1
|
Trancart M, Botta A, Le Coz C, Guatto N, Calas AG, Hanak AS. How does organophosphorus chemical warfare agent exposure affect respiratory physiology in mice? Toxicology 2024; 507:153890. [PMID: 39029734 DOI: 10.1016/j.tox.2024.153890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
In the absence of appropriate medical care, exposure to organophosphorus nerve agents, such as VX, can lead to respiratory failure, and potentially death by asphyxiation. Despite the critical role of respiratory disturbances in organophosphorus-induced toxicity, the nature and underlying mechanisms of respiratory failure remain poorly understood. This study aimed to characterize respiratory alterations by determining their type and duration in mice exposed to a subcutaneous sublethal dose of VX. Respiratory ventilation in Swiss mice was monitored using dual-chamber plethysmography for up to 7 days post-exposure. Cholinesterase activity was assessed via spectrophotometry, and levels of inflammatory biomarkers were quantified using Luminex technology in blood and tissues involved in respiration (diaphragm, lung, and medulla oblongata). Additionally, a histological study was conducted on these tissues to ensure their structural integrity. Ventilatory alterations appeared 20-25 minutes after the injection of 0.9 LD50 VX and increased until the end of the recording, i.e., 40 minutes after intoxication. Concurrent with the occurrence of apnea, increased inspiratory and expiratory times resulted in a significant decrease in respiratory rate in exposed mice compared to controls. Ventilatory amplitude and, consequently, minute volume were reduced, while specific airway resistance significantly increased, indicating bronchoconstriction. These ventilatory effects persisted up to 24 or even 72 hours post-intoxication, resolving on the 7th day. They were correlated with a decrease in acetylcholinesterase activity in the diaphragm, which persisted for up to 72 hours, and with the triggering of an inflammatory reaction in the same tissue. No significant histologic lesions were observed in the examined tissues. The ventilatory alterations observed up to 72 hours post-VX exposure appear to result from a functional failure of the respiratory system rather than tissue damage. This comprehensive characterization contributes to a better understanding of the respiratory effects induced by VX exposure, which is crucial for developing specific medical countermeasures.
Collapse
Affiliation(s)
- Marilène Trancart
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, France
| | - Antoine Botta
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, France
| | - Christine Le Coz
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, France
| | - Nathalie Guatto
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, France
| | - André-Guilhem Calas
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, France
| | - Anne-Sophie Hanak
- French Armed Forces Biomedical Research Institute, CBRN Defense Division, Toxicology and Chemical Risks Department, France.
| |
Collapse
|
2
|
Deng G, Chen H, Shi Q, Ren L, Liang K, Long W, Lan W, Han X, She Y, Fu H. Colorimetric assay based on peroxidase-like activity of dodecyl trimethylammonium bromide-tetramethyl zinc (4-pyridinyl) porphyrin for detection of organophosphorus pesticides. Mikrochim Acta 2022; 189:375. [PMID: 36074197 DOI: 10.1007/s00604-022-05430-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/08/2022] [Indexed: 10/14/2022]
Abstract
A simple and sensitive colorimetric assay for detecting organophosphorus pesticides (OPs) was developed based on 3,3',5,5'-tetramethylbenzidine (TMB)/hydrogen peroxide (H2O2)/dodecyl trimethylammonium bromide (DTAB)-tetramethyl zinc (4-pyridinyl) porphyrin (ZnTPyP). In this system, based on the peroxidase-like activity of DTAB-ZnTPyP, H2O2 decomposes to produce hydroxyl radicals, which oxidize TMB, resulting in blue oxidation products. The OPs (trichlorfon, dichlorvos, and thimet) were first combined with DTAB-ZnTPyP through electrostatic interactions. The OPs caused a decrease in the peroxidase-like activity of DTAB-ZnTPyP due to spatial site blocking. At the same time, π-interactions occurred between them, and these interactions also inhibited the oxidation of TMB (652 nm), thus making the detection of OPs possible. The limits of detection for trichlorfon, dichlorvos, and thimet were 0.25, 1.02, and 0.66 μg/L, respectively, and the corresponding linear ranges were 1-35, 5-45, and 1-40 μg/L, respectively. Moreover, the assay was successfully used to determine OPs in cabbage, apple, soil, and traditional Chinese medicine samples (the recovery ratios were 91.8-109.8%), showing a great promising potential for detecting OPs also in other complex samples.
Collapse
Affiliation(s)
- Gaoqiong Deng
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Hengye Chen
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Qiong Shi
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Lixue Ren
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Ke Liang
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Wanjun Long
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Wei Lan
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China
| | - Xiaole Han
- Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China.
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haiyan Fu
- The Modernization Engineering Technology Research Center of Ethnic Minority Medicine of Hubei Province, School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
3
|
Safety and Efficacy of New Oximes to Reverse Low Dose Diethyl-Paraoxon-Induced Ventilatory Effects in Rats. Molecules 2020; 25:molecules25133056. [PMID: 32635368 PMCID: PMC7411965 DOI: 10.3390/molecules25133056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Oximes are used in addition to atropine to treat organophosphate poisoning. However, the efficiency of oximes is still a matter of debate. In vitro experiments suggested than new oximes are more potent than the commercial oximes. However, the antidotal activity of new oximes has not been assessed in vivo. Methods: The aim of this work was to assess the safety and efficiency of new oximes compared to pralidoxime in a rat model of diethyl paraoxon-induced non-lethal respiratory toxicity. Results: Safety study of oximes showed no adverse effects on ventilation in rats. KO-33, KO-48, KO-74 oximes did not exhibit significant antidotal effect in vivo. In contrast, KO-27 and BI-6 showed evidence of antidotal activity by normalization of respiratory frequency and respiratory times. KO-27 became inefficient only during the last 30 min of the study. In contrast, pralidoxime demonstrated to be inefficient at 30 min post injection. Inversely, the antidotal activity of BI-6 occurred lately, within the last 90 min post injection. Conclusion: This study showed respiratory safety of new oximes. Regarding, the efficiency, KO-27 revealed to be a rapid acting antidote toward diethylparaoxon-induced respiratory toxicity, meanwhile BI-6 was a late-acting antidote. Simultaneous administration of these two oximes might result in a complete and prolonged antidotal efficiency.
Collapse
|
4
|
Antonijevic E, Musilek K, Kuca K, Djukic-Cosic D, Andjelkovic M, Djordjevic AB, Antonijevic B. Comparison of oximes K203 and K027 based on Benchmark dose analysis of rat diaphragmal acetylcholinesterase reactivation. Chem Biol Interact 2019; 308:385-391. [PMID: 31141677 DOI: 10.1016/j.cbi.2019.05.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/25/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Evica Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Danijela Djukic-Cosic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Milena Andjelkovic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Aleksandra Buha Djordjevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Biljana Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
5
|
Comparison of the Respiratory Toxicity and Total Cholinesterase Activities in Dimethyl Versus Diethyl Paraoxon-Poisoned Rats. TOXICS 2019; 7:toxics7020023. [PMID: 30995784 PMCID: PMC6631413 DOI: 10.3390/toxics7020023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022]
Abstract
The chemical structure of organophosphate compounds (OPs) is a well-known factor which modifies the acute toxicity of these compounds. We compared ventilation at rest and cholinesterase activities in male Sprague-Dawley rats poisoned with dimethyl paraoxon (DMPO) and diethyl paraoxon (DEPO) at a subcutaneous dose corresponding to 50% of the median lethal dose (MLD). Ventilation at rest was recorded by whole body plethysmography. Total cholinesterase activities were determined by radiometric assay. Both organophosphates decreased significantly the respiratory rate, resulting from an increase in expiratory time. Dimethyl-induced respiratory toxicity spontaneously reversed within 120 min post-injection. Diethyl-induced respiratory toxicity was long-lasting, more than 180 min post-injection. Both organophosphates decreased cholinesterase activities from 10 to 180 min post-injection with the same degree of inhibition of total cholinesterase within an onset at the same times after injection. There were no significant differences in residual cholinesterase activities between dimethyl and diethyl paraoxon groups at any time. The structure of the alkoxy-group is a determinant factor of the late phase of poisoning, conditioning duration of toxicity without significant effects on the magnitude of alteration of respiratory parameters. For same duration and magnitude of cholinesterase inhibition, there was a strong discrepancy in the time-course of effects between the two compounds.
Collapse
|
6
|
Antonijevic E, Musilek K, Kuca K, Djukic-Cosic D, Curcic M, Miladinovic DC, Bulat Z, Antonijevic B. Dose-response modeling of reactivating potency of oximes K027 and K203 against a direct acetylcholinesterase inhibitor in rat erythrocytes. Food Chem Toxicol 2018; 121:224-230. [PMID: 30176309 DOI: 10.1016/j.fct.2018.08.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/18/2018] [Accepted: 08/28/2018] [Indexed: 10/28/2022]
Abstract
Inhibition of acethylcholinesterase (AChE) as a key molecular event induced by organophosphate (OP) pesticides and nerve agents presents a human health concern. In efficacy testing of experimental oximes, potential antidotes in OP poisoning, reactivation of OP-inhibited AChE is used as specific endpoint. However, according to our best knowledge, so far oximes have not been quantitatively evaluated by comprehensive benchmark dose (BMD) approach, that would improve both identification and quantification of the effect and allow more rigorous comparison of efficacies. Thus, we have examined in vivo dose-response relationship for two promising experimental oximes, K203 and K027, concerning reactivation of erythrocyte AChE inhibited by dichlorvos (DDVP). Groups of Wistar rats were treated with six different doses of oximes (i.m) immediately after DDVP challenge (s.c) and AChE was measured 60 min later. Dose-response modeling was done by PROAST software 65.5 (RIVM, The Nederlands). BMD-covariate method resulted in four-parameter model from both exponential and Hill model families as the best estimate of relationship between AChE activity and oxime dose, with potency parameter being oxime-dependent. Oxime K027 was shown to be 1.929-fold more potent considering that 58% increase in AChE activity was achived with the dose BMD58-K027 = 52 μmol/kg in contrast to BMD58-K203 = 100 μmol/kg.
Collapse
Affiliation(s)
- Evica Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Kamil Musilek
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Kamil Kuca
- University of Hradec Kralove, Faculty of Science, Department of Chemistry, Rokitanskeho 62, 500 03, Hradec Kralove, Czech Republic.
| | - Danijela Djukic-Cosic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Marijana Curcic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Dejana Cupic Miladinovic
- University of Belgrade, Faculty of Veterinary Medicine, Department of Pharmacology and Toxicology, Bulevar oslobodjenja 18, 11000, Belgrade, Serbia.
| | - Zorica Bulat
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| | - Biljana Antonijevic
- University of Belgrade, Faculty of Pharmacy, Department of Toxicology "Akademik Danilo Soldatović", Vojvode Stepe 450, 11221, Belgrade, Serbia.
| |
Collapse
|
7
|
Effect of six oximes on acutely anticholinesterase inhibitor-induced oxidative stress in rat plasma and brain. Arch Toxicol 2017; 92:745-757. [DOI: 10.1007/s00204-017-2101-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/24/2017] [Indexed: 12/16/2022]
|
8
|
Protective Effects of Intralipid and Caffeic Acid Phenethyl Ester (CAPE) on Hepatotoxicity and Pancreatic Injury Caused by Dichlorvos in Rats. Biochem Genet 2016; 54:803-815. [DOI: 10.1007/s10528-016-9757-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/23/2016] [Indexed: 10/21/2022]
|
9
|
Meredith NA, Quinn C, Cate DM, Reilly TH, Volckens J, Henry CS. Paper-based analytical devices for environmental analysis. Analyst 2016; 141:1874-87. [PMID: 26901771 PMCID: PMC9423764 DOI: 10.1039/c5an02572a] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The field of paper-based microfluidics has experienced rapid growth over the past decade. Microfluidic paper-based analytical devices (μPADs), originally developed for point-of-care medical diagnostics in resource-limited settings, are now being applied in new areas, such as environmental analyses. Low-cost paper sensors show great promise for on-site environmental analysis; the theme of ongoing research complements existing instrumental techniques by providing high spatial and temporal resolution for environmental monitoring. This review highlights recent applications of μPADs for environmental analysis along with technical advances that may enable μPADs to be more widely implemented in field testing.
Collapse
Affiliation(s)
- Nathan A Meredith
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - Casey Quinn
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA.
| | - David M Cate
- Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA and Intellectual Ventures, Bellevue, Washington 98007, USA
| | - Thomas H Reilly
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. and Access Sensor Technologies, LLC, Fort Collins, Colorado 80524, USA
| | - John Volckens
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA. and Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, USA. and Department of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA and Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
10
|
Colorimetric detection of dichlorvos using polydiacetylene vesicles with acetylcholinesterase and cationic surfactants. Biosens Bioelectron 2014; 62:8-12. [DOI: 10.1016/j.bios.2014.05.069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/17/2022]
|