stress. In this study, we evaluated the protective efficacy of PG in HaCaT human skin keratinocytes stimulated with oxidative stress (hydrogen peroxide, H2O2). The results showed that PG significantly inhibited the H2O2-induced growth inhibition in HaCaT cells, which was associated with increased expression of heme oxygenase-1 (HO-1) by the activation of nuclear factor erythroid 2-related factor-2 (Nrf2). PG remarkably reversed H2O2-induced excessive ROS production, DNA damage, and apoptosis. Additionally, H2O2-induced mitochondrial dysfunction was related to a decrease in ATP levels, and in the presence of PG, these changes were significantly impaired. Furthermore, the increases of cytosolic release of cytochrome c and ratio of Bax to Bcl-2, and the activation of caspase-9 and caspase-3 by the H2O2 were markedly abolished under the condition of PG pretreatment. However, the inhibition of HO-1 function using zinc protoporphyrin, a HO-1 inhibitor, markedly attenuated these protective effects of PG against H2O2. Overall, our results suggest that PG is able to protect HaCaT keratinocytes against oxidative stress-induced DNA damage and apoptosis through activating the Nrf2/HO-1 signaling pathway.
Collapse
Affiliation(s)
- Cheol Park
- Department of Molecular Biology, College of Natural Sciences, Dong-eui University, Busan 47340, Korea.
| | - Hee-Jae Cha
- Department of Parasitology and Genetics, College of Medicine, Kosin University, Busan 49267, Korea.
| | - Su Hyun Hong
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| | - Gi-Young Kim
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Suhkmann Kim
- Department of Chemistry, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Heui-Soo Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 46241, Korea.
| | - Byung Woo Kim
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, College of Engineering, Dong-eui University, Busan 47340, Korea.
| | - You-Jin Jeon
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju 63243, Korea.
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-eui University College of Korean Medicine, Busan 47227, Korea.
- Anti-Aging Research Center, Dong-eui University, Busan 47227, Korea.
| |
Collapse
|
10
|
Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. Antioxidants (Basel) 2019; 8:antiox8040082. [PMID: 30939721 PMCID: PMC6523540 DOI: 10.3390/antiox8040082] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 01/23/2023] Open
Abstract
Reactive oxygen species (ROS), products of oxidative stress, contribute to the initiation and progression of the pathogenesis of various diseases. Glutathione is a major antioxidant that can help prevent the process through the removal of ROS. The aim of this study was to evaluate the protective effect of glutathione on ROS-mediated DNA damage and apoptosis caused by hydrogen peroxide, H2O2, in RAW 264.7 macrophages and to investigate the role of the nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. The results showed that the decrease in the survival rate of RAW 264.7 cells treated with H2O2 was due to the induction of DNA damage and apoptosis accompanied by the increased production of ROS. However, H2O2-induced cytotoxicity and ROS generation were significantly reversed by glutathione. In addition, the H2O2-induced loss of mitochondrial membrane potential was related to a decrease in adenosine triphosphate (ATP) levels, and these changes were also significantly attenuated in the presence of glutathione. These protective actions were accompanied by a increase in the expression rate of B-cell lymphoma-2 (Bcl-2)/Bcl-2-associated X protein (Bax) and poly(ADP-ribose) polymerase cleavage by the inactivation of caspase-3. Moreover, glutathione-mediated cytoprotective properties were associated with an increased activation of Nrf2 and expression of HO-1; however, the inhibition of the HO-1 function using an HO-1 specific inhibitor, zinc protoporphyrin IX, significantly weakened the cytoprotective effects of glutathione. Collectively, the results demonstrate that the exogenous administration of glutathione is able to protect RAW 264.7 cells against oxidative stress-induced mitochondria-mediated apoptosis along with the activity of the Nrf2/HO-1 signaling pathway.
Collapse
|
11
|
Autophagy in Crotonaldehyde-Induced Endothelial Toxicity. Molecules 2019; 24:molecules24061137. [PMID: 30901980 PMCID: PMC6471975 DOI: 10.3390/molecules24061137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/16/2022] Open
Abstract
Crotonaldehyde is an extremely toxic α,β-unsaturated aldehyde found in cigarette smoke, and it causes inflammation and vascular dysfunction. Autophagy has been reported to play a key role in the pathogenesis of vascular diseases. However, the precise mechanism underlying the role of acute exposure crotonaldehyde in vascular disease development remains unclear. In the present study, we aimed to investigate the effect of crotonaldehyde-induced autophagy in endothelial cells. Acute exposure to crotonaldehyde decreased cell viability and induced autophagy followed by cell death. In addition, inhibiting the autophagic flux markedly promoted the viability of endothelial cells exposed to high concentrations of crotonaldehyde. Crotonaldehyde activated the AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) pathways, and pretreatment with inhibitors specific to these kinases showed autophagy inhibition and partial improvement in cell viability. These data show that acute exposure to high concentrations of crotonaldehyde induces autophagy-mediated cell death. These results might be helpful to elucidate the mechanisms underlying crotonaldehyde toxicity in the vascular system and contribute to environmental risk assessment.
Collapse
|
12
|
Zhang B, Li S, Men J, Peng C, Shao H, Zhang Z. Long-term exposure to crotonaldehyde causes heart and kidney dysfunction through induction of inflammatory and oxidative damage in male Wistar rats. Toxicol Mech Methods 2019; 29:263-275. [DOI: 10.1080/15376516.2018.1542474] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Biao Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Shuangshuang Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong Province, China
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Jinlong Men
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Cheng Peng
- The University of Queensland, National Research Centre for Environmental Toxicology – Entox, Brisbane, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC-CARE), Adelaide, Australia
| | - Hua Shao
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| | - Zhihu Zhang
- Shandong Academy of Occupational Health and Occupational Medicine, Jinan, Shandong Province, China
| |
Collapse
|
13
|
Ma J, Yu KN, Cheng C, Ni G, Shen J, Han W. Targeting Nrf2-mediated heme oxygenase-1 enhances non-thermal plasma-induced cell death in non-small-cell lung cancer A549 cells. Arch Biochem Biophys 2018; 658:54-65. [PMID: 30248308 DOI: 10.1016/j.abb.2018.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/30/2022]
Abstract
Non-thermal plasma (NTP) treatment has been proposed as a potential approach for cancer therapy for killing cancer cells via generation of reactive oxygen species (ROS). As an antioxidant protein, Heme oxygenase-1 (HO-1) has been known to protect cells against oxidative stress. In this paper, we investigated the role of HO-1 activation in NTP-induced apoptosis in A549 cells. Distinctly increased ROS production and apoptosis were observed after NTP exposure. NTP exposure induced HO-1 expression in a dose- and time-dependent manner via activating the translocation of Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) from cytoplasm to nucleus. Furthermore, inhibiting HO-1 activation with its specific inhibitor, ZnPP, increased "killing" effect of NTP. Knocking down HO-1 or Nrf2 with the special siRNA also led to elevated ROS level and enhanced NTP-induced cell death. In addition, the c-JUN N-terminal kinase (JNK) signaling pathway was shown to be involved in NTP-induced HO-1 expression. Interestingly, a higher resistance to NTP exposure of A549 cell compared to H1299 and H322 cells was found to be linked to its higher basal level of HO-1 expression. These findings revealed that HO-1 could be considered as a potential target to improve the effect of NTP in cancer therapy.
Collapse
Affiliation(s)
- Jie Ma
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; University of Science and Technology of China, Hefei, Anhui, China
| | - K N Yu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Cheng Cheng
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Guohua Ni
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Jie Shen
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Institute of Plasma Physics, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wei Han
- Anhui Province Key Laboratory of Medical Physics and Technology/Center of Medical Physics and Technology, Hefei Institutes of Physical Sciences, Chinese Academy of Sciences, Hefei, Anhui, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
14
|
Ropivacaine regulates the expression and function of heme oxygenase-1. Biomed Pharmacother 2018; 103:284-289. [PMID: 29656184 DOI: 10.1016/j.biopha.2018.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023] Open
Abstract
As a new generation of amide-type local anesthetics (LAs), ropivacaine has been widely used for pain management in clinical settings. Increasing evidence has shown that administration of ropivacaine causes cytotoxic effects and apoptosis. However, the underlying molecular mechanisms still need to be elucidated. In the current study, our results indicated that ropivacaine treatment caused a significant induction of heme oxygenase-1 (HO-1) at both the mRNA and protein levels in human SHSY5Y cells. Levels of HO-1 mRNA and protein peaked at 1 h and 18 h, respectively, in response to ropivacaine treatment. Additionally, ropivacaine treatment enhanced HO-1 activity in a dose-dependent manner. Interestingly, we found that ropivacaine treatment induced phosphorylation of p38. Blockage of p38 phosphorylation with its specific inhibitor SB203580 or by transfection with p38 siRNA restrained ropivacaine-stimulated HO-1 expression. Additionally, we found that ropivacaine treatment promoted nuclear translocation of Nrf2 and amplified ARE promoter activity. Silencing of Nrf2 abolished ropivacaine-induced HO-1 expression. Notably, we found that inhibition of HO-1 activity promoted ropivacaine-induced production of reactive oxygen species (ROS), deletion of reduced glutathione (GSH), and release of lactate dehydrogenase (LDH), suggesting that induction of HO-1 by ropivacaine acted as a compensatory survival response against ropivacaine.
Collapse
|
15
|
Yousefipour Z, Chug N, Marek K, Nesbary A, Mathew J, Ranganna K, Newaz MA. Contribution of PPARγ in modulation of acrolein-induced inflammatory signaling in gp91 phox knock-out mice. Biochem Cell Biol 2017; 95:482-490. [PMID: 28376311 DOI: 10.1139/bcb-2016-0198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxidative stress and inflammation are major contributors to acrolein toxicity. Peroxisome proliferator activated receptor gamma (PPARγ) has antioxidant and anti-inflammatory effects. We investigated the contribution of PPARγ ligand GW1929 to the attenuation of oxidative stress in acrolein-induced insult. Male gp91phox knock-out (KO) mice were treated with acrolein (0.5 mg·(kg body mass)-1 by intraperitoneal injection for 7 days) with or without GW1929 (GW; 0.5 mg·(kg body mass)-1·day-1, orally, for 10 days). The livers were processed for further analyses. Acrolein significantly increased 8-isoprostane and reduced PPARγ activity (P < 0.05) in the wild type (WT) and KO mice. GW1929 reduced 8-isoprostane (by 32% and 40% in WT and KO mice, respectively) and increased PPARγ activity (by 81% and 92% in WT and KO, respectively). Chemokine activity was increased (by 63%) in acrolein-treated WT mice, and was reduced by GW1929 (by 65%). KO mice exhibited higher xanthine oxidase (XO). Acrolein increased XO and COX in WT mice and XO in KO mice. GW1929 significantly reduced COX in WT and KO mice and reduced XO in KO mice. Acrolein significantly reduced the total antioxidant status in WT and KO mice (P < 0.05), which was improved by GW1929 (by 75% and 74%). The levels of NF-κB were higher in acrolein-treated WT mice. GW1929 reduced NF-κB levels (by 51%) in KO mice. Acrolein increased CD36 in KO mice (by 43%), which was blunted with GW1929. Data confirms that the generation of free radicals by acrolein is mainly through NAD(P)H, but other oxygenates play a role too. GW1929 may alleviate the toxicity of acrolein by attenuating NF-κB, COX, and CD36.
Collapse
Affiliation(s)
- Zivar Yousefipour
- a College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Neha Chug
- b College of Pharmacy, Chicago State University, Chicago, IL 60503, USA
| | - Katarzyna Marek
- b College of Pharmacy, Chicago State University, Chicago, IL 60503, USA
| | - Alicia Nesbary
- b College of Pharmacy, Chicago State University, Chicago, IL 60503, USA
| | - Joseph Mathew
- a College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Kasturi Ranganna
- a College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Mohammad A Newaz
- b College of Pharmacy, Chicago State University, Chicago, IL 60503, USA
| |
Collapse
|
16
|
Jin CH, So YK, Han SN, Kim JB. Isoegomaketone Upregulates Heme Oxygenase-1 in RAW264.7 Cells via ROS/p38 MAPK/Nrf2 Pathway. Biomol Ther (Seoul) 2016; 24:510-6. [PMID: 27582555 PMCID: PMC5012876 DOI: 10.4062/biomolther.2015.194] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 06/16/2016] [Accepted: 07/12/2016] [Indexed: 11/10/2022] Open
Abstract
Isoegomaketone (IK) was isolated from Perilla frutescens, which has been widely used as a food in Asian cuisine, and evaluated for its biological activity. We have already confirmed that IK induced the HO-1 expression via Nrf2 activation in RAW264.7 cells. In this study, we investigated the effect of IK on the mechanism of HO-1 expression. IK upregulated HO-1 mRNA and protein expression in a dose dependent manner. The level of HO-1 mRNA peaked at 4 h after 15 μM IK treatment. To investigate the mechanisms of HO-1 expression modulation by IK, we used pharmacological inhibitors for the protein kinase C (PKC) family, PI3K, and p38 MAPK. IK-induced HO-1 mRNA expression was only suppressed by SB203580, a specific inhibitor of p38 MAPK. ROS scavengers (N-acetyl-L-cysteine, NAC, and glutathione, GSH) also blocked the IK-induced ROS production and HO-1 expression. Furthermore, both NAC and SB203580 suppressed the IK-induced Nrf2 activation. In addition, ROS scavengers suppressed other oxidative enzymes such as catalase (CAT), glutathione S-transferase (GST), and NADH quinone oxidoreductase (NQO-1) in IK-treated RAW264.7 cells. Taken together, it can be concluded that IK induced the HO-1 expression through the ROS/p38 MAPK/ Nrf2 pathway in RAW264.7 cells.
Collapse
Affiliation(s)
- Chang Hyun Jin
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Yang Kang So
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Sung Nim Han
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin-Baek Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| |
Collapse
|
17
|
Park HR, Lee SE, Son GW, Yun HD, Park YS. Integrated analysis of changed microRNA expression in crotonaldehyde-exposed human endothelial cells. BIOCHIP JOURNAL 2016. [DOI: 10.1007/s13206-016-0210-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Effects of Eicosapentaenoic Acid on the Cytoprotection Through Nrf2-Mediated Heme Oxygenase-1 in Human Endothelial Cells. J Cardiovasc Pharmacol 2016; 66:108-17. [PMID: 25815672 DOI: 10.1097/fjc.0000000000000251] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Consumption of omega-3 polyunsaturated fatty acid, particularly eicosapentaenoic acid (EPA), is associated with a significant reduction in the risk of developing cardiovascular disease. The aim of this study was to investigate whether heme oxygenase-1 (HO-1) induction contributes to the cytoprotective effects of EPA in endothelial cells threatened with oxidative damage. In this study, we investigated the effect of EPA on the induction of HO-1 by NF-E2-related factor 2 (Nrf2) in human umbilical vein endothelial cells. In cells treated with low concentrations of EPA (10-25 μM), HO-1 expression increased in a time- and concentration-dependent manner. Additionally, EPA treatment increased Nrf2 nuclear translocation and antioxidant response element activity, leading to the upregulation of HO-1 expression. Furthermore, treatment with EPA reduced hydrogen peroxide (H(2)O(2))-induced cell death. The reduction in cell death was reversed by treatment with zinc protoporphyrin, an inhibitor of HO-1, indicating that HO-1 contributed to the protective effect of EPA. These data suggest that EPA protects against H(2)O(2)-induced oxidative stress in endothelial cells by activating Nrf2 and inducting HO-1 expression.
Collapse
|
19
|
Induction of thioredoxin reductase 1 by crotonaldehyde as an adaptive mechanism in human endothelial cells. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-015-0046-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Induction of Thioredoxin Reductase 1 by Korean Red Ginseng Water Extract Regulates Cytoprotective Effects on Human Endothelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:972040. [PMID: 26236385 PMCID: PMC4510250 DOI: 10.1155/2015/972040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 02/07/2023]
Abstract
Korean Red Ginseng is a popular herbal medicine and is widely used in many food products. KRG has biological benefits related to vascular diseases including diabetes, hypertension, atherosclerosis, and other cardiac diseases and KRG has antioxidant and anti-hyperlipidemic actions. KRG decreases the level of oxidative stress and suppresses proinflammatory cytokines and cell adhesion molecules, thus protecting endothelial dysfunction. Mammalian Thioredoxin reductase 1 is an NADPH-dependent selenoprotein, essential for antioxidant defense and DNA synthesis and repair, that regulates the redox system by modulating redox-sensitive transcription factors and thiol-containing proteins. Here, we show that KRG water extract increases the expression of TrxR1 in human umbilical vein endothelial cells via the p38 and PKC-δ signaling pathways. The induction of TrxR1 expression by KRG was confirmed by Western blot analysis and reverse transcription polymerase chain reaction. However, the increase in TrxR1 expression was abolished by specific silencing of the p38 and PKC-δ genes. In addition, we demonstrated that auranofin, a TrxR1 inhibitor, weakens the protective effect of KRG against H2O2-induced cell death as measured by the terminal transferase dUTP nick end labeling assay. These results suggest that KRG may have protective effects in vascular diseases by upregulating TrxR1 in endothelial cells, thereby inhibiting the generation of reactive oxygen species and cell death.
Collapse
|
21
|
Lee SE, Yang H, Son GW, Park HR, Jin YH, Park CS, Park YS. Crotonaldehyde-exposed macrophages induce heme oxygenase-1 expression as an adaptive mechanism. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0015-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Lee SE, Yang H, Son GW, Park HR, Park CS, Jin YH, Park YS. Eriodictyol Protects Endothelial Cells against Oxidative Stress-Induced Cell Death through Modulating ERK/Nrf2/ARE-Dependent Heme Oxygenase-1 Expression. Int J Mol Sci 2015; 16:14526-39. [PMID: 26132561 PMCID: PMC4519856 DOI: 10.3390/ijms160714526] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/12/2015] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
The pathophysiology of cardiovascular diseases is complex and may involve oxidative stress-related pathways. Eriodictyol is a flavonoid present in citrus fruits that demonstrates anti-inflammatory, anti-cancer, neurotrophic, and antioxidant effects in a range of pathophysiological conditions including vascular diseases. Because oxidative stress plays a key role in the pathogenesis of cardiovascular disease, the present study was designed to verify whether eriodictyol has therapeutic potential. Upregulation of heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, in endothelial cells is considered to be helpful in cardiovascular disease. In this study, human umbilical vein endothelial cells (HUVECs) treated with eriodictyol showed the upregulation of HO-1 through extracellular-regulated kinase (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Further, eriodictyol treatment provided protection against hydrogen peroxide-provoked cell death. This protective effect was eliminated by treatment with a specific inhibitor of HO-1 and RNA interference-mediated knockdown of HO-1 expression. These data demonstrate that eriodictyol induces ERK/Nrf2/ARE-mediated HO-1 upregulation in human endothelial cells, which is directly associated with its vascular protection against oxidative stress-related endothelial injury, and propose that targeting the upregulation of HO-1 is a promising approach for therapeutic intervention in cardiovascular disease.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Hana Yang
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Gun Woo Son
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Hye Rim Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Cheung-Seog Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul 130-701, Korea.
| |
Collapse
|
23
|
Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol 2015; 225:R83-99. [PMID: 25918130 DOI: 10.1530/joe-14-0662] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2015] [Indexed: 02/05/2023]
Abstract
Endothelial dysfunction is an important risk factor for cardiovascular disease, and it represents the initial step in the pathogenesis of atherosclerosis. Failure to protect against oxidative stress-induced cellular damage accounts for endothelial dysfunction in the majority of pathophysiological conditions. Numerous antioxidant pathways are involved in cellular redox homeostasis, among which the nuclear factor-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1)-antioxidant response element (ARE) signaling pathway is perhaps the most prominent. Nrf2, a transcription factor with a high sensitivity to oxidative stress, binds to AREs in the nucleus and promotes the transcription of a wide variety of antioxidant genes. Nrf2 is located in the cytoskeleton, adjacent to Keap1. Keap1 acts as an adapter for cullin 3/ring-box 1-mediated ubiquitination and degradation of Nrf2, which decreases the activity of Nrf2 under physiological conditions. Oxidative stress causes Nrf2 to dissociate from Keap1 and to subsequently translocate into the nucleus, which results in its binding to ARE and the transcription of downstream target genes. Experimental evidence has established that Nrf2-driven free radical detoxification pathways are important endogenous homeostatic mechanisms that are associated with vasoprotection in the setting of aging, atherosclerosis, hypertension, ischemia, and cardiovascular diseases. The aim of the present review is to briefly summarize the mechanisms that regulate the Nrf2/Keap1-ARE signaling pathway and the latest advances in understanding how Nrf2 protects against oxidative stress-induced endothelial injuries. Further studies regarding the precise mechanisms by which Nrf2-regulated endothelial protection occurs are necessary for determining whether Nrf2 can serve as a therapeutic target in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Bo Chen
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and ImmunologyMinistry of Health, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No.1, Keyuan Road 4th, Wuhou District, Chengdu, Sichuan Province 610041, People's Republic of ChinaDepartment of Human AnatomySchool of Basic Medical Sciences, Luzhou Medicine College, Luzhou, People's Republic of China
| |
Collapse
|
24
|
Mishra P, Singh SV, Verma AK, Srivastava P, Sultana S, Rath SK. Rosiglitazone induces cardiotoxicity by accelerated apoptosis. Cardiovasc Toxicol 2015; 14:99-119. [PMID: 24249632 DOI: 10.1007/s12012-013-9234-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Present investigation explores the cardiotoxicity of rosiglitazone (ROSI) using rat heart cardiomyocytes and db/db mice. In H9c2 cells, ROSI at 50 and 60 μM induced an increase in the percentage of apoptotic cells and superoxide generation, along with an increase in the expression of various subunits of NADPH oxidase and nitric oxide synthases, confirmed that ROSI-induced apoptosis in H9c2 cells is by ROS generation. The increase in the expression of the antioxidants like superoxide dismutase (SOD), catalase, glutathione reductase (GR), glutathione-S-transferase (GST), and glutathione peroxidase (GPx) further confirmed this notion. Heme oxygenase-1, having an important role in cell protection against oxidative stress, was found to be increased along with induction of nuclear translocation of NF-E2-related factor and increased protein kinase C δ expression. Moreover, in db/db mice, oral administration of ROSI (10 mg/kg) for 10 days induced an increase in serum creatinine kinase-MB, tissue antioxidants like SOD, catalase, GR, GST, GPx expression, cardiac troponin T, and inducible nitric oxide synthase protein expression strongly support the in vitro findings. Furthermore, global gene expression studies also showed the perturbation of oxidative phosphorylation, fat cell differentiation, and electron transport chain following ROSI treatment in vivo. These results suggested that ROSI-induced cardiac damage is due to accelerated apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Pratibha Mishra
- Genotoxicity Laboratory, Division of Toxicology, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, India
| | | | | | | | | | | |
Collapse
|
25
|
Cheah NP, Pennings JL, Vermeulen JP, Godschalk RW, van Schooten FJ, Opperhuizen A. In vitro effects of low-level aldehyde exposures on human umbilical vein endothelial cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00213j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Aldehydes cause gene expression changes for genes associated with cardiovascular disease. Exposure to aldehydes from tobacco smoke needs to be controlled.
Collapse
Affiliation(s)
- Nuan P. Cheah
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Centre for Health Protection
| | - Jeroen L.A. Pennings
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | - Jolanda P. Vermeulen
- Centre for Health Protection
- National Institute for Public Health and the Environment (RIVM)
- Bilthoven
- The Netherlands
| | | | | | - Antoon Opperhuizen
- Department of Toxicology
- Maastricht University
- Maastricht
- The Netherlands
- Netherlands Food and Consumer Product Safety Authority (NVWA)
| |
Collapse
|
26
|
Abiko Y, Mizokawa M, Kumagai Y. Activation of the Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway through covalent modification of the 2-alkenal group of aliphatic electrophiles in Coriandrum sativum L. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:10936-10944. [PMID: 25307732 DOI: 10.1021/jf5030592] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Phytochemicals able to activate the transcription factor NF-E2-related factor 2 (Nrf2) were isolated from an extract of Coriandrum sativum L. (C. sativum) leaves by preparative octadecyl silica column chromatography. Ultraperformance liquid chromatography and liquid chromatography-tandem mass spectrometry analysis of the isolated components after derivatization with 2-diphenylacetyl-1,3-inandione-1-hydrazone and experiments with HepG2 cells revealed that (E)-2-alkenals with different carbon numbers play a role in Nrf2 activation in these cells. Such Nrf2 activation appears to be attributable to S-alkylation of Kelch-like ECH-associated protein 1 (Keap1), the negative regulator for Nrf2, as determined by a biotin-PEAC5-maleimide assay. Interestingly, (E)-2-butenal caused Keap1 modification and Nrf2 activation, whereas butanal did not. These results suggest that (E)-2-alkenals with an α,β-unsaturated aldehyde moiety, which is a common substituent in phytochemicals isolated from C. sativum leaves, activate the Keap1/Nrf2 pathway associated with cellular protection.
Collapse
Affiliation(s)
- Yumi Abiko
- Faculty of Medicine and ‡Masters Program in Environmental Sciences, Graduate School of Environmental Sciences, University of Tsukuba , 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | |
Collapse
|
27
|
Son GW, Kim GD, Yang H, Park HR, Park YS. Alteration of gene expression profile by melatonin in endothelial cells. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8204-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Microarray analysis of gene expression in 3-methylcholanthrene-treated human endothelial cells. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-014-0003-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Calay D, Mason JC. The multifunctional role and therapeutic potential of HO-1 in the vascular endothelium. Antioxid Redox Signal 2014; 20:1789-809. [PMID: 24131232 DOI: 10.1089/ars.2013.5659] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Heme oxygenases (HO-1 and HO-2) catalyze the degradation of the pro-oxidant heme into carbon monoxide (CO), iron, and biliverdin, which is subsequently converted to bilirubin. In the vasculature, particular interest has focused on antioxidant and anti-inflammatory properties of the inducible HO-1 isoform in the vascular endothelium. This review will present evidence that illustrates the potential therapeutic significance of HO-1 and its products, with special emphasis placed on their beneficial effects on the endothelium in vascular diseases. RECENT ADVANCES The understanding of the molecular basis for the regulation and functions of HO-1 has led to the identification of a variety of drugs that increase HO-1 activity in the vascular endothelium. Moreover, therapeutic delivery of HO-1 products CO, biliverdin, and bilirubin has been shown to have favorable effects, notably on endothelial cells and in animal models of vascular disease. CRITICAL ISSUES To date, mechanistic data identifying the downstream target genes utilized by HO-1 and its products to exert their actions remain relatively sparse. Likewise, studies in man to investigate the efficacy of therapeutics known to induce HO-1 or the consequences of the tissue-specific delivery of CO or biliverdin/bilirubin are rarely performed. FUTURE DIRECTIONS Based on the promising in vivo data from animal models, clinical trials to explore the safety and efficacy of the therapeutic induction of HO-1 and the delivery of its products should now be pursued further, targeting, for example, patients with severe atherosclerotic disease, ischemic limbs, restenosis injury, or at high risk of organ rejection.
Collapse
Affiliation(s)
- Damien Calay
- Vascular Sciences Unit, National Heart and Lung Institute , Imperial Centre for Translational & Experimental Medicine, Imperial College London Hammersmith Hospital, London, United Kingdom
| | | |
Collapse
|
30
|
Yang BC, Yang ZH, Pan XJ, Wang LM, Liu XY, Zhu MX, Xie JP. Transcript profiling analysis of in vitro cultured THP-1 cells after exposure to crotonaldehyde. J Toxicol Sci 2014; 39:487-97. [DOI: 10.2131/jts.39.487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bi-cheng Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Zhi-hua Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
| | - Xiu-jie Pan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
| | - Li-meng Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences
| | - Xing-yu Liu
- Beijing Work Station, Technology Center of Shanghai Tobacco Corporation
| | - Mao-xiang Zhu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine
| | | |
Collapse
|
31
|
Lee SE, Park YS. Korean Red Ginseng water extract inhibits COX-2 expression by suppressing p38 in acrolein-treated human endothelial cells. J Ginseng Res 2013; 38:34-9. [PMID: 24558308 PMCID: PMC3915333 DOI: 10.1016/j.jgr.2013.11.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022] Open
Abstract
Cigarette smoke is considered a major risk factor for vascular diseases. There are many toxic compounds in cigarette smoke, including acrolein and other α,β-unsaturated aldehydes, which are regarded as mediators of inflammation and vascular dysfunction. Furthermore, recent studies have revealed that acrolein, an α,β-unsaturated aldehyde in cigarette smoke, induces inflammatory mediator expression, which is known to be related to vascular diseases. In this study, we investigated whether Korean Red Ginseng (KRG) water extract suppressed acrolein-induced cyclooxygenase (COX)-2 expression in human umbilical vein endothelial cells (HUVECs). Acrolein-induced COX-2 expression was accompanied by increased levels of phosphorylated p38 in HUVECs and KRG inhibited COX-2 expression in HUVECs. These results suggest that KRG suppresses acrolein-induced COX-2 expression via inhibition of the p38 mitogen-activated protein kinase signaling pathway. In addition, KRG exhibited an inhibitory effect on acrolein-induced apoptosis, as demonstrated by annexin V-propidium iodide staining and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay. Consistent with these results, KRG may exert a vasculoprotective effect through inhibition of COX-2 expression in acrolein-stimulated human endothelial cells.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
32
|
Ryu DS, Yang H, Lee SE, Park CS, Jin YH, Park YS. Crotonaldehyde induces heat shock protein 72 expression that mediates anti-apoptotic effects in human endothelial cells. Toxicol Lett 2013; 223:116-23. [DOI: 10.1016/j.toxlet.2013.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
33
|
Evaluation of immunoreactivity of in vitro and in vivo models against bacterial synthesized cellulose to be used as a prosthetic biomaterial. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7302-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Hemeoxygenase-1 mediates an adaptive response to spermidine-induced cell death in human endothelial cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:238734. [PMID: 23983896 PMCID: PMC3747394 DOI: 10.1155/2013/238734] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 12/30/2022]
Abstract
Spermidine (SPD) is a ubiquitous polycation that is commonly distributed in living organisms. Intracellular levels of SPD are tightly regulated, and SPD controls cell proliferation and death. However, SPD undergoes oxidation in the presence of serum, producing aldehydes, hydrogen peroxide, and ammonia, which exert cytotoxic effect on cells. Hemeoxygenase-1 (HO-1) is thought to have a protective effect against oxidative stress. Upregulation of HO-1 in endothelial cells is considered to be beneficial in the cardiovascular disease. In the present study, we demonstrate that the ubiquitous polyamine, SPD, induces HO-1 in human umbilical vein endothelial cells (HUVECs). SPD-induced HO-1 expression was examined by Western blot and reverse transcription-polymerase chain reaction (RT-PCR). Involvement of reactive oxygen species, serum amine oxidase, PI3K/Akt signaling pathway, and transcription factor Nrf2 in the induction of HO-1 by SPD was also investigated. Furthermore, small interfering RNA knockdown of Nrf2 or HO-1 and treatment with the specific HO-1 inhibitor ZnPP exhibited a noteworthy increase of death of SPD-stimulated HUVECs. In conclusion, these results suggest that SPD induces PI3K/Akt-Nrf2-mediated HO-1 expression in human endothelial cells, which may have a role in cytoprotection of the cells against oxidative stress-induced death.
Collapse
|
35
|
Lee SE, Park YS. The role of antioxidant enzymes in adaptive responses to environmental toxicants in vascular disease. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0013-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Gohar EY, El-gowilly SM, El-Gowelli HM, El-Mas MM. Nicotine paradoxically affects the facilitatory effect of ovarian hormones on the adenosine receptor-mediated renal vasodilation. Eur J Pharmacol 2013; 710:1-9. [DOI: 10.1016/j.ejphar.2013.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 04/17/2013] [Accepted: 04/17/2013] [Indexed: 01/08/2023]
|
37
|
Role of lipid peroxidation-derived α, β-unsaturated aldehydes in vascular dysfunction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:629028. [PMID: 23819013 PMCID: PMC3683506 DOI: 10.1155/2013/629028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 12/30/2022]
Abstract
Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction.
Collapse
|
38
|
Yang BC, Yang ZH, Pan XJ, Xiao FJ, Liu XY, Zhu MX, Xie JP. Crotonaldehyde-exposed macrophages induce IL-8 release from airway epithelial cells through NF-κB and AP-1 pathways. Toxicol Lett 2013; 219:26-34. [PMID: 23458894 DOI: 10.1016/j.toxlet.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/24/2022]
|
39
|
Yang H, Lee SE, Lee S, Cho JJ, Ahn HJ, Park CS, Park YS. Integrated analysis of miRNA and mRNA reveals that acrolein modulates GPI anchor biosynthesis in human primary endothelial cells. BIOCHIP JOURNAL 2013. [DOI: 10.1007/s13206-013-7103-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
40
|
Crotonaldehyde induces apoptosis and immunosuppression in alveolar macrophages. Toxicol In Vitro 2013; 27:128-37. [DOI: 10.1016/j.tiv.2012.09.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/08/2012] [Accepted: 09/11/2012] [Indexed: 11/23/2022]
|
41
|
Yang BC, Pan XJ, Yang ZH, Xiao FJ, Liu XY, Zhu MX, Xie JP. Crotonaldehyde induces apoptosis in alveolar macrophages through intracellular calcium, mitochondria and p53 signaling pathways. J Toxicol Sci 2013; 38:225-35. [DOI: 10.2131/jts.38.225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Bi-cheng Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences,China
- Zhengzhou Tobacco Research Institute of CNTC, China
| | - Xiu-jie Pan
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | - Zhi-hua Yang
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | - Feng-jun Xiao
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | - Xing-yu Liu
- Beijing Work Station, Technology Center of Shanghai Tobacco Corporation, China
| | - Mao-xiang Zhu
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, China
| | | |
Collapse
|
42
|
Chen H, Li H, Cao F, Zhen L, Bai J, Yuan S, Mei Y. 1,2,3,4,6-penta-O-galloyl-β-D-glucose protects PC12 Cells from MPP+-mediated cell death by inducing heme oxygenase-1 in an ERK- and Akt-dependent manner. ACTA ACUST UNITED AC 2012; 32:737-745. [DOI: 10.1007/s11596-012-1027-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Indexed: 02/06/2023]
|
43
|
Jones RM, Mercante JW, Neish AS. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem 2012; 19:1519-29. [PMID: 22360484 DOI: 10.2174/092986712799828283] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/22/2011] [Accepted: 12/26/2011] [Indexed: 12/18/2022]
Abstract
The resident prokaryotic microbiota of the mammalian intestine influences diverse homeostatic functions, including regulation of cellular growth, maintenance of barrier function, and modulation of immune responses. However, it is unknown how commensal prokaryotic organisms mechanistically influence eukaryotic signaling networks. Recent data has demonstrated that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced generation of ROS via stimulation of formyl peptide receptors is a cardinal feature of the cellular response of phagocytes to pathogenic or commensal bacteria, evidence is accumulating that ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals. Additionally, ROS have been shown to serve as critical second messengers in multiple signal transduction pathways stimulated by proinflammatory cytokines and growth factors. This physiologically-generated ROS is known to participate in cellular signaling via the rapid and transient oxidative inactivation of a defined class of sensor proteins bearing oxidant-sensitive thiol groups. These proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, cytoskeletal dynamics, as well as components involved in control of ubiquitination-mediated NF-κB activation. Consistently, microbial-elicited ROS has been shown to mediate increased cellular proliferation and motility and to modulate innate immune signaling. These results demonstrate how enteric microbiota influence regulatory networks of the mammalian intestinal epithelia. We hypothesize that many of the known effects of the normal microbiota on intestinal physiology, and potential beneficial effects of candidate probiotic bacteria, may be at least partially mediated by this ROS-dependent mechanism.
Collapse
Affiliation(s)
- R M Jones
- Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
44
|
Lee SE, Yang H, Jeong SI, Jin YH, Park CS, Park YS. Induction of heme oxygenase-1 inhibits cell death in crotonaldehyde-stimulated HepG2 cells via the PKC-δ-p38-Nrf2 pathway. PLoS One 2012; 7:e41676. [PMID: 22848562 PMCID: PMC3405012 DOI: 10.1371/journal.pone.0041676] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 06/24/2012] [Indexed: 12/22/2022] Open
Abstract
Background Crotonaldehyde, an alpha, beta-unsaturated aldehyde present in cigarette smoke, is an environmental pollutant and a product of lipid peroxidation. It also produces adverse effects to humans and is considered as a risk factor for various diseases. Heme oxygenase-1 (HO-1) plays important roles in protecting cells against oxidative stress as a prime cellular defense mechanism. However, HO-1 may be associated with cell proliferation and resistance to apoptosis in cancer cells. The aim of this study was to examine the effects of HO-1 induction on cell survival in crotonaldehyde-stimulated human hepatocellular carcinoma (HepG2) cells. Methods To investigate the signaling pathway involved in crotonaldehyde-induced HO-1 expression, we compared levels of inhibition efficiency of specific inhibitors and specific small interfering RNAs (siRNAs) of several kinases. The cell-cycle and cell death was measured by FACS and terminal dUTP nick-end labeling (TUNEL) staining. Results Treatment with crotonaldehyde caused a significant increase in nuclear translocation of NF-E2 related factor (Nrf2). Treatment with inhibitors of the protein kinase C-δ (PKC-δ) and p38 pathways resulted in obvious blockage of crotonaldehyde-induced HO-1 expression. Furthermore, treatment with HO-1 siRNA and the specific HO-1 inhibitor zinc-protoporphyrin produced an increase in the G0/G1 phase of the cell cycle in crotonaldehyde-stimulated HepG2 cells. Conclusions Taken together, the results support an anti-apoptotic role for HO-1 in crotonaldehyde-stimulated human hepatocellular carcinoma cells and provide a mechanism by which induction of HO-1 expression via PKC-δ–p38 MAPK–Nrf2 pathway may promote tumor resistance to oxidative stress.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hana Yang
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seong Il Jeong
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Young-Ho Jin
- Department of Physiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Cheung-Seog Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Seek Park
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
45
|
Müller T, Hengstermann A. Nrf2: friend and foe in preventing cigarette smoking-dependent lung disease. Chem Res Toxicol 2012; 25:1805-24. [PMID: 22686525 DOI: 10.1021/tx300145n] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chronic exposure to cigarette smoke (CS) generally confronts cellular defense systems with one of the strongest known environmental challenges. In particular, the continuous exposure of tissues of the respiratory tract to abundant concentrations of radicals; volatile compounds of the gas phase, mainly reactive oxygen and nitrogen species; and CS condensate deposits trigger a pleiotropic adaptive response, generally aimed at restoring tissue homeostasis. As documented by numerous studies published over the past decade, a hallmark of this defense system is the activation of the transcription factor NF-E2-related factor 2 (Nrf2), which, consequent to its established role as master regulator of the cellular antioxidant response, has been shown to orchestrate the first line of defense against cell- and tissue-damaging components present in CS. The key to CS-dependent Nrf2 activation is assumed to be based on the long-known phenomenon of a general strong sulfhydryl (-SH) reactivity inherent to CS. This chemical trait is virtually predestined to be sensitized by the major route leading to Nrf2 activation, characterized by its dependence on the interaction of electrophiles with specific cysteine residues inherited by Nrf2's negative cytosolic regulator Keap1 (Kelch-like ECH-associated protein 1). In addition, other pathways involving CS-activated protein kinases implicated in the upstream regulation of Nrf2, such as protein kinase C, represent an alternative/complementary mechanism of CS-induced Nrf2 activation. Because of the outstanding function of the Nrf2-Keap1 axis in defending cells and tissues against oxidant and chemical stress, either directly or indirectly via cross-talking with other defense pathways, changes in the Nrf2 or Keap1 genotype have long been associated with disease development. In terms of the two major smoking-related diseases of the lung, that is, emphysema and lung cancer, a fully functional Nrf2 genotype seems to be necessary, although not sufficient by itself, to protect the smoker from acquiring emphysema. Contrasting with this protective role, however, Nrf2 function may be potentially fatal in smoking-related lung tumorigenesis: as concluded from recent clinical investigations, lung tumor tissues harbor increased mutation or, alternatively, aberrant expression rates in either the KEAP1 or the NRF2 gene, generally resulting in constitutive Nrf2 activation, suggesting that "abuse" of Nrf2 function is an advantageous strategy of the (developing) tumor to protect itself against oxidative stress in general. On the basis of the fundamental significance of the Nrf2 pathway in smoking-dependent disease development, several attempts have been described for dietary and pharmacological intervention, the majority of which are intended to activate Nrf2 aiming at emphysema prevention. The intention of this review is to compile and discuss the various aspects of CS-Nrf2/Keap1 interaction in terms of mechanism, disease development, and chemoprevention.
Collapse
Affiliation(s)
- Thomas Müller
- Molecular Toxicology Consultant, Stockbergergasse 15, 51515 Kürten, Germany.
| | | |
Collapse
|
46
|
Lee SE, Jeong SI, Yang H, Jeong SH, Jang YP, Park CS, Kim J, Park YS. Extract of Salvia miltiorrhiza (Danshen) induces Nrf2-mediated heme oxygenase-1 expression as a cytoprotective action in RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:541-548. [PMID: 22155388 DOI: 10.1016/j.jep.2011.11.046] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/15/2011] [Accepted: 11/27/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danshen (Salvia miltiorrhiza) is widely used in traditional herbal medicines for relief of a variety of symptoms related to complications arising from vascular diseases such as hypertension, diabetes, and atherosclerosis. Induction of heme oxygenase-1 (HO-1) expression protects against oxidative stress-induced cell damage, which plays an important role in cytoprotection in a variety of pathological models. MATERIALS AND METHODS In the present study, we investigated the effect of Danshen on the up-regulation of HO-1, an inducible and cytoprotective enzyme in RAW 264.7 macrophages. Molecular mechanisms underlying the effects, especially protective effects, was elucidated by analyzing the activation of transcription factors and their upstream signalling, and by evaluating the inhibitory effect of HO-1 on ROS production. RESULTS Danshen induced HO-1 mRNA expression and protein production, and nuclear translocation of NF-E2-related factor 2 in RAW 264.7 macrophages. Pharmacological inhibitors of PI3K/Akt and MEK1 attenuated HO-1 induction in Danshen-stimulated RAW 264.7 macrophages. Furthermore, Danshen pretreatment reduced intracellular production of reactive oxygen species after stimulation with hydrogen peroxide; this effect was reversed by the HO-1 inhibitor ZnPP. CONCLUSION Danshen induced HO-1 expression through PI3K/Akt-MEK1-Nrf2 pathway and reduced intracellular production of reactive oxygen species via induction of HO-1 expression. The results support a role of HO-1 in the cytoprotective effect of Danshen.
Collapse
Affiliation(s)
- Seung Eun Lee
- Department of Microbiology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lee SE, Jeong SI, Yang H, Park CS, Jin YH, Park YS. Fisetin induces Nrf2-mediated HO-1 expression through PKC-δ and p38 in human umbilical vein endothelial cells. J Cell Biochem 2011; 112:2352-60. [DOI: 10.1002/jcb.23158] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
48
|
Hormetics: dietary triggers of an adaptive stress response. Pharm Res 2011; 28:2680-94. [PMID: 21818712 DOI: 10.1007/s11095-011-0551-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/27/2011] [Indexed: 12/31/2022]
Abstract
A series of dietary ingredients and metabolites are able to induce an adaptive stress response either by generation of reactive oxygen species (ROS) and/or via activation of the Nrf2/Keap1 stress response network. Most of the molecules belong to activated Michael acceptors, electrophiles capable to S-alkylate redox sensitive cysteine thiols. This review summarizes recent advances in the (re)search of these compounds and classifies them into distinct groups. More than 60 molecules are described that induce the Nrf2 network, most of them found in our daily diet. Although known as typical antioxidants, a closer look reveals that these molecules induce an initial mitochondrial or cytosolic ROS formation and thereby trigger an adaptive stress response and hormesis, respectively. This, however, leads to higher levels of intracellular glutathione and increased expression levels of antioxidant enzymes such as glutathione peroxidase, thioredoxin reductase, and superoxide dismutase. According to this principle, the author suggests the term hormetics to describe these indirect antioxidants.
Collapse
|