1
|
Xie P, Ommati MM, Chen D, Chen W, Han L, Zhao X, Wang H, Xu S, Sun P. Hepatotoxic effects of environmentally relevant concentrations of polystyrene microplastics on senescent Zebrafish (Danio rerio): Patterns of stress response and metabolomic alterations. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 279:107252. [PMID: 39847840 DOI: 10.1016/j.aquatox.2025.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 01/25/2025]
Abstract
The hepatotoxicity of microplastics (MPs) has garnered increasing attention, but their effects on elderly organisms remain inadequately characterized, particularly concerning hepatic stress response patterns in environmental conditions. In this study, a 10-day exposure period of elderly zebrafish to polystyrene microplastics (PS-MPs, 1 µm) was conducted, with exposure concentrations set at 5.6 × 10-7 µg/L, 5.6 × 10-4 µg/L, and 5.6 × 10-1 µg/L. PS-MPs-induced toxicity varied with concentration: superoxide dismutase (SOD), complement 3 (C3), and complement 4 (C4) initially decreased before rising; 8‑hydroxy-2-deoxyguanosine (8-OhdG), interleukin-6 (IL-6), and interleukin-8 (IL-8) increased at high concentrations. Additionally, catalase (CAT) activity and thiobarbituric acid reactive substances (TBARS) contents rose with concentration. The aged zebrafish liver exhibited differentiation driven by responsiveness; low levels cause homeostatic disruption, and high levels induce genotoxicity and immune activation. LC-MS identified twelve crucial metabolites involved in 18 metabolic pathways, including amino acids (L-tyrosine, l-arginine), lipids (phospholipids, 12(S)-leukotriene B4 and triglycerides), and N-acetylneuraminic acid, related to energy, immunity, and neurological health. Overall, elderly zebrafish exhibited clear dose-dependent thresholds and distinct physiological stress responses under varying concentrations of PS-MPs. These findings reveal how PS-MP exposure can affect physiological health and metabolism, offering critical insights into the ecological risks faced by aging organisms.
Collapse
Affiliation(s)
- Pengfei Xie
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Mohammad Mehdi Ommati
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Deshan Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Weijun Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Lei Han
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Xinquan Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, Qinghai 810016, China
| | - Hongwei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Shixiao Xu
- Northwest Institute of Plateau Biology Chinese Academy of Sciences, Xining, Qinghai 810008, China
| | - Ping Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan 471003, China.
| |
Collapse
|
2
|
Hansen HHWB, Cha H, Ouyang L, Zhang J, Jin B, Stratton H, Nguyen NT, An H. Nanobubble technologies: Applications in therapy from molecular to cellular level. Biotechnol Adv 2023; 63:108091. [PMID: 36592661 DOI: 10.1016/j.biotechadv.2022.108091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Nanobubbles are gaseous entities suspended in bulk liquids that have widespread beneficial usage in many industries. Nanobubbles are already proving to be versatile in furthering the effectiveness of disease treatment on cellular and molecular levels. They are functionalized with biocompatible and stealth surfaces to aid in the delivery of drugs. At the same time, nanobubbles serve as imaging agents due to the echogenic properties of the gas core, which can also be utilized for controlled and targeted delivery. This review provides an overview of the biomedical applications of nanobubbles, covering their preparation and characterization methods, discussing where the research is currently focused, and how they will help shape the future of biomedicine.
Collapse
Affiliation(s)
- Helena H W B Hansen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Haotian Cha
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Lingxi Ouyang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia
| | - Bo Jin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Helen Stratton
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| | - Hongjie An
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, QLD 4111, Australia.
| |
Collapse
|
3
|
Perfluorocarbon Gas Transport: an Overview of Medical History With Yet Unrealized Potentials. Shock 2019; 52:7-12. [DOI: 10.1097/shk.0000000000001150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
4
|
Andrews LE, Chan MH, Liu RS. Nano-lipospheres as acoustically active ultrasound contrast agents: evolving tumor imaging and therapy technique. NANOTECHNOLOGY 2019; 30:182001. [PMID: 30645984 DOI: 10.1088/1361-6528/aafeb9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Applying nanobubbles (NBs) for contrast-enhanced ultrasound imaging has received increased attention. NBs are biocompatible, multifunctional, theranostic agents. Their properties of high echogenicity and stability create an agent suitable for ultrasonography diagnosis. Their favorable properties of size, in vivo stability, and ease of modification are being exploited to implement a theranostic platform for cancer treatment. The considerable development offers the potential to overcome drug resistance and adverse side effects that are associated with traditional chemotherapy. This review outlines the principles of ultrasonography and angiogenesis. Microbubbles and micelles are also discussed to underline the superior capabilities of NBs for the application. NBs could passively accumulate to tumor tissue by enhanced permeability and retention effect. In addition, it can also achieve the active transportation by surface modification. Active targeting modalities and stimuli-responsive drug delivery modifications generate a therapeutic vehicle. The cytotoxicity of NBs formulations, multimodal imaging capability, active targeting mechanisms, and drug delivery methods are highlighted to confirm the NB as a vehicle for targeted treatment and enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Laura Emma Andrews
- Department of Chemistry, National Taiwan University, Taiwan. School of Chemistry, The University of Edinburgh, United Kingdom
| | | | | |
Collapse
|
5
|
Liu L, Yang J, Men K, He Z, Luo M, Qian Z, Wei X, Wei Y. Current Status of Nonviral Vectors for Gene Therapy in China. Hum Gene Ther 2018; 29:110-120. [PMID: 29320893 DOI: 10.1089/hum.2017.226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Li Liu
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jingyun Yang
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ke Men
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyao He
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Min Luo
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyong Qian
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Xiawei Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yuquan Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|
6
|
Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224:86-102. [PMID: 26772877 DOI: 10.1016/j.jconrel.2016.01.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels. Moreover, drugs are also subject to certain problems that decrease their efficacy. This requires the use of high doses, and frequent administrations must be implemented, causing adverse side effects or toxicity. The use of nanoparticle systems can help to overcome such problems and increase drug efficacy. Accordingly, there is considerable current interest in their use as antimicrobial agents against different pathogens like bacteria, virus, fungi or parasites, multidrug-resistant strains and biofilms; as targeting vectors towards specific tissues; as vaccines and as theranostic systems. This review begins with an overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticles within the field of infectious diseases.
Collapse
|
7
|
Sharma N, Ojha H, Bharadwaj A, Pathak DP, Sharma RK. Preparation and catalytic applications of nanomaterials: a review. RSC Adv 2015. [DOI: 10.1039/c5ra06778b] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The present review systematically summarizes the synthesis and specific catalytic applications of nanomaterials such as MSN, nanoparticles, LD hydroxides, nanobubbles, quantum dots,etc.
Collapse
Affiliation(s)
- Navneet Sharma
- Division of CBRN Defence
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Himanshu Ojha
- Division of Radiation Biosciences
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Ambika Bharadwaj
- Division of CBRN Defence
- Institute of Nuclear Medicine and Allied Sciences
- India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research
- University of Delhi
- New Delhi 10017
- India
| | - Rakesh Kumar Sharma
- Division of CBRN Defence
- Institute of Nuclear Medicine and Allied Sciences
- India
| |
Collapse
|
8
|
Chung YM, El-Shazly M, Chuang DW, Hwang TL, Asai T, Oshima Y, Ashour ML, Wu YC, Chang FR. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, induces the production of anti-inflammatory cyclodepsipeptides from Beauveria felina. JOURNAL OF NATURAL PRODUCTS 2013; 76:1260-1266. [PMID: 23822585 DOI: 10.1021/np400143j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The addition of the histone deacetylase inhibitor suberoylanilide hydroxamic acid to a culture of the filamentous fungus Beauveria felina significantly changed its secondary metabolite profile and led to the isolation of eight compounds, including three new cyclodepsipeptides, desmethylisaridin E (1), desmethylisaridin C2 (2), and isaridin F (3), along with five known cyclodepsipeptide compounds. Isaridin F (3) possesses a cyclodepsipeptide ring with N-methylbutyric acid, which is rare in natural peptides. Absolute configurations of the new cyclodepsipeptides were achieved by Marfey's method. The anti-inflammatory activity of the isolated compounds was investigated through evaluating their effect on superoxide anion production and elastase release by FMLP-induced human neutrophils. Among the tested compounds, desmethylisaridin E (1) inhibited superoxide anion production and desmethylisaridin C2 (2) inhibited elastase release, with IC50 values of 10.00 ± 0.80 and 10.01 ± 0.46 μM, respectively.
Collapse
Affiliation(s)
- Yu-Ming Chung
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mai L, Yao A, Li J, Wei Q, Yuchi M, He X, Ding M, Zhou Q. Cyanine 5.5 conjugated nanobubbles as a tumor selective contrast agent for dual ultrasound-fluorescence imaging in a mouse model. PLoS One 2013; 8:e61224. [PMID: 23637799 PMCID: PMC3630137 DOI: 10.1371/journal.pone.0061224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 03/07/2013] [Indexed: 12/03/2022] Open
Abstract
Nanobubbles and microbubbles are non-invasive ultrasound imaging contrast agents that may potentially enhance diagnosis of tumors. However, to date, both nanobubbles and microbubbles display poor in vivo tumor-selectivity over non-targeted organs such as liver. We report here cyanine 5.5 conjugated nanobubbles (cy5.5-nanobubbles) of a biocompatible chitosan-vitamin C lipid system as a dual ultrasound-fluorescence contrast agent that achieved tumor-selective imaging in a mouse tumor model. Cy5.5-nanobubble suspension contained single bubble spheres and clusters of bubble spheres with the size ranging between 400-800 nm. In the in vivo mouse study, enhancement of ultrasound signals at tumor site was found to persist over 2 h while tumor-selective fluorescence emission was persistently observed over 24 h with intravenous injection of cy5.5-nanobubbles. In vitro cell study indicated that cy5.5-flurescence dye was able to accumulate in cancer cells due to the unique conjugated nanobubble structure. Further in vivo fluorescence study suggested that cy5.5-nanobubbles were mainly located at tumor site and in the bladder of mice. Subsequent analysis confirmed that accumulation of high fluorescence was present at the intact subcutaneous tumor site and in isolated tumor tissue but not in liver tissue post intravenous injection of cy5.5-nanobubbles. All these results led to the conclusion that cy5.5-nanobubbles with unique crosslinked chitosan-vitamin C lipid system have achieved tumor-selective imaging in vivo.
Collapse
Affiliation(s)
- Liyi Mai
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anna Yao
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qiong Wei
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Yuchi
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaoling He
- University Hospital, China University of Geoscience, Wuhan, Hubei, China
| | - Mingyue Ding
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qibing Zhou
- Department of Nanomedicine & Biopharmaceuticals, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, Virginia, United States of America
| |
Collapse
|
10
|
Personalized nanomedicine advancements for stem cell tracking. Adv Drug Deliv Rev 2012; 64:1488-507. [PMID: 22820528 DOI: 10.1016/j.addr.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/11/2012] [Indexed: 12/12/2022]
Abstract
Recent technological developments in biomedicine have facilitated the generation of data on the anatomical, physiological and molecular level for individual patients and thus introduces opportunity for therapy to be personalized in an unprecedented fashion. Generation of patient-specific stem cells exemplifies the efforts toward this new approach. Cell-based therapy is a highly promising treatment paradigm; however, due to the lack of consistent and unbiased data about the fate of stem cells in vivo, interpretation of therapeutic effects remains challenging hampering the progress in this field. The advent of nanotechnology with a wide palette of inorganic and organic nanostructures has expanded the arsenal of methods for tracking transplanted stem cells. The diversity of nanomaterials has revolutionized personalized nanomedicine and enables individualized tailoring of stem cell labeling materials for the specific needs of each patient. The successful implementation of stem cell tracking will likely be a significant driving force that will contribute to the further development of nanotheranostics. The purpose of this review is to emphasize the role of cell tracking using currently available nanoparticles.
Collapse
|
11
|
Shen DY, Chao CH, Chan HH, Huang GJ, Hwang TL, Lai CY, Lee KH, Thang TD, Wu TS. Bioactive constituents of Clausena lansium and a method for discrimination of aldose enantiomers. PHYTOCHEMISTRY 2012; 82:110-117. [PMID: 22818357 DOI: 10.1016/j.phytochem.2012.06.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 04/16/2012] [Accepted: 06/21/2012] [Indexed: 06/01/2023]
Abstract
Glycosides, clausenosides A and B, and carbazole alkaloids, clausenaline A, claulamine A, and claulamine B, together with 50 known compounds, were isolated from the stems of Clausena lansium. Their structures were determined by means of spectroscopic methods, including that of CD and 1D/2D NMR analysis. Claulamine A has a 1-oxygenated carbazole skeleton with a rare 2,3-lactone ring, and claulamine B represents an hitherto unknown acetal carbazole alkaloid. Thirty-one of the isolated known compounds were evaluated in various assays for anti-inflammatory activity. Among them, imperatorin, isoheraclenin, and osthol exhibited selective and potent inhibition of formyl-l-methionyl-l-leucyl-l-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation, and lansiumarin C also decreased nitric oxide (NO) and tumor necrosis factor-α (TNF-α) production in lipopolysaccharide (LPS)-induced macrophages. In addition, a modified HPLC method of pre-column derivatization was developed that is more practical for simultaneous analysis of aldose enantiomers as compared to the literature method. The absolute configurations of the sugar moieties in clausenosides A and B were determined with this modified method.
Collapse
Affiliation(s)
- De-Yang Shen
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Pan TL, Wang PW, Al-Suwayeh SA, Huang YJ, Fang JY. Toxicological effects of cationic nanobubbles on the liver and kidneys: biomarkers for predicting the risk. Food Chem Toxicol 2012; 50:3892-901. [PMID: 22809472 DOI: 10.1016/j.fct.2012.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/22/2012] [Accepted: 07/06/2012] [Indexed: 12/30/2022]
Abstract
Nanobubbles with acoustical activity are used as both diagnostic and therapeutic carriers for detecting and treating diseases. We aimed to prepare nanobubbles and assess toxic responses to them in the liver and kidneys. The cytotoxicity of nanobubbles was determined by examining the viability of liver (HepG2) and kidney (293T) cell lines after a 24-h treatment at various concentrations (0.01-2%). Toxic effects of different formulations were compared by determining functional markers such as γ-glutamyl transferase (γ-GT) and blood urea nitrogen (BUN) after intravenous administration of nanobubbles. Cationic nanobubbles caused concentration-dependent cytotoxicity against cultured cells with a more significant effect in the liver than in the kidneys. A significant reduction of viability was revealed at a concentration as low as 0.1%. Cational systems with soyaethyl morpholinium ethosulfate (SME) exhibited the greatest γ-GT level at 6-fold higher than the control. Immunohistochemistry detected liver fibrosis and inflammation with nanobubbles treatment, especially SME-containing ones at higher doses. According to plasma proteomic profiles, gelsolin and fetuin-B were significantly downregulated 3-fold in the high-dose SME-treated group. Transthyretin decreased by 6-fold in this group. The fibrinogen gamma chain expression was highly elevated. The results suggest that these protein biomarkers are sensitive for assessing the risk of nanobubble exposure. This study is the first to systematically evaluate the possible toxicity of nanobubbles in the liver and kidneys.
Collapse
Affiliation(s)
- Tai-Long Pan
- School of Traditional Chinese Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | | | | | | | | |
Collapse
|
13
|
Yen CT, Lee CL, Chang FR, Hwang TL, Yen HF, Chen CJ, Chen SL, Wu YC. Indiosides G-K: steroidal glycosides with cytotoxic and anti-inflammatory activities from Solanum violaceum. JOURNAL OF NATURAL PRODUCTS 2012; 75:636-643. [PMID: 22413887 DOI: 10.1021/np200877u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Five new steroidal glycosides (1-5) and nine known compounds were isolated from Solanum violaceum. Indiosides G (1) and H (2) are spirostene saponins with an iso-type F ring, indioside I (3) is a spirostane saponin, and indiosides J (4) and K (5) are unusual furostanol saponins with a deformed F ring. These structures represent rare naturally occurring steroidal skeletons. The structures of the new compounds were elucidated using 1D and 2D spectroscopic techniques and acid hydrolysis. Compounds 2, 3, and 7-9 exhibited cytotoxic activity against six human cancer cell lines (HepG2, Hep3B, A549, Ca9-22, MDA-MB-231, and MCF-7) with IC(50) values of 1.83-8.04 μg/mL. Steroidal saponins 3, 8, and 9 showed inhibitory effects on superoxide anion generation with IC(50) values of 2.84 ± 0.18, 0.62 ± 0.03, and 1.62 ± 0.59 μg/mL, respectively. Saponins 8 and 9 also inhibited elastase release with IC(50) values of 111.05 ± 7.37 and 4.04 ± 0.51 μg/mL, respectively. Structure-activity relationship correlations of these compounds with respect to cytotoxic and anti-inflammatory effects are discussed.
Collapse
Affiliation(s)
- Chiao-Ting Yen
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|