1
|
Zhang J, Min L, Chang J, Ding S, Chi Y, Wang S, Ji S. Effects of perfluorolauric acid exposure on intestinal microbial community and physiological health indicators in mice. Sci Rep 2025; 15:3106. [PMID: 39856362 PMCID: PMC11761485 DOI: 10.1038/s41598-025-87744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
The present study aims to investigate the effects of Perfluorolauric Acid (PFLA) on the gut microbiota community and the physiological health of mice. The experiment was conducted by setting a control group (CTRL) and an experimental group (PFLA), exposing mice to PFLA and observing changes in their gut microbiota community and physiological health indicators. The results showed that exposure to PFLA significantly altered the β diversity of the gut microbiota in mice, as evidenced by NMDS, PCoA, and PCA analyses, indicating a clear change in microbial community structure between the PFLA group and the CTRL group. Moreover, PFLA led to a decrease in α diversity of the gut microbiota, with certain specific species such as CryptoBacteroides significantly increasing in the PFLA group while Odoribacter_laneus decreased. In terms of physiological health, exposure to PFLA resulted in increased liver inflammation, lipid abnormalities, and caused histological changes in the colon, such as ulcerative colitis and damage to glandular structures. These findings suggest that PFLA has adverse effects on the gut microbiota community and physiological health of mice. This study can provide foundational data and references for the pollution control of PFLA.
Collapse
Affiliation(s)
- Jiaqiong Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Lingli Min
- College of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Jiamin Chang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Siqi Ding
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China
| | - Shuhua Wang
- College of Resources and Environmental Science, Quanzhou Normal University, Quanzhou, 362000, China.
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, 362000, China.
| |
Collapse
|
2
|
Liu ZJ, Liu YH, Huang SY, Wu CL, Zang ZJ. Effects of perfluorododecanoic acid on testicular function in mice. Toxicol Res (Camb) 2023; 12:408-416. [PMID: 37397916 PMCID: PMC10311133 DOI: 10.1093/toxres/tfad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/16/2023] [Accepted: 03/31/2023] [Indexed: 07/04/2023] Open
Abstract
Perfluorodecanoic acid (PFDoA) is a widely distributed environmental pollutant that can affect the functions of many organs. However, systematic evaluations of the effects of PFDoA on testicular functions are lacking. The aim of this study was to investigate the effects of PFDoA on mouse testicular functions, including spermatogenesis, testosterone synthesis, and stem Leydig cells (SLCs) in the interstitial tissue of the testis. PFDoA (0, 2, 5, 10 mg/kg/d) was administered via gavage to 2-month-old mice for 4 weeks. Serum hormone levels and sperm quality were assayed. Furthermore, to investigate the mechanisms by which PFDoA affects testosterone synthesis and spermatogenesis in vivo, the expression of StAR and P450scc in testicular tissue was measured by immunofluorescence staining and quantitative real-time PCR. In addition, the levels of SLC markers, including nestin and CD51, were studied. PFDoA decreased the luteinizing hormone concentration and sperm quality. Although the difference was not statistically significant, mean testosterone levels showed a downward trend. The expression of StAR, P450scc, CD51, and nestin was also suppressed in the PFDoA-treated groups compared with the control group. Our study suggested that PFDoA exposure can decrease testosterone biosynthesis, and even reduce the number of SLCs. These results indicated that PFDoA suppressed the main functions of testis, and further researches are required to identify strategies for preventing or reducing the effect of PFDoA on testicular function.
Collapse
Affiliation(s)
- Zhuo-jie Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Yong-hui Liu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Sheng-yu Huang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Cheng-lun Wu
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| | - Zhi-Jun Zang
- Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510630, China
| |
Collapse
|
3
|
Liao Q, Tang P, Pan D, Song Y, Lei L, Liang J, Liu B, Lin M, Huang H, Mo M, Huang C, Wei M, Liu S, Huang D, Qiu X. Association of serum per- and polyfluoroalkyl substances and gestational anemia during different trimesters in Zhuang ethnic pregnancy women of Guangxi, China. CHEMOSPHERE 2022; 309:136798. [PMID: 36220436 DOI: 10.1016/j.chemosphere.2022.136798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Gestational anemia is a complication of pregnancy, and a low level of hemoglobin (Hb) has been linked to adverse pregnancy outcomes. Previous studies reported that PFASs were more strongly associated with Hb than red blood cells, indicating that Hb is more susceptible to the effect of PFASs. However, the evidences regarding the effects of per- and polyfluoroalkyl substances (PFASs) on gestational anemia are currently limited. Therefore, it is important to explore the effects of PFASs on anemia in Chinese pregnant women. METHODS A total of 821 pregnant women were recruited between June 2015 and April 2019 in the Guangxi Zhuang Birth Cohort. The concentrations of PFASs were assessed in maternal serum before 12 gestational weeks. To determine both individual and combined associations of PFASs exposure with anemia in the three stages of pregnancy, binary logistic regression, Bayesian kernel machine regression (BKMR), and weighted quantile sum (WQS) regression models were employed. RESULTS In single-pollutant analysis, maternal exposure to perfluorododecanoic acid (PFDoA) and perfluoroheptanoic acid (PFHpA) were associated with anemia in the first trimester, exposure to PFHpA and perfluorobutanesulfonic acid (PFBS) were associated with anemia in the second trimester, and exposure to perfluorodecanoic acid (PFDA) and perfluorononanoic acid (PFNA) were associated with anemia in the third trimester. Notably, perfluoroundecanoic acid (PFUnA) had a nonlinear association with anemia in the third trimester. In multiple-pollutant analysis, a positive association of PFDoA with anemia in the first trimester and a negative association of PFBS with anemia in the second trimester were confirmed by BKMR. Exposure to PFASs mixture was not associated with anemia in all three trimesters. In WQS, there was a significantly negative association between the PFAS mixture and anemia in the second trimester. CONCLUSION Maternal exposure to PFASs is associated with gestational anemia in different trimesters.
Collapse
Affiliation(s)
- Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Peng Tang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongxiang Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yanye Song
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530031, Guangxi, China
| | - Lei Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Bihu Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Mengrui Lin
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Meile Mo
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chengtuo Huang
- Department of Physical Examination, Guangxi Tiandong Hospital of Traditional Chinese Medicine, Tiandong, 531500, Guangxi, China
| | - Ming Wei
- Department of Obstetrics and Gynecology, Child Hygiene, Maternal and Child Health Care Hospital of Tianyang District, Baise City, 542899, Guangxi, China
| | - Shun Liu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
4
|
Li D, Jiang L, Hong Y, Cai Z. Multilayered glycoproteomic analysis reveals the hepatotoxic mechanism in perfluorooctane sulfonate (PFOS) exposure mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115774. [PMID: 33143982 DOI: 10.1016/j.envpol.2020.115774] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is one of the most widely used and distributed perfluorinated compounds proven to cause adverse health outcomes. Datasets of ecotoxico-genomics and proteomics have given greater insights for PFOS toxicological effect. However, the molecular mechanisms of hepatotoxicity of PFOS on post-translational modifications (PTMs) regulation, which is most relevant for regulating the activity of proteins, are not well elucidated. Protein glycosylation is one of the most ubiquitous PTMs associated with diverse cellular functions, which are critical towards the understanding of the multiple biological processes and toxic mechanisms exposed to PFOS. Here, we exploit the multilayered glycoproteomics to quantify the global protein expression levels, glycosylation sites, and glycoproteins in PFOS exposure and wild-type mouse livers. The identified 2439 proteins, 1292 glycosites, and 799 glycoproteins were displayed complex heterogeneity in PFOS exposure mouse livers. Quantification results reveal that 241 dysregulated proteins (fold change ≥ 2, p < 0.05) in PFOS exposure mouse livers were involved in the lipid and xenobiotic metabolism. While, 16 overexpressed glycoproteins were exclusively related to neutrophil degranulation, cellular responses to stress, protein processing in endoplasmic reticulum (ER). Moreover, the interactome and functional network analysis identified HP and HSP90AA1 as the potential glycoprotein biomarkers. These results provide unique insights into a deep understanding of the mechanisms of PFOS induced hepatotoxicity and liver disease. Our platform of multilayered glycoproteomics can be adapted to diverse ecotoxicological research.
Collapse
Affiliation(s)
- Dapeng Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Lilong Jiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China; HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China.
| |
Collapse
|
5
|
Guo J, Fang G, Wang S, Wang J. Quartz crystal microbalance sensor based on 11-mercaptoundecanoic acid self-assembly and amidated nano-titanium film for selective and ultrafast detection of phosphoproteins in food. Food Chem 2020; 344:128656. [PMID: 33234435 DOI: 10.1016/j.foodchem.2020.128656] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/27/2022]
Abstract
A novel quartz crystal microbalance (QCM) sensor for trace-phosphoprotein ultrafast detection was constructed based on the bridge interactions between the NH2-TiO2 sites enriched on Au-electrode and phosphate groups. Herein, 11-mercaptoundecanoic acid (MUA) modified by Au-S bond acted as carrier for immobilizing NH2-TiO2. Functionalized NH2-TiO2 to absorb phosphoproteins. Under the optimal conditions, the proposed sensor showed a linear frequency shift to the concentration of α-casein ranging from 1.0 × 10-3 to 1.0 mg mL-1 with a low detection limit of 5.3 × 10-6 mg mL-1 (S/N = 3), and the limit of quantitation was 0.001 mg mL-1. Compared with traditional Ti4+-IMAC/MOAC-system, the analysis process of NH2-TiO2/MUA/AuE-QCM sensor was simpler and faster which could complete within 5 min. Additionally, the constructed biosensor was successfully used for the non-fat milk and chicken egg white. This proposed sensor presents a great prospective strategy for the evaluation of the nutrition in different foods.
Collapse
Affiliation(s)
- Jianping Guo
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China
| | - Guozhen Fang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China
| | - Shuo Wang
- Medical College, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Junping Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, 29 The Thirteenth Road, Tianjin Economy and Technology Development Area, Tianjin 300457, PR China.
| |
Collapse
|
6
|
Bonato M, Corrà F, Bellio M, Guidolin L, Tallandini L, Irato P, Santovito G. PFAS Environmental Pollution and Antioxidant Responses: An Overview of the Impact on Human Field. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:8020. [PMID: 33143342 PMCID: PMC7663035 DOI: 10.3390/ijerph17218020] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Due to their unique properties, perfluorinated substances (PFAS) are widely used in multiple industrial and commercial applications, but they are toxic for animals, humans included. This review presents some available data on the PFAS environmental distribution in the world, and in particular in Europe and in the Veneto region of Italy, where it has become a serious problem for human health. The consumption of contaminated food and drinking water is considered one of the major source of exposure for humans. Worldwide epidemiological studies report the negative effects that PFAS have on human health, due to environmental pollution, including infertility, steroid hormone perturbation, thyroid, liver and kidney disorders, and metabolic disfunctions. In vitro and in vivo researches correlated PFAS exposure to oxidative stress effects (in mammals as well as in other vertebrates of human interest), produced by a PFAS-induced increase of reactive oxygen species formation. The cellular antioxidant defense system is activated by PFAS, but it is only partially able to avoid the oxidative damage to biomolecules.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Irato
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| | - Gianfranco Santovito
- Department of Biology, University of Padova, 35131 Padova, Italy; (M.B.); (F.C.); (M.B.); (L.G.); (L.T.)
| |
Collapse
|
7
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
8
|
Tang N, Zhang J, Fu X, Xie W, Qiu Y. PP2Acα inhibits PFKFB2-induced glycolysis to promote termination of liver regeneration. Biochem Biophys Res Commun 2020; 526:1-7. [PMID: 32192773 DOI: 10.1016/j.bbrc.2020.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/03/2020] [Indexed: 01/17/2023]
Abstract
The mechanisms underlying the initiation and proliferation of liver regeneration (LR) has been extensively studied using the partial hepatectomy (PHx) model, while little is known about the termination of LR. PP2Acα (protein phosphatase 2 A catalytic subunit α isoform) is the catalytic subunit of protein phosphatase 2 A (PP2A), accounting for most of intracellular serine/threonine phosphatase activity. We have previously observed that termination of LR delayed in PP2Acα liver-specific knockout (LKO) mice after PHx. In our study, we used phospho explorer antibody array analysis to screen the potential phosphorylation targets of PP2Acα, and PP2Acα had a great influence on the hepatic phosphoproteomic signaling in the termination of LR after PHx. We then tested the phosphorylation changes and metabolic function of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-2 (PFKFB2), an isoform of the key glycolytic enzyme PFKFB, which was significantly regulated by PP2Acα knockout. PP2Acα knockout enhanced glycolysis in vivo and in vitro, while adenoviral-mediated RNAi of PFKFB2 reversed the extension of postoperative liver regeneration in KO mice along with the downregulation of glycolysis. Therefore, we demonstrated that PP2Acα liver-specific knockout regulated the hepatocytes glycolysis via activating PFKFB2, thus enhancing liver regeneration during the termination stage.
Collapse
Affiliation(s)
- Neng Tang
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jingzi Zhang
- Medical School and Model Animal Research Center of Nanjing University, Nanjing, China
| | - Xiao Fu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Weiqi Xie
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yudong Qiu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
9
|
Zhang J, Tang N, Zhao Y, Zhao R, Fu X, Zhao D, Zhao Y, Huang L, Li C, Qiu Y, Xue B, Fang L. Global Phosphoproteomic Analysis Reveals Significant Metabolic Reprogramming in the Termination of Liver Regeneration in Mice. J Proteome Res 2020; 19:1788-1799. [PMID: 32105074 PMCID: PMC7205775 DOI: 10.1021/acs.jproteome.0c00028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Phosphorylation is crucial in regulating various biological processes. However, comprehensive phosphoproteomic profiling in the termination of liver regeneration (LR) is still missing. Here, we used Tandem Mass Tag (TMT) labeling coupled with phosphopeptide enrichment and two-dimensional (2D) liquid chromatography-mass spectrometry (LC-MS)/MS analysis to establish a global phosphoproteomic map in the liver of mice at day 5 after partial hepatectomy (PH). Altogether, 9731 phosphosites from 3443 proteins were identified and 7802 phosphosites from 2980 proteins were quantified. Motif analysis of the identified phosphosites revealed a diverse array of consensus sequences, suggesting that multiple kinase families including ERK/MAPK, PKA/PKC, CaMK-II, CKII, and CDK may be involved in the termination of LR. Functional clustering analysis of proteins with dysregulated phosphosites showed that they mainly participate in metabolic pathways, DNA replication, and tight junction. More importantly, the deletion of PP2Acα in the liver remarkably changes the overall phosphorylation profile, indicating its critical role in regulating the termination of LR. Finally, several differentially phosphorylated sites were validated by co-immunoprecipitation and Western blot. Taken together, our data unravel the first comprehensive phosphoproteomic map in the termination of LR in mice, which greatly expands our knowledge in the complicated regulation of this process and provides new directions for the treatment of liver cancer using liver resection.
Collapse
Affiliation(s)
- Jingzi Zhang
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Neng Tang
- Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Yinjuan Zhao
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ruoyu Zhao
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Xiao Fu
- Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Dandan Zhao
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Yue Zhao
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Chaojun Li
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| | - Yudong Qiu
- Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Lei Fang
- Model Animal Research Center and Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
10
|
Ghisi R, Vamerali T, Manzetti S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. ENVIRONMENTAL RESEARCH 2019; 169:326-341. [PMID: 30502744 DOI: 10.1016/j.envres.2018.10.023] [Citation(s) in RCA: 343] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/12/2018] [Accepted: 10/19/2018] [Indexed: 05/27/2023]
Abstract
PFASs are a class of compounds that include perfluoroalkyl and polyfluoroalkyl substances, some of the most persistent pollutants still allowed - or only partially restricted - in several product fabrications and industrial applications worldwide. PFASs have been shown to interact with blood proteins and are suspected of causing a number of pathological responses, including cancer. Given this threat to living organisms, we carried out a broad review of possible sources of PFASs and their potential accumulation in agricultural plants, from where they can transfer to humans through the food chain. Analysis of the literature indicates a direct correlation between PFAS concentrations in soil and bioaccumulation in plants. Furthermore, plant uptake largely changes with chain length, functional group, plant species and organ. Low accumulations of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been found in peeled potatoes and cereal seeds, while short-chain compounds can accumulate at high levels in leafy vegetables and fruits. Significant variations in PFAS buildup in plants according to soil amendment are also found, suggesting a particular interaction with soil organic matter. Here, we identify a series of challenges that PFASs pose to the development of a safe agriculture for future generations.
Collapse
Affiliation(s)
- Rossella Ghisi
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy.
| | - Teofilo Vamerali
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), University of Padua, Viale dell'Università 16, 35020 Legnaro, Padua, Italy
| | - Sergio Manzetti
- Fjordforsk A/S, Institute for Science and Technology, Midtun 6894, Vangsnes, Norway; Uppsala Centre for Computational Sciences, Dept. of Cell & Molec. Biol., Uppsala University, Box 596, 75124 Uppsala, Sweden
| |
Collapse
|
11
|
Smith LC, Lavelle CM, Silva-Sanchez C, Denslow ND, Sabo-Attwood T. Early phosphoproteomic changes for adverse outcome pathway development in the fathead minnow (Pimephales promelas) brain. Sci Rep 2018; 8:10212. [PMID: 29977039 PMCID: PMC6033950 DOI: 10.1038/s41598-018-28395-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 06/15/2018] [Indexed: 12/14/2022] Open
Abstract
Adverse outcome pathways (AOPs) are conceptual frameworks that organize and link contaminant-induced mechanistic molecular changes to adverse biological responses at the individual and population level. AOPs leverage molecular and high content mechanistic information for regulatory decision-making, but most current AOPs for hormonally active agents (HAAs) focus on nuclear receptor-mediated effects only despite the overwhelming evidence that HAAs also activate membrane receptors. Activation of membrane receptors triggers non-genomic signaling cascades often transduced by protein phosphorylation leading to phenotypic changes. We utilized label-free LC-MS/MS to identify proteins differentially phosphorylated in the brain of fathead minnows (Pimephales promelas) aqueously exposed for 30 minutes to two HAAs, 17α-ethinylestradiol (EE2), a strong estrogenic substance, and levonorgestrel (LNG), a progestin, both components of the birth control pill. EE2 promoted differential phosphorylation of proteins involved in neuronal processes such as nervous system development, synaptic transmission, and neuroprotection, while LNG induced differential phosphorylation of proteins involved in axon cargo transport and calcium ion homeostasis. EE2 and LNG caused similar enrichment of synaptic plasticity and neurogenesis. This study is the first to identify molecular changes in vivo in fish after short-term exposure and highlights transduction of rapid signaling mechanisms as targets of HAAs, in addition to nuclear receptor-mediated pathways.
Collapse
Affiliation(s)
- L C Smith
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C M Lavelle
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA.,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA
| | - C Silva-Sanchez
- Interdisciplinary Center for Biotechnology Research, University of Florida, 2033 Mowry Rd, Gainesville, FL, 32601, USA
| | - N D Denslow
- Department of Physiological Sciences, University of Florida, 1333 Center Dr., Gainesville, FL, 32603, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| | - T Sabo-Attwood
- Department of Environmental and Global Health, University of Florida, 1225 Center Dr., Rm 4160, Gainesville, FL, 32610, USA. .,Center for Environmental and Human Toxicology, University of Florida, 2187 Mowry Rd, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Vahdati Hassani F, Abnous K, Mehri S, Jafarian A, Birner-Gruenberger R, Yazdian Robati R, Hosseinzadeh H. Proteomics and phosphoproteomics analysis of liver in male rats exposed to bisphenol A: Mechanism of hepatotoxicity and biomarker discovery. Food Chem Toxicol 2017; 112:26-38. [PMID: 29269058 DOI: 10.1016/j.fct.2017.12.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA), discovered to be an artificial estrogen, has been shown to leach from some containers and mediate oxidative damage to cells and tissues and to be involved in reproductive disorders, obesity, diabetes, and liver dysfunction. In the current study, we investigated the effects of oral chronic exposure to low dose of BPA (0.5 mg kg-1) on the protein and phosphoprotein expression profiles in male Wistar rat liver using a gel-based proteomics approach based on two-dimensional gel electrophoresis followed by matrix-assisted laser desorption/ionization mass spectrometry identification. Our results showed that BPA exposure affected the levels of proteins and phosphoproteins involved in diverse biological processes associated with hepatotoxicity, fatty liver, and carcinoma. Moreover, we analyzed the effects of BPA on oxidative stress by assessing levels of malondialdehyde (MDA), a marker of lipid peroxidation, and reduced glutathione (GSH), a non-enzymatic antioxidant agent, in the liver. As expected BPA induced oxidative stress indicated by increased levels of MDA and decreased GSH content in the liver. In conclusion, chronic oral exposure of rats to BPA leads to increased oxidative stress in the liver and major alterations in the liver proteome and phosphoproteome, which may contribute to the pathophysiology of liver diseases.
Collapse
Affiliation(s)
- Faezeh Vahdati Hassani
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Khalil Abnous
- Pharmaceutical Research Center, Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Soghra Mehri
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical, Sciences, Mashhad, Iran.
| | - Amirhossein Jafarian
- Department of Pathology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Ruth Birner-Gruenberger
- Medical University of Graz, Institute of Pathology, Research Unit Functional Proteomics and Metabolic Pathways, Stiftingtalstrasse 24, 8010 Graz, Austria; Omics Center Graz, BioTechMed-Graz, Graz, Austria.
| | - Rezvan Yazdian Robati
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical, Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Wang XS, Liu C, Khoso PA, Zheng W, Li M, Li S. Autophagy response in the liver of pigeon exposed to avermectin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12767-12777. [PMID: 26886445 DOI: 10.1007/s11356-016-6209-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
Pesticide residues are an important aspect of environmental pollution. Environmental avermectin residues have produced adverse effects in organisms. Many pesticides exert their toxic effects via the mechanism of autophagy. The purpose of this study was to examine the changes in autophagy levels and in autophagy-related genes, including LC3, Beclin 1, Dynein, ATG5, TORC1, and TORC2, resulting from exposure to subchronic levels of AVM in liver tissue in the king pigeon model. We observed abundant autophagic vacuoles with extensively degraded organelles, autophagosomal vacuoles, secondary lysosomes, and double-membrane structures in the liver. The expression levels of the autophagy-related genes LC3-I, LC3-II, Beclin 1, ATG5, and Dynein were up-regulated; however, TORC1 and TORC2 expression levels were down-regulated. These changes occurred in a concentration-dependent manner after AVM exposure for 30, 60, and 90 days in pigeons. Taken together, these results suggested that AVM increased the autophagic flux and that upregulation of autophagy might be closely related to the hepatotoxicity of AVM in birds.
Collapse
Affiliation(s)
- Xian-Song Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ci Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Pervez Ahmed Khoso
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Weijia Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ming Li
- College of Life Science, Daqing Normal College, Daqing, 163712, People's Republic of China.
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
14
|
Golizeh M, Schneider C, Ohlund LB, Sleno L. Multidimensional LC–MS/MS analysis of liver proteins in rat, mouse and human microsomal and S9 fractions. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|