1
|
Sram RJ, Solansky I, Pastorkova A, Veleminsky M, Veleminsky M, Honkova K, Barosova H, Schmuczerova J, Urbancova K, Dvorakova D, Pulkrabova J. Prenatal exposure to polycyclic aromatic hydrocarbons and growth parameters. J Appl Biomed 2024; 22:12-22. [PMID: 38505966 DOI: 10.32725/jab.2024.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/06/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES It has long been known that airborne polycyclic aromatic hydrocarbons (PAHs) can negatively affect pregnancy and birth outcomes, such as birth weight, fetal development, and placental growth factors. However, similar studies yield divergent results. Our goal was to estimate the amount of monohydroxylated PAH (OH-PAH) metabolites in the urine of pregnant women/mothers and their newborns in relation to birth outcomes, such as placenta weight, Apgar 5', and the growth parameters of children up to the age of two. METHODS Two cohorts of children born in 2013 and 2014 during the summer and winter seasons in the Czech Republic in the cities Karviná (N = 144) and České Budějovice (N = 198), which differ significantly in the level of air pollution, were studied. PAH exposure was assessed by the concentration of benzo[a]pyrene (B[a]P) in the air and the concentration of 11 OH-PAH metabolites in the urine of newborns and mothers. Growth parameters and birth outcomes were obtained from medical questionnaires after birth and from pediatric questionnaires during the following 24 months of the child's life. RESULTS Concentrations of B[a]P were significantly higher in Karviná (p < 0.001). OH-PAH metabolites were significantly higher in the mothers' as well as in the newborns' urine in Karviná and during the winter season. Neonatal length was shorter in newborns in Karviná (p < 0.001), but this difference evened out during the next 3 to 24 months. Compared to České Budějovice, newborns in Karviná showed significantly lower weight gain between birth and three months after delivery. The OH-PAH metabolites in mothers' or newborns' urine did not affect birth weight. The presence of seven OH-PAH (top 25% of values of concentrations higher than the median) metabolites in the newborns' urine is associated with decreased length of newborn. Nine OH-PAH metabolites decreased placenta weight, which was the most significant, while seven OH-PAH metabolites decreased Apgar 5'. CONCLUSION We have shown a possible connection between higher concentration of OH-PAH metabolites in newborns' urine and decreased length, head circumference, placenta weight, and Apgar 5', but not birth weight.
Collapse
Affiliation(s)
- Radim J Sram
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
- University of South Bohemia in Ceske Budejovice, Faculty of Health and Social Sciences, Ceske Budejovice, Czech Republic
- deceased 2022-10-29
| | - Ivo Solansky
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Anna Pastorkova
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Milos Veleminsky
- Hospital Ceske Budejovice, Ceske Budejovice, Czech Republic
- University of South Bohemia in Ceske Budejovice, Faculty of Health and Social Sciences, Ceske Budejovice, Czech Republic
| | - Milos Veleminsky
- University of South Bohemia in Ceske Budejovice, Faculty of Health and Social Sciences, Ceske Budejovice, Czech Republic
| | - Katerina Honkova
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Hana Barosova
- Institute of Experimental Medicine of the CAS, Prague, Czech Republic
| | - Jana Schmuczerova
- L. Pasteur University Hospital, Department of Medical Genetics, Kosice, Slovak Republic
| | - Katerina Urbancova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Darina Dvorakova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| | - Jana Pulkrabova
- University of Chemistry and Technology, Faculty of Food and Biochemical Technology, Prague, Czech Republic
| |
Collapse
|
2
|
Park SH, Kim G, Yang GE, Yun HJ, Shin TH, Kim ST, Lee K, Kim HS, Kim SH, Leem SH, Cho WS, Lee JH. Disruption of phosphofructokinase activity and aerobic glycolysis in human bronchial epithelial cells by atmospheric ultrafine particulate matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132966. [PMID: 37976851 DOI: 10.1016/j.jhazmat.2023.132966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Exposure to ambient ultrafine particulate matter (UPM) causes respiratory disorders; however, the underlying molecular mechanisms remain unclear. In this study, we synthesized simulated UPM (sUPM) with controlled physicochemical properties using the spark-discharge method. Subsequently, we investigated the biological effects of sUPM using BEAS-2B human bronchial epithelial cells (HBECs) and a mouse intratracheal instillation model. High throughput RNA-sequencing and bioinformatics analyses revealed that dysregulation of the glycolytic metabolism is involved in the inhibited proliferation and survival of HBECs by sUPM treatment. Furthermore, signaling pathway and enzymatic analyses showed that the treatment of BEAS-2B cells with sUPM induces the inactivation of extracellular signal-regulated kinase (ERK) and protein kinase B (PKB, also known as AKT), resulting in the downregulation of phosphofructokinase 2 (PFK2) S483 phosphorylation, PFK enzyme activity, and aerobic glycolysis in HBECs in an oxidative stress-independent manner. Additionally, intratracheal instillation of sUPM reduced the phosphorylation of ERK, AKT, and PFK2, decreased proliferation, and increased the apoptosis of bronchial epithelial cells in mice. The findings of this study imply that UPM induces pulmonary toxicity by disrupting aerobic glycolytic metabolism in lung epithelial cells, which can provide novel insights into the toxicity mechanisms of UPM and strategies to prevent their toxic effects.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gyuri Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Gi-Eun Yang
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Tae Hwan Shin
- Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea
| | - Kyuhong Lee
- Inhalation Toxicology Center for Airborne Risk Factor, Korea Institute of Toxicology, 30 Baehak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Hyuk Soon Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea
| | - Sun-Hee Leem
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; Department of Biomedical Sciences, Dong-A University, Busan 49315, Republic of Korea.
| |
Collapse
|
3
|
Marvanová S, Pěnčíková K, Pálková L, Ciganek M, Petráš J, Lněničková A, Vondráček J, Machala M. Benzo[b]naphtho[d]thiophenes and naphthylbenzo[b]thiophenes: Their aryl hydrocarbon receptor-mediated activities and environmental presence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:162924. [PMID: 36933742 DOI: 10.1016/j.scitotenv.2023.162924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic sulfur heterocyclic compounds (PASHs) belong among ubiquitous environmental pollutants; however, their toxic effects remain poorly understood. Here, we studied the aryl hydrocarbon receptor (AhR)-mediated activity of dibenzothiophene, benzo[b]naphtho[d]thiophenes, and naphthylbenzo[b]thiophenes, as well as their presence in two types of environmental matrices: river sediments collected from both rural and urban areas, and in airborne particulate matter (PM2.5) sampled in cities with different levels and sources of pollution. Benzo[b]naphtho[2,1-d]thiophene, benzo[b]naphtho[2,3-d]thiophene, 2,2-naphthylbenzo[b]thiophene, and 2,1-naphthylbenzo[b]thiophene were newly identified as efficient AhR agonists in both rat and human AhR-based reporter gene assays, with 2,2-naphthylbenzo[b]thiophene being the most potent compound identified in both species. Benzo[b]naphtho[1,2-d]thiophene and 3,2-naphthylbenzo[b]thiophene elicited AhR-mediated activity only in the rat liver cell model, while dibenzothiophene and 3,1-naphthylbenzo[b]thiophene were inactive in either cell type. Independently of their ability to activate the AhR, benzo[b]naphtho[1,2-d]thiophene, 2,1-naphthylbenzo[b]thiophene, 3,1-naphthylbenzo[b]thiophene, and 3,2-naphthylbenzo[b]thiophene inhibited gap junctional intercellular communication in a model of rat liver epithelial cells. Benzo[b]naphtho[d]thiophenes were dominant PASHs present in both PM2.5 and sediment samples, with benzo[b]naphtho[2,1-d]thiophene being the most abundant one, followed by benzo[b]naphtho[2,3-d]thiophene. The levels of naphthylbenzo[b]thiophenes were mostly low or below detection limit. Benzo[b]naphtho[2,1-d]thiophene and benzo[b]naphtho[2,3-d]thiophene were identified as the most significant contributors to the AhR-mediated activity in the environmental samples evaluated in this study. Both induced nuclear translocation of the AhR, and they induced CYP1A1 expression in a time-dependent manner, suggesting that their AhR-mediated activity may depend on the rate of their intracellular metabolism. In conclusion, some PASHs could be significant contributors to the overall AhR-mediated toxicity of complex environmental samples suggesting that more attention should be paid to the potential health impacts of this group of environmental pollutants.
Collapse
Affiliation(s)
- Soňa Marvanová
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Kateřina Pěnčíková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Lenka Pálková
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Miroslav Ciganek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Jiří Petráš
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Anna Lněničková
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the CAS, Královopolská 135, 61265 Brno, Czech Republic.
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
4
|
Xue Y, Wang L, Zhang Y, Zhao Y, Liu Y. Air pollution: A culprit of lung cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128937. [PMID: 35452993 DOI: 10.1016/j.jhazmat.2022.128937] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a global health problem, especially in the context of rapid economic development and the expansion of urbanization. Herein, we discuss the harmful effects of outdoor and indoor pollution on the lungs. Ambient particulate matters (PMs) from industrial and vehicle exhausts is associated with lung cancer. Workers exposed to asbestos, polycyclic aromatic hydrocarbons (PAHs), and toxic metals are also likely to develop lung cancer. Indoors, cooking fumes, second-hand smoke, and radioactive products from house decoration materials play roles in the development of lung cancer. Bacteria and viruses can also be detrimental to health and are important risk factors in lung inflammation and cancer. Specific effects of lung cancer caused by air pollution are discussed in detail, including inflammation, DNA damage, and epigenetic regulation. In addition, advanced materials for personal protection, as well as the current government policies to prevent air pollution, are summarized. This review provides a basis for future research on the relationship between lung cancer and air pollution.
Collapse
Affiliation(s)
- Yueguang Xue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Liuxiang Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| | - Ying Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| |
Collapse
|
5
|
Ambroz A, Rossner P, Rossnerova A, Honkova K, Milcova A, Pastorkova A, Klema J, Pulkrabova J, Parizek O, Vondraskova V, Zelenka J, Vrzáčková N, Schmuczerova J, Topinka J, Sram RJ. Oxidative Stress and Antioxidant Response in Populations of the Czech Republic Exposed to Various Levels of Environmental Pollutants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19063609. [PMID: 35329296 PMCID: PMC8955578 DOI: 10.3390/ijerph19063609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/25/2022]
Abstract
We aimed to identify the variables that modify levels of oxidatively damaged DNA and lipid peroxidation in subjects living in diverse localities of the Czech Republic (a rural area, a metropolitan locality, and an industrial region). The sampling of a total of 126 policemen was conducted twice in two sampling seasons. Personal characteristics, concentrations of particulate matter of aerodynamic diameter <2.5 µm and benzo[a]pyrene in the ambient air, activities of antioxidant mechanisms (superoxide dismutase, catalase, glutathione peroxidase, and antioxidant capacity), levels of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), concentrations of persistent organic pollutants in blood plasma, and urinary levels of polycyclic aromatic hydrocarbon metabolites were investigated as parameters potentially affecting the markers of DNA oxidation (8-oxo-7,8-dihydro-2′-deoxyguanosine) and lipid peroxidation (15-F2t-isoprostane). The levels of oxidative stress markers mostly differed between the localities in the individual sampling seasons. Multivariate linear regression analysis revealed IL-6, a pro-inflammatory cytokine, as a factor with the most pronounced effects on oxidative stress parameters. The role of other variables, including environmental pollutants, was minor. In conclusion, our study showed that oxidative damage to macromolecules was affected by processes related to inflammation; however, we did not identify a specific environmental factor responsible for the pro-inflammatory response in the organism.
Collapse
Affiliation(s)
- Antonin Ambroz
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
- Correspondence: (A.A.); (P.R.J.); Tel.: +420-720-045-780 (P.R.J.)
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
- Correspondence: (A.A.); (P.R.J.); Tel.: +420-720-045-780 (P.R.J.)
| | - Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (K.H.); (A.M.); (J.T.); (R.J.S.)
| | - Katerina Honkova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (K.H.); (A.M.); (J.T.); (R.J.S.)
| | - Alena Milcova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (K.H.); (A.M.); (J.T.); (R.J.S.)
| | - Anna Pastorkova
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic;
| | - Jiri Klema
- Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo Namesti 13, 121 35 Prague, Czech Republic;
| | - Jana Pulkrabova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (J.P.); (O.P.); (V.V.)
| | - Ondrej Parizek
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (J.P.); (O.P.); (V.V.)
| | - Veronika Vondraskova
- Department of Food Analysis and Nutrition, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (J.P.); (O.P.); (V.V.)
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (J.Z.); (N.V.)
| | - Nikola Vrzáčková
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Technicka 3, 166 28 Prague, Czech Republic; (J.Z.); (N.V.)
| | - Jana Schmuczerova
- Department of Medical Genetics, L. Pasteur University Hospital, Trieda SNP 1, 040 11 Kosice, Slovakia;
| | - Jan Topinka
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (K.H.); (A.M.); (J.T.); (R.J.S.)
| | - Radim J. Sram
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine CAS, Videnska 1083, 142 20 Prague, Czech Republic; (A.R.); (K.H.); (A.M.); (J.T.); (R.J.S.)
| |
Collapse
|
6
|
An J, Tang W, Wang L, Xue W, Yao W, Zhong Y, Qiu X, Li Y, Chen Y, Wang H, Shang Y. Transcriptomics changes and the candidate pathway in human macrophages induced by different PM 2.5 extracts. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117890. [PMID: 34358868 DOI: 10.1016/j.envpol.2021.117890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Ambient fine particulate matter (PM2.5) is a worldwide environmental problem and is posing a serious threat to human health. Until now, the molecular toxicological mechanisms and the crucial toxic components of PM2.5 remain to be clarified. This study investigated the whole transcriptomic changes in THP-1 derived macrophages treated with different types of PM2.5 extracts using RNA sequencing technique. Bioinformatics analyses covering biological functions, signal pathways, protein networks and node genes were performed to explore the candidate pathways and critical genes, and to find the potential molecular mechanisms. Results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and protein-protein interaction (PPI) networks revealed that water extracts (WEs) of PM2.5 obviously influenced genes and molecular pathways responded to oxidative stress and inflammation. Dichloromethane extracts (DEs) specifically affected genes and signal cascades related to cell cycle progress process. Furthermore, compared with WEs collected in heating season, non-heating season WEs induced much higher expression levels of Ca-associated genes (including phosphodiesterase 4B and cyclooxygenase-2), which may consequently result in more severe inflammatory responses. While, for DEs exposure, the heating season (DH) group showed extensive induction of deferentially expressed genes (DEGs) related to cell cycle pathway, which may be caused by the higher polycyclic aromatic hydrocarbons (PAHs) contents in DH samples than those from non-heating season. In conclusion, the oxidative stress and inflammation response are closely correlated with cellular responses in THP-1 derived macrophages induced by water soluble components of PM2.5, and cell cycle dysregulation may play an important role in biological effects induced by organic components. The different transcriptomic changes induced by seasonal PM2.5 extracts may partially depend on the contents of PAHs and metal ions, respectively.
Collapse
Affiliation(s)
- Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Waner Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Lu Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Wanlei Xue
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Weiwei Yao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yufang Zhong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Yi Li
- State Key Laboratory of Severe Weather & Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
| | - Yingjun Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Hongli Wang
- State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; State Environmental Protection Key Laboratory of Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environment Sciences, Shanghai, 200233, China.
| |
Collapse
|
7
|
Quezada-Maldonado EM, Sánchez-Pérez Y, Chirino YI, García-Cuellar CM. Airborne particulate matter induces oxidative damage, DNA adduct formation and alterations in DNA repair pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117313. [PMID: 34022687 DOI: 10.1016/j.envpol.2021.117313] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Air pollution, which includes particulate matter (PM), is classified in group 1 as a carcinogen to humans by the International Agency for Research in Cancer. Specifically, PM exposure has been associated with lung cancer in patients living in highly polluted cities. The precise mechanism by which PM is linked to cancer has not been completely described, and the genotoxicity induced by PM exposure plays a relevant role in cell damage. In this review, we aimed to analyze the types of DNA damage and alterations in DNA repair pathways induced by PM exposure, from both epidemiological and toxicological studies, to comprehend the contribution of PM exposure to carcinogenesis. Scientific evidence supports that PM exposure mainly causes oxidative stress by reactive oxygen species (ROS) and the formation of DNA adducts, specifically by polycyclic aromatic hydrocarbons (PAH). PM exposure also induces double-strand breaks (DSBs) and deregulates the expression of some proteins in DNA repair pathways, precisely, base and nucleotide excision repairs and homologous repair. Furthermore, specific polymorphisms of DNA repair genes could lead to an adverse response in subjects exposed to PM. Nevertheless, information about the effects of PM on DNA repair pathways is still limited, and it has not been possible to conclude which pathways are the most affected by exposure to PM or if DNA damage is repaired properly. Therefore, deepening the study of genotoxic damage and alterations of DNA repair pathways is needed for a more precise understanding of the carcinogenic mechanism of PM.
Collapse
Affiliation(s)
- Ericka Marel Quezada-Maldonado
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Unidad de Posgrado Edificio B, Primer Piso, Ciudad Universitaria, Coyoacán, CP 04510, Ciudad de México, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico
| | - Yolanda I Chirino
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Tlalnepantla de Baz, CP 54090, Estado de México, Mexico
| | - Claudia M García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, San Fernando No. 22, Tlalpan, CP 14080, CDMX, Mexico.
| |
Collapse
|
8
|
Ke S, Liu Q, Zhang X, Yao Y, Yang X, Sui G. Cytotoxicity analysis of biomass combustion particles in human pulmonary alveolar epithelial cells on an air-liquid interface/dynamic culture platform. Part Fibre Toxicol 2021; 18:31. [PMID: 34419099 PMCID: PMC8379799 DOI: 10.1186/s12989-021-00426-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Exposure to indoor air pollution from solid fuel combustion is associated with lung diseases and cancer. This study investigated the cytotoxicity and molecular mechanisms of biomass combustion-derived particles in human pulmonary alveolar epithelial cells (HPAEpiC) using a platform that combines air-liquid interface (ALI) and dynamic culture (DC) systems. METHODS HPAEpiC were cultured on the surface of polycarbonate (PC) membranes on the ALI-DC platform. The cells were sprayed with an aerosolized solution of biomass combustion soluble constituents (BCSCs) and simultaneously nourished with culture medium flowing beneath the permeable PC membranes. The ALI-DC method was compared with the traditional submerged culture approach. BCSC particle morphology and dosages deposited on the chip were determined for particle characterization. Flow cytometry, scanning electron microscopy, and transmission electron microscopy were used to investigate the apoptosis rate of HPAEpiC and changes in the cell ultrastructure induced by BCSCs. Additionally, the underlying apoptotic pathway was examined by determining the protein expression levels by western blotting. RESULTS Scanning electron microscope images demonstrated that the sample processing and delivering approach of the ALI-DC platform were suitable for pollutant exposure. Compared with the submerged culture method, a significant decline in cell viability and increase in apoptosis rate was observed after BCSC exposure on the ALI-DC platform, indicating that the ALI-DC platform is a more sensitive system for investigating cytotoxicity of indoor air pollutants in lung cells. The morphology and ultrastructure of the cells were damaged after exposure to BCSCs, and the p53 pathway was activated. The Bcl-2/Bax ratio was reduced, upregulating caspase-9 and caspase-3 expression and subsequently inducing apoptosis of HPAEpiC. The addition of N-acetyl cysteine antioxidant significantly alleviated the cytotoxicity induced by BCSCs. CONCLUSION A novel ALI-DC platform was developed to study the cytotoxicity of air pollutants on lung cells. Using the platform, we demonstrated that BCSCs could damage the mitochondria, produce reactive oxygen species, and activate p53 in HPAEpiC, ultimately inducing apoptosis.
Collapse
Affiliation(s)
- Shaorui Ke
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046 People’s Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Xinlian Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
| | - Xudong Yang
- Department of Building Science, Tsinghua University, Beijing, 100084 People’s Republic of China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433 People’s Republic of China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044 People’s Republic of China
| |
Collapse
|
9
|
Gao Y, Fan X, Gu W, Ci X, Peng L. Hyperoside relieves particulate matter-induced lung injury by inhibiting AMPK/mTOR-mediated autophagy deregulation. Pharmacol Res 2021; 167:105561. [PMID: 33737241 DOI: 10.1016/j.phrs.2021.105561] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Autophagy-mediated cell death plays a critical role in the pathogenesis of PMs-induced lung injury. Hyperoside (Hyp), a flavonoid glycosides, is known to exert protective effects on many diseases by inhibiting autophagic activity. The current study aimed to explore the protective effect and mechanism of Hyp against PMs-induced lung injury in PM2.5 challenged Beas-2b cells in vitro and BALB/C mice in vivo. In vitro, we found that the organic solvent-extractable fraction of SRM1649b (O-PMs) caused more severe cytotoxicity in Beas-2b cells than the water solvent-extractable fraction of SRM1649b (W-PMs). O-PMs treatment dose-dependently upregulated the expression of autophagy markers (beclin-1, p62, atg3 and LC3II) and apoptotic proteins. This cytotoxicity of O-PMs was attenuated by Hyp pretreatment in parallel with downregulation of the expression of autophagy markers, apoptotic proteins, and p-AMPK and upregulation of p-mTOR expression. Notably, the therapeutic effect of Hyp was attenuated by pretreated with AICAR (an AMPK inducer), but enhanced by CC and 3-MA treatment. In vivo, Hyp reduced pathological lung injury and decreased the levels of PMs-induced inflammatory cytokines (TNF-α and IL-6), and the number of total cells in the BALF by inhibiting AMPK/mTOR signaling. Furthermore, cotreatment with AICAR (500 mg/kg) reduced but did not abrogate the pulmonary protective effect of Hyp. These findings indicate that Hyp protects against PMs-induced lung injury by suppressing autophagy deregulation and apoptosis through regulation of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Yun Gao
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xiaoye Fan
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| | - Wenjing Gu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Xinxin Ci
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China; Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Blazkova B, Pastorkova A, Solansky I, Veleminsky M, Veleminsky M, Urbancova K, Vondraskova V, Hajslova J, Pulkrabova J, Sram RJ. Effect of Polycyclic Aromatic Hydrocarbons Exposure on Cognitive Development in 5 Years Old Children. Brain Sci 2020; 10:E619. [PMID: 32906797 PMCID: PMC7563279 DOI: 10.3390/brainsci10090619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives: To analyze the impact of polycyclic aromatic hydrocarbons (PAHs) in ambient air at the time of delivery and five years of age on cognitive development in five year old children. Materials and Methods: Two cohorts of children born in the years 2013 and 2014 from Karvina (Northern Moravia, n = 70) and Ceske Budejovice (Southern Bohemia, n = 99) were studied at the age of five years for their cognitive development related to the exposure to PAHs, determined in the ambient air as the concentration of benzo[a]pyrene (B[a]P) and OH-PAH (hydroxy-PAH) metabolites in urine of the newborns at the time of delivery. As psychological tests, the Bender Visual Motor Gestalt Test (BG test) and the Raven Colored Progressive Matrices (RCPM test) were used. Results: Concentrations of B[a]P in the third trimester of mother's pregnancies were 6.1 ± 4.53 ng/m3 in Karvina, and 1.19 ± 1.28 ng/m3 (p < 0.001) in Ceske Budejovice. Neither the outcome of the RCPM test nor the BG test differed between children in Karvina vs. Ceske Budejovice, or boys vs. girls. Cognitive development in five year old children was affected by the higher exposure to PM2.5 during the third trimester in girls in Karvina. Conclusions: We did not observe any significant effect of prenatal PAH exposure on psychological cognitive tests in five year old children.
Collapse
Affiliation(s)
- Barbora Blazkova
- Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; (B.B.); (A.P.); (I.S.); (M.V.J.); (M.V.)
| | - Anna Pastorkova
- Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; (B.B.); (A.P.); (I.S.); (M.V.J.); (M.V.)
- Institute of Experimental Medicine CAS, 142 20 Prague, Czech Republic
| | - Ivo Solansky
- Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; (B.B.); (A.P.); (I.S.); (M.V.J.); (M.V.)
| | - Milos Veleminsky
- Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; (B.B.); (A.P.); (I.S.); (M.V.J.); (M.V.)
- Hospital Ceske Budejovice, a.s., 370 01 Ceske Budejovice, Czech Republic
| | - Milos Veleminsky
- Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; (B.B.); (A.P.); (I.S.); (M.V.J.); (M.V.)
| | - Katerina Urbancova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.U.); (V.V.); (J.H.); (J.P.)
| | - Veronika Vondraskova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.U.); (V.V.); (J.H.); (J.P.)
| | - Jana Hajslova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.U.); (V.V.); (J.H.); (J.P.)
| | - Jana Pulkrabova
- Faculty of Food and Biochemical Technology, University of Chemistry and Technology, 166 28 Prague, Czech Republic; (K.U.); (V.V.); (J.H.); (J.P.)
| | - Radim J. Sram
- Faculty of Health and Social Sciences, University of South Bohemia, 370 05 Ceske Budejovice, Czech Republic; (B.B.); (A.P.); (I.S.); (M.V.J.); (M.V.)
- Institute of Experimental Medicine CAS, 142 20 Prague, Czech Republic
| |
Collapse
|
11
|
Li X, Jia Y, Nan A, Zhang N, Zhou H, Chen L, Pan X, Qiu M, Zhu J, Zhang H, Ling Y, Jiang Y. CircRNA104250 and lncRNAuc001.dgp.1 promote the PM 2.5-induced inflammatory response by co-targeting miR-3607-5p in BEAS-2B cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 258:113749. [PMID: 31864925 DOI: 10.1016/j.envpol.2019.113749] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Long-term exposure to particulate matter 2.5 (PM2.5) is closely related to the occurrence and development of airway inflammation. Exploration of the role of PM2.5 in inflammation is the first step towards clarifying the harmful effects of particulate pollution. However, the molecular mechanisms underlying PM2.5-induced airway inflammation are yet to be fully established. In this study, we focused on the specific roles of non-coding RNAs (ncRNAs) in PM2.5-induced airway inflammation. In a human bronchial epithelial cell line, BEAS-2B, PM2.5 at a concentration of 75 μg/mL induced the inflammatory response. Microarray and quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed significant upregulation of circRNA104250 and lncRNAuc001.dgp.1 during the PM2.5-induced inflammatory response in this cell line. Data from functional analyses further showed that both molecules promote an inflammatory response. CircRNA104250 and lncRNAuc001.dgp.1 target miR-3607-5p and affect expression of interleukin 1 receptor 1 (IL1R1), which influences the nuclear factor κB (NF-κB) signaling pathway. In summary, we have uncovered an underlying mechanism of airway inflammation by PM2.5 involving regulation of ncRNA for the first time, which provides further insights into the toxicological effects of PM2.5.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yangyang Jia
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Aruo Nan
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Nan Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hanyu Zhou
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Lijian Chen
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiujiao Pan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Miaoyun Qiu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jialu Zhu
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Han Zhang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yihui Ling
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China; Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Tapparo A, Di Marco V, Badocco D, D'Aronco S, Soldà L, Pastore P, Mahon BM, Kalberer M, Giorio C. Formation of metal-organic ligand complexes affects solubility of metals in airborne particles at an urban site in the Po valley. CHEMOSPHERE 2020; 241:125025. [PMID: 31604190 DOI: 10.1016/j.chemosphere.2019.125025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 05/26/2023]
Abstract
Metals in atmospheric aerosols play potentially an important role in human health and ocean primary productivity. However, the lack of knowledge about solubility and speciation of metal ions in the particles or after solubilisation in aqueous media (sea or surface waters, cloud or rain droplets, biological fluids) limits our understanding of the underlying physico-chemical processes. In this work, a wide range of metals, their soluble fractions, and inorganic/organic compounds contained in urban particulate matter (PM) from Padua (Italy) were determined. Metal solubility tests have been performed by dissolving the PM in water and in solutions simulating rain droplet composition. The water-soluble fractions of the metal ions and of the organic compounds having ligand properties have been subjected to a multivariate statistical procedure, in order to elucidate associations among the aqueous concentrations of these PM components in simulated rain droplets. In parallel, a multi-dimensional speciation calculation has been performed to identify the stoichiometry and the amount of metal-ligand complexes theoretically expected in aqueous solutions. Both approaches showed that the solubility and the aqueous speciation of metal ions were differently affected by the presence of inorganic and organic ligands in the PM. The solubility of Al, Cr, and Fe was strongly correlated to the concentrations of oxalic acid, as their oxalate complexes represented the expected dominant species in aqueous solutions. Oxalates of Al represented ∼98% of soluble Al, while oxalates of Cu represented 34-75% of the soluble Cu, and oxalates of Fe represented 76% of soluble Fe. The oxidation state of Fe can strongly impact the speciation picture. If Fe is present as Fe(II) rather than Fe(III), the amount of Cr and Cu complexed with diacids can increase from 75% to 94%, and from 32% to 53%, respectively. For other metals, the solubility depended on the formation of soluble aquo-complexes, hence with a scarce effect of the organic ligands. An iron-oxalate complex was also directly detected in aerosol sample extracts.
Collapse
Affiliation(s)
- Andrea Tapparo
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Valerio Di Marco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Sara D'Aronco
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Lidia Soldà
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Paolo Pastore
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy
| | - Brendan M Mahon
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom
| | - Markus Kalberer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom; Department of Environmental Sciences, University of Basel, Klingelbergstrasse 27, 4056, Basel, Switzerland
| | - Chiara Giorio
- Department of Chemical Sciences, University of Padua, via Marzolo 1, 35131, Padova, Italy; Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
| |
Collapse
|
13
|
Brehmer C, Norris C, Barkjohn KK, Bergin MH, Zhang J, Cui X, Teng Y, Zhang Y, Black M, Li Z, Shafer MM, Schauer JJ. The impact of household air cleaners on the oxidative potential of PM 2.5 and the role of metals and sources associated with indoor and outdoor exposure. ENVIRONMENTAL RESEARCH 2020; 181:108919. [PMID: 31753466 DOI: 10.1016/j.envres.2019.108919] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/01/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The health effects associated with human exposure to airborne fine particulate matter (PM2.5) have been linked to the ability of PM2.5 to facilitate the production of excess cellular reactive oxygen species (oxidative potential). Concern about the adverse human health impacts of PM2.5 has led to the increased use of indoor air cleaners to improve indoor air quality, which can be an important environment for PM2.5 exposure. However, the degree to which the oxidative potential of indoor and personal PM2.5 can be influenced by an indoor air cleaner remains unclear. In this study we enrolled 43 children with physician diagnosed asthma in suburban Shanghai, China and collected two paired-sets of 48-h indoor, outdoor, and personal PM2.5 exposure samples. One set of samples was collected under "real filtration" during which a functioning air cleaner was installed in the child's bedroom, and the other ("false filtration") with an air cleaner without internal filters. The PM2.5 samples were characterized by inductively coupled plasma mass spectroscopy for elements, and by an alveolar macrophage assay for oxidative potential. The sources of metals contributing to our samples were determined by the EPA Positive Matrix Factorization model. The oxidative potential was lower under real filtration compared to sham for indoor (median real/sham ratio: 0.260) and personal exposure (0.813) samples. Additionally, the sources of elements in PM2.5 that were reduced indoors and personal exposure samples by the air cleaner (e.g. regional aerosol and roadway emissions) were found by univariate multiple regression models to be among those contributing to the oxidative potential of the samples. An IQR increase in the regional aerosol and roadway emissions sources was associated with a 107% (95% CI: 80.1-138%) and 38.1% (17.6-62.1%) increase in measured oxidative potential respectively. Our results indicate that indoor air cleaners can reduce the oxidative potential of indoor and personal exposure to PM2.5, which may lead to improved human health.
Collapse
Affiliation(s)
- Collin Brehmer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Christina Norris
- Duke University, Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Karoline K Barkjohn
- Duke University, Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Mike H Bergin
- Duke University, Civil and Environmental Engineering, 121 Hudson Hall, Durham, NC, 27708, USA
| | - Junfeng Zhang
- Duke University, Nicholas School of the Environment, 9 Circuit Dr, Durham, NC, 27710, USA; Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Xiaoxing Cui
- Duke University, Nicholas School of the Environment, 9 Circuit Dr, Durham, NC, 27710, USA
| | - Yanbo Teng
- Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu Province, China
| | - Yinping Zhang
- Tsinghua University, School of Architecture, Beijing, 100084, China
| | - Marilyn Black
- Underwriters Laboratories Inc., Chemical Safety, 2211 Newmarket Parkway, Suite 106, Marietta, GA, 30067, USA
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai, 201620, China
| | - Martin M Shafer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA
| | - James J Schauer
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA; Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA.
| |
Collapse
|
14
|
Zhang Y, Yang D, Yang B, Li B, Guo J, Xiao C. PM2.5 induces cell cycle arrest through regulating mTOR/P70S6K1 signaling pathway. Exp Ther Med 2019; 17:4371-4378. [PMID: 31086573 PMCID: PMC6489014 DOI: 10.3892/etm.2019.7466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Fine particulate matter (PM2.5) pollution has become a serious problem in China. This study aims to elucidate the toxicity mechanism of PM2.5. Protein levels were detected by western blotting and RT-qPCR, and cell cycle was detected by flow cytometry. The results showed that exposure to PM2.5 induces cell cycle arrest and downregulation of the expression of cyclin D1 protein. Moreover, the protein expression of thymidylate synthase (TS) enzyme was found to be downregulated and the mRNA expression of TS was upregulated after PM2.5 exposure. Knockout of TS gene promoted cell cycle arrest and downregulation of the expression of cyclin D1 protein after PM2.5 exposure. Our data further revealed that PM2.5 exposure downregulates the expression of TS and cyclin D1 partially through the downregulation of the mammalian target of rapamycin (mTOR)/P70S6K1 signaling pathway. Thus, these findings indicate that PM2.5-induced cell cycle arrest might be due to the downregulation of mTOR/P70S6K1 signaling pathway, and thus inhibits the expression of TS protein.
Collapse
Affiliation(s)
- Yu Zhang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Dan Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China.,Department of Pharmacology, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Biao Yang
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Bingyu Li
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Jie Guo
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| | - Chunling Xiao
- Key Lab of Environmental Pollution and Microecology of Liaoning Province, Shenyang, Liaoning 110034, P.R. China
| |
Collapse
|
15
|
Kozáková J, Pokorná P, Vodička P, Ondráčková L, Ondráček J, Křůmal K, Mikuška P, Hovorka J, Moravec P, Schwarz J. The influence of local emissions and regional air pollution transport on a European air pollution hot spot. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1675-1692. [PMID: 30448949 DOI: 10.1007/s11356-018-3670-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/02/2018] [Indexed: 05/06/2023]
Abstract
The EU air quality standards have been frequently exceeded in one of the European air pollution hot spots: Ostrava. The aim of this study was to perform an air quality comparison between an urban site (Radvanice), which has a nearby metallurgical complex, and a suburban site (Plesná) to estimate air pollution sources and determine their local and/or regional origins. Twenty-four hour PM1 and PM10 (particular matter) concentrations, detailed mass size distributions (MSDs) to distinguish the sources of the fine and coarse PM, and their chemical compositions were investigated in parallel at both sites during the winter of 2014. Positive matrix factorization (PMF) was applied to the PM1 and PM10 chemical compositions to investigate their sources. During the measurement campaign, prevailing northeastern-southwestern (NE-SW) wind directions (WDs) were recorded. Higher average PM10 concentration was measured in Radvanice than in Plesná, whereas PM1 concentrations were similar at both sites. A source apportionment analysis revealed six and five sources for PM10 and PM1, respectively. In Radvanice, the amount of PM and the most chemical species were similar under SW and NE WD conditions. The dominant sources were industrial (43% for PM10 and 27% for PM1), which were caused by a large metallurgical complex located to the SW, and biomass burning (25% for PM10 and 36% for PM1). In Plesná, the concentrations of PM and all species significantly increased under NE WD conditions. Secondary inorganic aerosols were dominant, with the highest contributions deriving from the NE WD. Therefore, regional pollution transport from the industrial sector in Silesian Province (Poland) was evident. Biomass burning contributed 22% and 24% to PM10 and PM1, respectively. The air quality in Ostrava was influenced by local sources and regional pollution transport. The issue of poor air quality in this region is complex. Therefore, international cooperation from both states (the Czech Republic and Poland) is needed to achieve a reduction in air pollution levels.
Collapse
Affiliation(s)
- Jana Kozáková
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic.
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic.
| | - Petra Pokorná
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic
| | - Petr Vodička
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic
| | - Lucie Ondráčková
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic
| | - Jakub Ondráček
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic
| | - Kamil Křůmal
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i, Veveří 97, 602 00, Brno, Czech Republic
| | - Pavel Mikuška
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v.v.i, Veveří 97, 602 00, Brno, Czech Republic
| | - Jan Hovorka
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, 128 01, Prague, Czech Republic
| | - Pavel Moravec
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic
| | - Jaroslav Schwarz
- Department of Aerosols Chemistry and Physics, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v.v.i, Rozvojová 1/135, 165 02, Prague 6 - Suchdol, Czech Republic
| |
Collapse
|
16
|
Zheng Y, Fan J, Chen HW, Liu EQ. Trametes orientalis polysaccharide alleviates PM2.5-induced lung injury in mice through its antioxidant and anti-inflammatory activities. Food Funct 2019; 10:8005-8015. [DOI: 10.1039/c9fo01777a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Trametes orientalis polysaccharide (TOP-2) could alleviate PM2.5-induced lung injury in mice via its antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Yi Zheng
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe
| | - Jing Fan
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
| | - Hong-wei Chen
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe
| | - En-qi Liu
- School of Food and Biological Engineering
- Xuzhou University of Technology
- Xuzhou 221018
- China
- Jiangsu Key Laboratory of Food Resource Development and Quality Safe
| |
Collapse
|
17
|
Ledda C, Loreto C, Bracci M, Lombardo C, Romano G, Cinà D, Mucci N, Castorina S, Rapisarda V. Mutagenic and DNA repair activity in traffic policemen: a case-crossover study. J Occup Med Toxicol 2018; 13:24. [PMID: 30116289 PMCID: PMC6083631 DOI: 10.1186/s12995-018-0206-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/24/2018] [Indexed: 01/03/2023] Open
Abstract
Background Emissions from vehicles are composed of heterogeneous mixtures of hazardous substances; several pollutants such as Polycyclic Aromatic Hydrocarbons (PAHs) are amongst the most dangerous substances detected in urban monitoring. A cohort of traffic policemen usually occupationally exposed to PAHs present in the urban environment were examined in order to assess the mutagenicity and DNA capacity repair. Methods Seventy-two urban traffic policemen working in Catania's metropolitan area were enrolled in the study. Two spot urine samples were collected from each subject during the whole working cycle as follows: sample 1 (S1), pre-shift on day 1; sample 2 (S2) post-shift on day 6. 1-hydroxypyrene (1-OHP) was measured to serve as an indirect exposure indicator. Urinary mutagenic activity was assessed through the plate incorporation pre-incubation technique with S9, using YG1024 Salmonella typhimurium strain over-sensitive to PAH metabolite. Concentrations of urinary 8-oxodG were measured using liquid chromatography tandem mass spectrometry. Results As regards the exposure to PAHs, results highlighted a statistically significant difference (p < 0.001) between pre-shift on day 1 and post-shift on day 6 levels. Mutagenic activity was detected in 38 (66%) workers on S1 and in 47 (81%) on S2. Also 8-oxodG analysis showed a statistically significant difference between S1 and S2 sampling. Conclusions This study demonstrated that occupational exposure to pollutants from traffic emission, assessed via 1-OHP measurements in urine, may lead to DNA repair and mutagenic activity, in line with other studies.
Collapse
Affiliation(s)
- Caterina Ledda
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Carla Loreto
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Massimo Bracci
- 3Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60100 Ancona, Italy
| | - Claudia Lombardo
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Gaetano Romano
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| | - Diana Cinà
- Clinical Pathology Unit, "Garibaldi Centro" Hospital of Catania, 95100 Catania, Italy
| | - Nicola Mucci
- 5Occupational Medicine, Department of Experimental and Clinical Medicine, University of Florence, 50100 Florence, Italy
| | - Sergio Castorina
- 2Human Anatomy and Histology, Department of Biomedical and Biotechnology Sciences, University of Catania, 95100 Catania, Italy
| | - Venerando Rapisarda
- 1Occupational Medicine, Department of Clinical and Experimental Medicine, University of Catania, 95100 Catania, Italy
| |
Collapse
|
18
|
Honkova K, Rossnerova A, Pavlikova J, Svecova V, Klema J, Topinka J, Milcova A, Libalova H, Choi H, Veleminsky M, Sram RJ, Rossner P. Gene expression profiling in healthy newborns from diverse localities of the Czech Republic. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:401-415. [PMID: 29602183 DOI: 10.1002/em.22184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Prenatal exposure to air pollution is associated with intrauterine growth restriction and low birth weight. Gene expression changes in newborns in relation to air pollution have not been sufficiently studied. We analyzed whole genome expression in cord blood leukocytes of 202 newborns from diverse localities of the Czech Republic, differing among other factors in levels of air pollution: the district of Karvina (characterized by higher concentration of air pollutants) and Ceske Budejovice (lower air pollution levels). We aimed to identify differentially expressed genes (DEGs) and pathways in relation to locality and concentration of air pollutants. We applied the linear model to identify the specific DEGs and the correlation analysis, to investigate the relationship between the concentrations of air pollutants and gene expression data. An analysis of biochemical pathways and gene set enrichment was also performed. In general, we observed modest changes of gene expression, mostly attributed to the effect of the locality. The highest number of DEGs was found in samples from the district of Karvina. A pathway analysis revealed a deregulation of processes associated with cell growth, apoptosis or cellular homeostasis, immune response-related processes or oxidative stress response. The association between concentrations of air pollutants and gene expression changes was weak, particularly for samples collected in Karvina. In summary, as we did not find a direct effect of exposure to air pollutants, we assume that the general differences in the environment, rather than actual concentrations of individual pollutants, represent a key factor affecting gene expression changes at delivery. Environ. Mol. Mutagen. 59:401-415, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Katerina Honkova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Rossnerova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka Pavlikova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vlasta Svecova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Klema
- Czech Technical University, Prague, Czech Republic
| | - Jan Topinka
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alena Milcova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Libalova
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Hyunok Choi
- School of Public Health, University at Albany, Rensselaer, New York
| | - Milos Veleminsky
- Faculty of Health and Social Studies, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Radim J Sram
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Rossner
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
19
|
Li Z, Xin J, Chen W, Liu J, Zhu M, Zhao C, Yuan J, Jin G, Ma H, Du J, Hu Z, Wu T, Shen H, Dai J, Yu H. Genetic variants in autophagy associated genes are associated with DNA damage levels in Chinese population. Gene 2017; 626:414-419. [PMID: 28512061 DOI: 10.1016/j.gene.2017.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 10/19/2022]
Abstract
Autophagy associated genes (ATGs) played an important role in the repair process of DNA damage and decreased autophagy may weaken the repair process and aggravate DNA damage. Based on this, we hypothesized that DNA damage levels might be modified by genetic variants in autophagy associated genes. In order to validate our hypothesis, 307 subjects were recruited from three different cities (Zhuhai, Wuhan and Tianjin) in China. Demographic data, individual 24-h PM2.5 exposure and peripheral blood DNA damage levels were also detected. Seven potentially functional polymorphisms in four essential autophagy associated genes (ATG5, ATG7, ATG8 and ATG13) were screened to evaluate the relationship between the polymorphisms of autophagy associated genes and DNA damage levels. This association was assessed by using multivariable linear regression model, age, sex, smoke and PM2.5 exposure levels were adjusted in each city. We found that rs12599322 in ATG8 (A>G, β=0.263, 95% CI: 0.108-0.419, P=8.98×10-4) and rs7484002 in ATG13 (A>G, β=0.396, 95% CI: 0.085-0.708, P=0.013) were significantly associated with higher DNA damage levels. Furthermore, functional annotations showed that both rs12599322 and rs7484002 located at transcription factor binding sites (TFBS), indicating that they could regulate the expression of related genes through TF regulation. Following allelic trend analysis revealed that the DNA damage levels were significantly aggravated with the increasing number of risk variants in autophagy associated genes (P for trend: 8.09×10-5). Our findings suggested that the polymorphisms in ATGs may influence DNA damage levels in one of the Chinese population.
Collapse
Affiliation(s)
- Zhihua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junyi Xin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Chen
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jia Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Congwen Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yuan
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongxia Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangbo Du
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tangchun Wu
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
20
|
Lin H, Guo Y, Zheng Y, Zhao X, Cao Z, Rigdon SE, Xian H, Li X, Liu T, Xiao J, Zeng W, Weaver NL, Qian Z, Ma W, Wu F. Exposure to ambient PM 2.5 associated with overall and domain-specific disability among adults in six low- and middle-income countries. ENVIRONMENT INTERNATIONAL 2017; 104:69-75. [PMID: 28453972 DOI: 10.1016/j.envint.2017.04.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Exposure to particulate matter pollution is associated with various cardiopulmonary diseases, which are closely related with disability. The direct relationship between air pollution and disability, however, has not been fully explored. METHODS We used data from 45,625 participants in the Study on global AGEing and adult health in six low- and middle-income countries. The 12-item version of the World Health Organization Disability Assessment Schedule (WHODAS 2.0) was used to measure the disability with six domains (cognition, mobility, self-care, getting along, life activities, and participation in society). Participants' community addresses were used to estimate annual concentration of PM2.5 using satellite data. We used linear mixed models to examine the effects of PM2.5 on overall and domain-specific WHODAS scores. RESULTS Exposure to PM2.5 was significantly associated with greater disability score (a higher score implies a greater disability); each 10μg/m3 increase corresponded to 0.72 (95% CI: 0.22, 1.22) increase in overall disability score. Compared with low PM2.5 level (<14.33μg/m3), moderate (14.33-27.83μg/m3) and high exposure levels (>27.83μg/m3) were associated with 3.43 (95% CI: 1.43, 5.43) and 3.72 (95% CI: 1.59, 5.86) increase in disability scores. Among the six domains, cognition, mobility and getting along were found to be associated with PM2.5. Stratified analyses found that women and older subjects were more sensitive to this effect. CONCLUSION Exposure to ambient PM2.5 might be one risk factor of disability in the low- and middle-income countries, women and older adults are the vulnerable population; and among the six domains, cognition, mobility and getting along are more relevant to this effect.
Collapse
Affiliation(s)
- Hualiang Lin
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yanfei Guo
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Yang Zheng
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China
| | - Xing Zhao
- West China School of Public Health, Sichuan University, Chengdu, China
| | - Zheng Cao
- Guangzhou Institute of Geochemistry, Chinese Academy of Science, Guangzhou 510640, China
| | - Steven E Rigdon
- Saint Louis University College for Public Health & Social Justice, St. Louis, MO, USA
| | - Hong Xian
- Saint Louis University College for Public Health & Social Justice, St. Louis, MO, USA
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Tao Liu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Nancy L Weaver
- Saint Louis University College for Public Health & Social Justice, St. Louis, MO, USA
| | - ZhengminMin Qian
- Saint Louis University College for Public Health & Social Justice, St. Louis, MO, USA.
| | - Wenjun Ma
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China.
| | - Fan Wu
- Shanghai Municipal Centre for Disease Control and Prevention, Shanghai, China.
| |
Collapse
|
21
|
Roper C, Chubb LG, Cambal L, Tunno B, Clougherty JE, Fattman C, Mischler SE. Association of IL-6 with PM 2.5 Components: Importance of Characterizing Filter-Based PM 2.5 Following Extraction. WATER, AIR, AND SOIL POLLUTION 2017; 228:43. [PMID: 28989204 PMCID: PMC5628506 DOI: 10.1007/s11270-016-3219-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Filter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM2.5) exposure. Ambient PM2.5 collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM2.5, without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM2.5 has not been investigated. Filter-based PM2.5 was collected at locations (n = 5) and detailed characterization of both ambient and extracted PM2.5 was performed. Alveolar macrophages (AMJ2-C11) were exposed (3, 24, and 48 h) to PM2.5 and the pro-inflammatory cytokine interleukin (IL)-6 was measured. IL-6 release differed significantly between PM2.5 collected from different locations; surprisingly, IL-6 release was highest following treatment with PM2.5 from the lowest ambient concentration location. IL-6 was negatively correlated with the sum of ambient metals analyzed, as well as with concentrations of specific constituents which have been previously associated with respiratory health effects. However, positive correlations of IL-6 with extracted concentrations indicated that the negative associations between IL-6 and ambient concentrations do not accurately represent the relationship between inflammation and PM2.5 exposure. Additionally, seven organic compounds had significant associations with IL-6 release when considering ambient concentrations, but they were not detected in the extracted solution. Basing inflammatory associations on ambient concentrations that are not necessarily representative of in vitro exposures creates misleading results; this study highlights the importance of characterizing extraction solutions to conduct accurate health impact research.
Collapse
Affiliation(s)
- Courtney Roper
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Lauren G Chubb
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA, Office of Mine Safety and Health Research, National Institute for Occupational Safety and Health, Pittsburgh, PA, USA
| | - Leah Cambal
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Brett Tunno
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Jane E Clougherty
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Cheryl Fattman
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Steven E Mischler
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA, Office of Mine Safety and Health Research, National Institute for Occupational Safety and Health, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Šrám RJ, Rössner P, Rössnerová A, Dostál M, Milcová A, Švecová V, Pulkrabová J, Hajšlová J, Velemínský M. Impact of Air Pollution to Genome of Newborns. Cent Eur J Public Health 2016; 24 Suppl:S40-S44. [DOI: 10.21101/cejph.a4536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/30/2015] [Indexed: 11/15/2022]
|
23
|
Huang M, Zhang J, Cai S, Liao Y, Zhao W, Hu C, Gu X, Fang L, Zhang W. Characterization of particulate products for aging of ethylbenzene secondary organic aerosol in the presence of ammonium sulfate seed aerosol. J Environ Sci (China) 2016; 47:219-229. [PMID: 27593289 DOI: 10.1016/j.jes.2015.11.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/15/2015] [Accepted: 11/27/2015] [Indexed: 06/06/2023]
Abstract
Aging of secondary organic aerosol (SOA) particles formed from OH- initiated oxidation of ethylbenzene in the presence of high mass (100-300μg/m(3)) concentrations of (NH4)2SO4 seed aerosol was investigated in a home-made smog chamber in this study. The chemical composition of aged ethylbenzene SOA particles was measured using an aerosol laser time-of-flight mass spectrometer (ALTOFMS) coupled with a Fuzzy C-Means (FCM) clustering algorithm. Experimental results showed that nitrophenol, ethyl-nitrophenol, 2,4-dinitrophenol, methyl glyoxylic acid, 5-ethyl-6-oxo-2,4-hexadienoic acid, 2-ethyl-2,4-hexadiendioic acid, 2,3-dihydroxy-5-ethyl-6-oxo-4-hexenoic acid, 1H-imidazole, hydrated N-glyoxal substituted 1H-imidazole, hydrated glyoxal dimer substituted imidazole, 1H-imidazole-2-carbaldehyde, N-glyoxal substituted hydrated 1H-imidazole-2-carbaldehyde and high-molecular-weight (HMW) components were the predominant products in the aged particles. Compared to the previous aromatic SOA aging studies, imidazole compounds, which can absorb solar radiation effectively, were newly detected in aged ethylbenzene SOA in the presence of high concentrations of (NH4)2SO4 seed aerosol. These findings provide new information for discussing aromatic SOA aging mechanisms.
Collapse
Affiliation(s)
- Mingqiang Huang
- College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou 363000, China; Department of Environmental Science and Engineering, Xiamen University, Tan Kah Kee College, Zhangzhou 363105, China.
| | - Jiahui Zhang
- College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Shunyou Cai
- College of Chemistry & Environment, Minnan Normal University, Zhangzhou 363000, China; Fujian Province Key Laboratory of Modern Analytical Science and Separation Technology, Zhangzhou 363000, China
| | - Yingmin Liao
- Department of Environmental Science and Engineering, Xiamen University, Tan Kah Kee College, Zhangzhou 363105, China
| | - Weixiong Zhao
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Changjin Hu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Xuejun Gu
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Fang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Weijun Zhang
- Laboratory of Atmospheric Physico-Chemistry, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
24
|
Ambroz A, Vlkova V, Rossner P, Rossnerova A, Svecova V, Milcova A, Pulkrabova J, Hajslova J, Veleminsky M, Solansky I, Sram RJ. Impact of air pollution on oxidative DNA damage and lipid peroxidation in mothers and their newborns. Int J Hyg Environ Health 2016; 219:545-56. [DOI: 10.1016/j.ijheh.2016.05.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/29/2016] [Accepted: 05/30/2016] [Indexed: 01/30/2023]
|
25
|
Guerreiro CBB, Horálek J, de Leeuw F, Couvidat F. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:657-667. [PMID: 27140679 DOI: 10.1016/j.envpol.2016.04.081] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 05/28/2023]
Abstract
This study estimated current benzo(a)pyrene (BaP) concentration levels, population exposure and potential health impacts of exposure to ambient air BaP in Europe. These estimates were done by combining the best available information from observations and chemical transport models through the use of spatial interpolation methods. Results show large exceedances of the European target value for BaP in 2012 over large areas, particularly in central-eastern Europe. Results also show large uncertainties in the concentration estimates in regions with a few or no measurement stations. The estimation of the population exposure to BaP concentrations and its health impacts was limited to 60% of the European population, covering only the modelled areas which met the data quality requirement for modelling of BaP concentrations set by the European directive 2004/107/EC. The population exposure estimate shows that 20% of the European population is exposed to BaP background ambient concentrations above the EU target value and only 7% live in areas with concentrations under the estimated acceptable risk level of 0.12 ng m(-3). This exposure leads to an estimated 370 lung cancer incidences per year, for the 60% of the European population included in the estimation. Emissions of BaP have increased in the last decade with the increase in emissions from household combustion of biomass. At the same time, climate mitigation policies are promoting the use of biomass burning for domestic heating. The current study shows that there is a need for more BaP measurements in areas of low measurement density, particularly where high concentrations are expected, e.g. in Romania, Bulgaria, and other Balkan states. Furthermore, this study shows that the health risk posed by PAH exposure calls for better coordination between air quality and climate mitigation policies in Europe.
Collapse
Affiliation(s)
- C B B Guerreiro
- Norwegian Institute for Air Research (NILU), Kjeller 2027, Norway.
| | - J Horálek
- Czech Hydrometeorological Institute (CHMI), Prague, Czech Republic.
| | - F de Leeuw
- National Institute for Public Health and the Environment (RIVM), 3720 BA, Bilthoven, the Netherlands.
| | - F Couvidat
- National Institute for Industrial Environment and Risk (INERIS), France.
| |
Collapse
|
26
|
Topinka J, Rossner P, Milcová A, Schmuczerová J, Pěnčíková K, Rossnerová A, Ambrož A, Štolcpartová J, Bendl J, Hovorka J, Machala M. Day-to-day variability of toxic events induced by organic compounds bound to size segregated atmospheric aerosol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 202:135-45. [PMID: 25818093 DOI: 10.1016/j.envpol.2015.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/11/2015] [Accepted: 03/13/2015] [Indexed: 05/06/2023]
Abstract
This study quantified the temporal variability of concentration of carcinogenic polycyclic aromatic hydrocarbons (c-PAHs), genotoxicity, oxidative DNA damage and dioxin-like activity of the extractable organic matter (EOM) of atmospheric aerosol particles of aerodynamic diameter (dae, μm) coarse (1 < dae < 10), upper- (0.5 < dae < 1) and lower-accumulation (0.17 < dae < 0.5) and ultrafine (<0.17) fractions. The upper accumulation fraction formed most of the aerosol mass for 22 of the 26 study days and contained ∼44% of total c-PAHs, while the ultrafine fraction contained only ∼11%. DNA adduct levels suggested a crucial contribution of c-PAHs bound to the upper accumulation fraction. The dioxin-like activity was also driven primarily by c-PAH concentrations. In contrast, oxidative DNA damage was not related to c-PAHs, as a negative correlation with c-PAHs was observed. These results suggest that genotoxicity and dioxin-like activity are the major toxic effects of organic compounds bound to size segregated aerosol, while oxidative DNA damage is not induced by EOM.
Collapse
Affiliation(s)
- Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic.
| | - Pavel Rossner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Alena Milcová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jana Schmuczerová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Kateřina Pěnčíková
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic
| | - Andrea Rossnerová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Antonín Ambrož
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Jitka Štolcpartová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Jan Bendl
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Jan Hovorka
- Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Miroslav Machala
- Department of Chemistry and Toxicology, Veterinary Research Institute, Hudcova 70, 62100 Brno, Czech Republic.
| |
Collapse
|
27
|
Chu M, Sun C, Chen W, Jin G, Gong J, Zhu M, Yuan J, Dai J, Wang M, Pan Y, Song Y, Ding X, Guo X, Du M, Xia Y, Kan H, Zhang Z, Hu Z, Wu T, Shen H. Personal exposure to PM2.5, genetic variants and DNA damage: a multi-center population-based study in Chinese. Toxicol Lett 2015; 235:172-178. [PMID: 25889363 DOI: 10.1016/j.toxlet.2015.04.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 01/06/2023]
Abstract
Exposure to particulate matter (e.g., PM2.5) may result in DNA damage, a major culprit in mutagenesis and environmental toxicity. DNA damage levels may vary among individuals simultaneously exposed to PM2.5, however, the genetic determinants are still unclear. To explore whether PM2.5 exposure and genetic variants contribute to the alteration in DNA damage, we recruited 328 subjects from three independent cohorts (119 from Zhuhai, 123 from Wuhan and 86 from Tianjin) in southern, central and northern China with different PM2.5 exposure levels. Personal 24-h PM2.5 exposure levels and DNA damage levels of peripheral blood lymphocytes were evaluated. Genotyping were performed using Illumina Human Exome BeadChip with 241,305 single nucleotide variants (SNVs). The DNA damage levels are consistent with the PM2.5 exposure levels of each cohort. A total of 35 SNVs were consistently associated with DNA damage levels among the three cohorts with pooled P values less than 1.00×10(-3) after adjustment for age, gender, smoking status and PM2.5 exposure levels, of which, 18 SNVs together with gender and PM2.5 exposure levels were independent factors contributing to DNA damage. Gene-based test revealed 3 genes significantly associated with DNA damage levels (P=5.11×10(-3) for POLH, P=2.88×10(-3) for RIT2 and P=2.29×10(-2) for CNTN4). Gene ontology (GO) analyses indicated that the identified variants were significantly enriched in DNA damage response pathway. Our findings highlight the importance of genetic variation as well as personal PM2.5 exposure in modulating individual DNA damage levels.
Collapse
Affiliation(s)
- Minjie Chu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China; Department of Epidemiology and Biostatistics, School of Public Health, Nantong University, Nantong, Jiangsu, China
| | - Chongqi Sun
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weihong Chen
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guangfu Jin
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianhang Gong
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meng Zhu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Yuan
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juncheng Dai
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Pan
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanchao Song
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaojie Ding
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mulong Du
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yankai Xia
- Key Laboratory of Modern Toxicology of Ministry of Education, Institute of Toxicology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, Fudan University, Shanghai, China
| | - Zhengdong Zhang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhibin Hu
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tangchun Wu
- Ministry of Education Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
28
|
Environmental carcinogens and mutational pathways in atherosclerosis. Int J Hyg Environ Health 2015; 218:293-312. [DOI: 10.1016/j.ijheh.2015.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/26/2015] [Accepted: 01/29/2015] [Indexed: 02/07/2023]
|
29
|
Líbalová H, Krčková S, Uhlířová K, Kléma J, Ciganek M, Rössner P, Šrám RJ, Vondráček J, Machala M, Topinka J. Analysis of gene expression changes in A549 cells induced by organic compounds from respirable air particles. Mutat Res 2014; 770:94-105. [PMID: 25771875 DOI: 10.1016/j.mrfmmm.2014.10.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 06/04/2023]
Abstract
A number of toxic effects of respirable ambient air particles (genotoxic effects, inflammation, oxidative damage) have been attributed to organic compounds bound onto the particle surface. In this study, we analyzed global gene expression changes caused by the extractable organic matters (EOMs) from respirable airborne particles <2.5μm (PM2.5), collected at 3 localities from heavily polluted areas of the Czech Republic and a control locality with low pollution levels, in human lung epithelial A549 cells. Although the sampled localities differed in both extent and sources of air pollution, EOMs did not induce substantially different gene expression profiles. The number of transcripts deregulated in A549 cells treated with the lowest EOM concentration (10μg/ml) ranged from 65 to 85 in 4 sampling localities compared to the number of transcripts deregulated after 30μg/ml and 60μg/ml of EOMs, which ranged from 90 to 109, and from 149 to 452, respectively. We found numerous commonly deregulated genes and pathways related to activation of the aryl hydrocarbon receptor (AhR) and metabolism of xenobiotics and endogenous compounds. We further identified deregulation of expression of the genes involved in pro-inflammatory processes, oxidative stress response and in cancer and developmental pathways, such as TGF-β and Wnt signaling pathways. No cell cycle arrest, DNA repair or pro-apoptotic responses were identified at the transcriptional level after the treatment of A549 cells with EOMs. In conclusion, numerous processes and pathways deregulated in response to EOMs suggest a significant role of activated AhR. Interestingly, we did not observe substantial gene expression changes related to DNA damage response, possibly due to the antagonistic effect of non-genotoxic EOM components. Moreover, a comparison of EOM effects with other available data on modulation of global gene expression suggests possible overlap among the effects of PM2.5, EOMs and various types of AhR agonists.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Simona Krčková
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Kateřina Uhlířová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jiří Kléma
- Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic
| | - Miroslav Ciganek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Pavel Rössner
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Radim J Šrám
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Vondráček
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Miroslav Machala
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
30
|
Association Between Individual PM2.5 Exposure and DNA Damage in Traffic Policemen. J Occup Environ Med 2014; 56:e98-e101. [DOI: 10.1097/jom.0000000000000287] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Møller P, Danielsen PH, Karottki DG, Jantzen K, Roursgaard M, Klingberg H, Jensen DM, Christophersen DV, Hemmingsen JG, Cao Y, Loft S. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 762:133-66. [DOI: 10.1016/j.mrrev.2014.09.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 09/04/2014] [Accepted: 09/04/2014] [Indexed: 01/09/2023]
|
32
|
Senthilkumar S, Manju A, Muthuselvam P, Shalini D, Indhumathi V, Kalaiselvi K, Palanivel M, Chandrasekar PP, Rajaguru P. Characterization and genotoxicity evaluation of particulate matter collected from industrial atmosphere in Tamil Nadu state, India. JOURNAL OF HAZARDOUS MATERIALS 2014; 274:392-8. [PMID: 24797908 DOI: 10.1016/j.jhazmat.2014.04.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/11/2014] [Accepted: 04/12/2014] [Indexed: 05/09/2023]
Abstract
Ambient particulate matter (PM) collected in the vicinity of five industries (Cement, Chemical, Thermal power plant, Sponge-iron and Steel) in Tamil Nadu state, India was characterized for size distribution, metals and polycyclic aromatic hydrocarbons (PAHs) content. Genotoxicity of PM and organic matter (OM) extracted from PM was measured in human lung cancer cell-line, A549 and in human liver carcinoma cell-line, HepG2, respectively, using the comet assay. PM values varied from 57.0 μg/m(3) of air at Cement industry upstream to 561.0 μg/m(3) of air at Sponge iron industry downstream samples. Their metal content varied from 5.758 μg/m(3) of air at Chemical industry to 46.144 μg/m(3) of air at Sponge iron industry and PAH concentration varied from 0.5 ng/m(3) air in upstream Thermal power plant to 3302.4 ng/m(3) air in downstream Sponge iron industry samples. While all PM samples induced DNA strand breaks at higher dose levels, downstream samples of Steel and Sponge iron industries which contained relatively higher concentrations of PAHs and metals and exhibited higher levels of pro-oxidant activity as measured by DTT activity induced significantly higher levels of DNA damage in HepG2 and A549 cells. Pretreatment of A549 cells with vitamin C or quercetin significantly reduced PM induced DNA strand breaks.
Collapse
Affiliation(s)
- S Senthilkumar
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India.
| | - A Manju
- Department of Environmental Science, PSG College of Arts and Science, Coimbatore 641014, Tamil Nadu, India.
| | - P Muthuselvam
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India.
| | - D Shalini
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India.
| | - V Indhumathi
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India.
| | - K Kalaiselvi
- Department of Environmental Science, PSG College of Arts and Science, Coimbatore 641014, Tamil Nadu, India.
| | - M Palanivel
- Department of Environmental Science, PSG College of Arts and Science, Coimbatore 641014, Tamil Nadu, India.
| | - P P Chandrasekar
- Tamil Nadu Pollution Control Board, Salem 635004, Tamil Nadu, India.
| | - P Rajaguru
- Department of Biotechnology, Anna University - BIT Campus, Tiruchirappalli 620024, Tamil Nadu, India.
| |
Collapse
|
33
|
Líbalová H, Krčková S, Uhlířová K, Milcová A, Schmuczerová J, Ciganek M, Kléma J, Machala M, Šrám RJ, Topinka J. Genotoxicity but not the AhR-mediated activity of PAHs is inhibited by other components of complex mixtures of ambient air pollutants. Toxicol Lett 2014; 225:350-7. [PMID: 24472612 DOI: 10.1016/j.toxlet.2014.01.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/17/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
In this study, we compared the genotoxicity and aryl hydrocarbon receptor (AhR)-dependent transcriptional changes of selected target genes in human lung epithelial A549 cells incubated for 24 h, either with extractable organic matter (EOMs) from airborne particles <2.5 μm (PM2.5) collected at four localities from heavily polluted areas of the Czech Republic or two representative toxic polycyclic aromatic hydrocarbons (PAHs) present in EOMs, benzo[a]pyrene (B[a]P) and benzo[k]fluoranthene (B[k]F). Genotoxic effects were determined using DNA adduct analysis or analysis of expression of selected AhR-related genes involved in bioactivation of PAHs (CYP1A1, CYP1B1) and transcriptional repression (TIPARP). Sampled localities differing in the extent and source of air pollution did not exhibit substantially different genotoxicity. DNA adduct levels induced by three subtoxic EOM concentrations were relatively low (1-5 adducts/10(8) nucleotides), compared to levels induced by similar concentrations of B[a]P, while B[k]F gave very low DNA adduct levels. Here, we compared genotoxicity and gene deregulation induced by complex mixtures containing PAHs with the effects of the comparable concentrations of individual PAHs. Our results suggested inhibition of formation of B[a]P-induced DNA adducts compared to individual B[a]P, probably attributable to competitive inhibition by other non-genotoxic EOM components. In contrast, induction of AhR target genes appeared not to be antagonized by the components of complex mixtures, as induction of CYP1A1, CYP1B1 and TIPARP transcripts reached maximum levels induced by PAHs.
Collapse
Affiliation(s)
- Helena Líbalová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Simona Krčková
- Department of Chemistry, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Kateřina Uhlířová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Alena Milcová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jana Schmuczerová
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Miroslav Ciganek
- Department of Chemistry, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Jiri Kléma
- Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic
| | - Miroslav Machala
- Czech Technical University in Prague, Karlovo namesti 13, 121 35 Prague 2, Czech Republic
| | - Radim J Šrám
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic
| | - Jan Topinka
- Department of Genetic Ecotoxicology, Institute of Experimental Medicine AS CR, Videnska 1083, 142 20 Prague 4, Czech Republic.
| |
Collapse
|
34
|
Svecova V, Topinka J, Solansky I, Rossner P, Sram RJ. Personal exposure to carcinogenic polycyclic aromatic hydrocarbons in the Czech Republic. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:350-355. [PMID: 23250196 DOI: 10.1038/jes.2012.110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 05/07/2011] [Accepted: 05/31/2011] [Indexed: 06/01/2023]
Abstract
Personal exposures to carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) bound to airborne particulate matter 2.5 μm (PM2.5) were measured in the context of a large-scale molecular epidemiological study in order to identify the impacts of air pollution on human health. Sampling was carried out in three industrial cities in the Czech Republic: Ostrava, Karvina and Havirov. The city of Prague, exhibiting much lower industrial air pollution but a high level of traffic, served as a control. The first monitoring campaigns were held in winter and were repeated in the summer of 2009. The active personal monitors PV 1.7 for PM2.5-bound c-PAHs were used. Non-smoking city policemen from Prague, Karvina and Havirov, and office workers from Ostrava, participated in the study. All participants completed a personal questionnaire and a time-location-activity diary. The average personal winter exposure to c-PAHs (sum of the eight PAHs-benz[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[g,h,i]perylene, benzo[k]fluoranthene, chrysene, dibenz[a,h]anthracene and indeno[1,2,3-c,d]pyrene) was highest in Karvina, 39.1, followed by Ostrava at 15.1 and Prague at 4.3 ng/m(3). The winter levels were significantly higher than the summer values (P<0.001): 4.3 in Karvina, 3.0 in Ostrava, 1.6 in Havirov and 1.0 ng/m(3) in Prague. The average personal benzo[a]pyrene winter/summer exposures were: 6.9/0.6 in Karvina, 2.5/0.4 in Ostrava, 0.8/0.1 in Prague and 0.2 ng/m(3) in summer in Havirov. In this study, we examined personal exposure to c-PAHs and tested it for associations with potential predictor variables collected from questionnaires, addressing life style factors and day-to-day activities. We found outdoor concentration, environmental tobacco smoke exposure, home heating fuel of coal, wood or gas, frequency of exhaust fan use, cooking and commuting by a car to be the main determinants of personal exposure.
Collapse
Affiliation(s)
- Vlasta Svecova
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, 14220 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
35
|
Recent advances in particulate matter and nanoparticle toxicology: a review of the in vivo and in vitro studies. BIOMED RESEARCH INTERNATIONAL 2013; 2013:279371. [PMID: 23865044 PMCID: PMC3705851 DOI: 10.1155/2013/279371] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/08/2013] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Epidemiological and clinical studies have linked exposure to particulate matter (PM) to adverse health effects, which may be registered as increased mortality and morbidity from various cardiopulmonary diseases. Despite the evidence relating PM to health effects, the physiological, cellular, and molecular mechanisms causing such effects are still not fully characterized. Two main approaches are used to elucidate the mechanisms of toxicity. One is the use of in vivo experimental models, where various effects of PM on respiratory, cardiovascular, and nervous systems can be evaluated. To more closely examine the molecular and cellular mechanisms behind the different physiological effects, the use of various in vitro models has proven to be valuable. In the present review, we discuss the current advances on the toxicology of particulate matter and nanoparticles based on these techniques.
Collapse
|
36
|
The European Hot Spot of B[a]P and PM2.5 Exposure—The Ostrava Region, Czech Republic: Health Research Results. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/416701] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The Ostrava Region in the Czech Republic is a heavily polluted industrial area. Concentrations of PM10, PM2.5, and benzo[a]pyrene (B[a]P) significantly exceed limit values. To investigate the impact of these levels on human health, epidemiological, molecular epidemiology, and in vitro studies were done in 2008–2011. Morbidity of children was followed in 10 pediatric districts. In the most polluted district, children suffered higher incidence of acute respiratory diseases in the first year of life, and higher prevalence of asthma bronchiale. Gene expression was studied in children from Ostrava and from a control rural area. Genes specific to asthma bronchiale differed, suggesting a different molecular phenotype in children in the polluted region compared to children in the control area. A molecular epidemiology study showed adverse effect of the Ostrava exposures, but also an increased expression of XRCC5, which probably protects these exposed subjects against the degree of genetic damage that would otherwise be expected. In vitro studies clearly related concentration of B[a]P from PM2.5 extracts to induced PAH-DNA adducts. These studies clearly demonstrate that under the present local environmental conditions, the health of the population is severely impaired and will likely remain so for a significant period of time.
Collapse
|
37
|
Liu M, Chen L, Zhou R, Wang J. Association between GSTM1 polymorphism and DNA adduct concentration in the occupational workers exposed to PAHs: A meta-analysis. Gene 2013; 519:71-6. [DOI: 10.1016/j.gene.2013.01.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 12/16/2022]
|
38
|
Sram RJ, Binkova B, Dostal M, Merkerova-Dostalova M, Libalova H, Milcova A, Rossner P, Rossnerova A, Schmuczerova J, Svecova V, Topinka J, Votavova H. Health impact of air pollution to children. Int J Hyg Environ Health 2013; 216:533-40. [PMID: 23312845 DOI: 10.1016/j.ijheh.2012.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/23/2012] [Accepted: 12/06/2012] [Indexed: 12/09/2022]
Abstract
Health impact of air pollution to children was studied over the last twenty years in heavily polluted parts of the Czech Republic during. The research program (Teplice Program) analyzed these effects in the polluted district Teplice (North Bohemia) and control district Prachatice (Southern Bohemia). Study of pregnancy outcomes for newborns delivered between 1994 and 1998 demonstrated that increase in intrauterine growth retardation (IUGR) was associated with PM10 and c-PAHs exposure (carcinogenic polycyclic aromatic hydrocarbons) in the first month of gestation. Morbidity was followed in the cohort of newborns (N=1492) up to the age of 10years. Coal combustion in homes was associated with increased incidence of lower respiratory track illness and impaired early childhood skeletal growth up to the age of 3years. In preschool children, we observed the effect of increased concentrations of PM2.5 and PAHs on development of bronchitis. The Northern Moravia Region (Silesia) is characterized by high concentrations of c-PAHs due to industrial air pollution. Exposure to B[a]P (benzo[a]pyrene) in Ostrava-Radvanice is the highest in the EU. Children from this part of the city of Ostrava suffered higher incidence of acute respiratory diseases in the first year of life. Gene expression profiles in leukocytes of asthmatic children compared to children without asthma were evaluated in groups from Ostrava-Radvanice and Prachatice. The results suggest the distinct molecular phenotype of asthma bronchiale in children living in polluted Ostrava region compared to children living in Prachatice. The effect of exposure to air pollution to biomarkers in newborns was analyzed in Prague vs. Ceske Budejovice, two locations with different levels of pollution in winter season. B[a]P concentrations were higher in Ceske Budejovice. DNA adducts and micronuclei were also elevated in cord blood in Ceske Budejovice in comparison to Prague. Study of gene expression profiles in the cord blood showed differential expression of 104 genes. Specifically, biological processes related to immune and defense response were down-regulated in Ceske Budejovice. Our studies demonstrate that air pollution significantly affect child health. Especially noticeable is the increase of respiratory morbidity. With the development of molecular epidemiology, we can further evaluate the health risk of air pollution using biomarkers.
Collapse
Affiliation(s)
- Radim J Sram
- Institute of Experimental Medicine AS CR, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Topinka J, Milcova A, Schmuczerova J, Mazac M, Pechout M, Vojtisek-Lom M. Genotoxic potential of organic extracts from particle emissions of diesel and rapeseed oil powered engines. Toxicol Lett 2012; 212:11-7. [DOI: 10.1016/j.toxlet.2012.04.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/17/2012] [Accepted: 04/20/2012] [Indexed: 10/28/2022]
|
40
|
Reche C, Moreno T, Amato F, Viana M, van Drooge BL, Chuang HC, Bérubé K, Jones T, Alastuey A, Querol X. A multidisciplinary approach to characterise exposure risk and toxicological effects of PM₁₀ and PM₂.₅ samples in urban environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 78:327-335. [PMID: 22177483 DOI: 10.1016/j.ecoenv.2011.11.043] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
Urban aerosol samples collected in Barcelona between 2008 and 2009 were toxicologically characterised by means of two complementary methodologies allowing evaluation of their Reactive Oxidative Stress (ROS)-generating capacity: the plasmid scission assay (PSA) and the dichlorodihydrofluorescin assay (DCFH). The PSA determined the PM dose able to damage 50% of a plasmid DNA molecule (TD(50) values), an indication of the ability of the sample to exert potential oxidative stress, most likely by formation of ·OH. This toxicity indicator did not show dependency on different air mass origins (African dust, Atlantic advection), indicating that local pollutant sources within or near the city are most likely to be mainly responsible for PM health effect variations. The average TD(50) values show PM(2.5-0.1) samples to be more toxic than the PM(10-2.5) fraction, with doses similar to those reported in previous studies in polluted urban areas. In addition, the samples were also evaluated using the oxidant-sensitive probe DCFH confirming the positive association between the amount of DNA damage and the generation of reactive oxidant species capable of inducing DNA strand break. Results provided by the PSA were compared with those from two other different methodologies to evaluate human health risk: (1) the toxicity of particulate PAHs expressed as the calculated toxicity equivalent of benzo[a]pyrene (BaPteq) after application of the EPA toxicity factors, and (2) the cancer risk assessment of the different PM sources detected in Barcelona with the receptor model Positive Matrix Factorisation (PMF) and the computer programme Multilinear Engine 2 (ME-2) using the organic and inorganic chemical compositions of particles. No positive associations were found between PSA and the toxicity of PAHs, probably due to the inefficiency of water in extracting organic compounds. On the other hand, the sum of cancer risk estimates calculated for each of the selected days for the PSA was found to correlate with TD(50) values in the fine fraction, with fuel oil combustion and industrial emissions therefore being most implicated in negative health effects. Further studies are necessary to determine whether toxicity is related to PM chemical composition and sources, or rather to its size distribution.
Collapse
Affiliation(s)
- Cristina Reche
- Institute for Environmental Assessment and Water Research (IDÆA-CSIC), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Global gene expression changes in human embryonic lung fibroblasts induced by organic extracts from respirable air particles. Part Fibre Toxicol 2012; 9:1. [PMID: 22239852 PMCID: PMC3275518 DOI: 10.1186/1743-8977-9-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 01/12/2012] [Indexed: 12/19/2022] Open
Abstract
Background Recently, we used cell-free assays to demonstrate the toxic effects of complex mixtures of organic extracts from urban air particles (PM2.5) collected in four localities of the Czech Republic (Ostrava-Bartovice, Ostrava-Poruba, Karvina and Trebon) which differed in the extent and sources of air pollution. To obtain further insight into the biological mechanisms of action of the extractable organic matter (EOM) from ambient air particles, human embryonic lung fibroblasts (HEL12469) were treated with the same four EOMs to assess changes in the genome-wide expression profiles compared to DMSO treated controls. Method For this purpose, HEL cells were incubated with subtoxic EOM concentrations of 10, 30, and 60 μg EOM/ml for 24 hours and global gene expression changes were analyzed using human whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR. Results Dose-dependent increases in the number of significantly deregulated transcripts as well as dose-response relationships in the levels of individual transcripts were observed. The transcriptomic data did not differ substantially between the localities, suggesting that the air pollution originating mainly from various sources may have similar biological effects. This was further confirmed by the analysis of deregulated pathways and by identification of the most contributing gene modulations. The number of significantly deregulated KEGG pathways, as identified by Goeman's global test, varied, depending on the locality, between 12 to 29. The Metabolism of xenobiotics by cytochrome P450 exhibited the strongest upregulation in all 4 localities and CYP1B1 had a major contribution to the upregulation of this pathway. Other important deregulated pathways in all 4 localities were ABC transporters (involved in the translocation of exogenous and endogenous metabolites across membranes and DNA repair), the Wnt and TGF-β signaling pathways (associated particularly with tumor promotion and progression), Steroid hormone biosynthesis (involved in the endocrine-disrupting activity of chemicals), and Glycerolipid metabolism (pathways involving the lipids with a glycerol backbone including lipid signaling molecules). Conclusion The microarray data suggested a prominent role of activation of aryl hydrocarbon receptor-dependent gene expression.
Collapse
|
42
|
Arlt VM, Schwerdtle T. UKEMS/Dutch EMS-sponsored workshop on biomarkers of exposure and oxidative DNA damage & 7th GUM-32P-postlabelling workshop, University of Münster, Münster, Germany, 28-29 March 2011. Mutagenesis 2011; 26:679-85. [PMID: 21693685 DOI: 10.1093/mutage/ger036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Environmental exposures are a major concern for human cancer. However, the precise contribution of specific risk factors and their interactions, both with each other and with genotype, continue to be difficult to elucidate. The exposome is the comprehensive characterisation of an individual's lifetime exposure history (Wild, C. P. (2009) Environmental exposure measurement in cancer epidemiology. Mutagenesis, 24, 117-125). Unravelling complex environmental and genetic aetiologies in order to plan effective public health interventions demands that both environmental exposures and genetic variations are reliably measured. The development, validation and application of biomarkers of exposure are manifestly critical to the future of cancer epidemiology. The aim of this workshop at the University of Münster was to discuss the current status of exposure biomarkers in cancer molecular epidemiology as well as new findings achieved by applying the methods to studies of mechanisms of human cancer. Day 1 focused on biomarkers of exposure (i.e. carcinogen DNA adducts), effect and susceptibility to gain greater understanding of environmental cancer risks and their modulation. Day 2 focused on the role of oxidative stress and DNA damage in human carcinogenesis including methodologies used for the measurement of oxidatively induced DNA lesions in human cells or tissues and the possible use of these lesions as cancer biomarkers.
Collapse
Affiliation(s)
- Volker M Arlt
- Section of Molecular Carcinogenesis, Institute of Cancer Research, Brookes Lawley Building, Sutton, Surrey SM2 5NG, UK.
| | | |
Collapse
|