1
|
Wang F, Yu X, Qian J, Cao Y, Dong S, Zhan S, Lu Z, Bast RC, Song Q, Chen Y, Zhang Y, Zhou J. A novel SIK2 inhibitor SIC-19 exhibits synthetic lethality with PARP inhibitors in ovarian cancer. Drug Resist Updat 2024; 74:101077. [PMID: 38518726 DOI: 10.1016/j.drup.2024.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 03/24/2024]
Abstract
PURPOSE Ovarian cancer patients with HR proficiency (HRP) have had limited benefits from PARP inhibitor treatment, highlighting the need for improved therapeutic strategies. In this study, we developed a novel SIK2 inhibitor, SIC-19, and investigated its potential to enhance the sensitivity and expand the clinical utility of PARP inhibitors in ovarian cancer. METHODS The SIK2 protein was modeled using a Molecular Operating Environment (MOE), and the most favorable model was selected based on a GBVI/WSA dG scoring function. The Chembridge Compound Library was screened, and the top 20 candidate compounds were tested for their interaction with SIK2 and downstream substrates, AKT-pS473 and MYLK-pS343. SIC-19 emerged as the most promising drug candidate and was further evaluated using multiple assays. RESULTS SIC-19 exhibited selective and potent inhibition of SIK2, leading to its degradation through the ubiquitination pathway. The IC50 of SIC-19 correlated inversely with endogenous SIK2 expression in ovarian cancer cell lines. Treatment with SIC-19 significantly inhibited cancer cell growth and sensitized cells to PARP inhibitors in vitro, as well as in ovarian cancer organoids and xenograft models. Mechanistically, SIK2 knockdown and SIC-19 treatment reduced RAD50 phosphorylation at Ser635, prevented nuclear translocation of RAD50, disrupted nuclear filament assembly, and impaired DNA homologous recombination repair, ultimately inducing apoptosis. These findings highlight the crucial role of SIK2 in the DNA HR repair pathway and demonstrate the significant PARP inhibitor sensitization achieved by SIC-19 in ovarian cancer. CONCLUSIONS SIC-19, a novel SIK2 inhibitor, effectively inhibits tumor cell growth in ovarian cancer by interfering with RAD50-mediated DNA HR repair. Furthermore, SIC-19 enhances the efficacy of PARP inhibitors, providing a promising therapeutic strategy to improve outcomes for ovarian cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xuejiao Yu
- Department of Imaging Department, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun Qian
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yumin Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shunli Dong
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Shenghua Zhan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Lu
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Robert C Bast
- Department of Experimental Therapeutics, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Qingxia Song
- Department of Obstetrics and Gynecology, Nanjing University of Chinese Medicine Affiliated Suzhou Hospital, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
2
|
Quezada-Vidal J, Ortíz-Muñiz R, Cervantes-Ríos E, Cruz-Vallejo V, Morales-Ramírez P. In vivo kinetics of the genotoxic and cytotoxic activities of cladribine and clofarabine. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:922-927. [PMID: 32567744 DOI: 10.1002/em.22394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
The aim of the present in vivo study was to determine the kinetics of the genotoxic and cytotoxic activities of cladribine and clofarabine in mouse normoblasts using flow cytometry. Mice in groups of five were treated with cladribine or clofarabine. Blood samples were obtained from the mouse tails before treatment and every 8 hr posttreatment for 72 hr. These samples were cytometrically scored for micronucleated reticulocytes (RETs), and the percentage of RETs was determined. The results showed that clofarabine and cladribine have early cytotoxic effects that are related to the genotoxic effects reported in previous studies; the drugs have both complex long-lasting genotoxic and cytotoxic kinetic activity, with similar profiles that suggest a relationship between the genotoxic and cytotoxic parameters. The initial genotoxkinetics timing of clofarabine is equivalent to those of difluorodeoxycytidine, likely because both agents inhibit DNA polymerase. Clofarabine shows a higher genotoxic and cytotoxic efficiency than cladribine, in agreement with previous results.
Collapse
Affiliation(s)
- Jesús Quezada-Vidal
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Centro Nuclear, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, México
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de México, México
| | - Rocío Ortíz-Muñiz
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de México, México
| | - Elsa Cervantes-Ríos
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Ciudad de México, México
| | - Virginia Cruz-Vallejo
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Centro Nuclear, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, México
| | - Pedro Morales-Ramírez
- Departamento de Biología, Instituto Nacional de Investigaciones Nucleares, Centro Nuclear, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México, México
| |
Collapse
|
3
|
Cruz-Vallejo V, Ortíz-Muñiz R, Vallarino-Kelly T, Cervantes-Ríos E, Morales-Ramírez P. In vivo Characterization of the Radiosensitizing Effect of a Very Low Dose of BrdU in Murine Cells Exposed to Low-Dose Radiation. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:534-545. [PMID: 30851126 DOI: 10.1002/em.22284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/24/2019] [Accepted: 03/02/2019] [Indexed: 06/09/2023]
Abstract
The aim of the present study was to characterize the in vivo radiosensitizing effect of a very low dose of bromodeoxyuridine (BrdU) in mice exposed to low-dose radiation by establishing the following: (1) the radiosensitizing effect during DNA synthesis using single-cell gel electrophoresis (SCGE) in murine bone marrow cells, and (2) the number and timing of the mechanisms of genotoxicity and cytotoxicity, as well as the correlation of both end points, using flow cytometry analysis of the kinetics of micronucleus induction in reticulocytes. Groups of mice received intraperitoneal injections of 0.125 mg/g of BrdU 24 h prior to irradiation with 0.5 Gy of 60 Co gamma rays. DNA breaks measured using SCGE were determined at 30 min after exposure to radiation. The kinetics of micronucleated reticulocyte (MN-RET) induction was determined every 8 h after irradiation up to 72 h. The results from both experimental models indicated that low-level BrdU incorporation into DNA increased the sensitivity to 0.5 Gy of radiation, particularly in the S phase. The formation of micronuclei by gamma rays was produced at three different times using two main mechanisms. In the BrdU-substituted cells, the second mechanism was associated with a high cytotoxic effect that was absent in the irradiated BrdU-unsubstituted cells. The third mechanism, in which micronucleus formation was increased in irradiated substituted cells compared with the irradiated nonsubstituted control cells, was also related to an increase in cytotoxicity. Environ. Mol. Mutagen. 60:534-545, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Virginia Cruz-Vallejo
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México C. P., 52750, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana, Avenida San Rafael Atlixco 186 CP, 09340, Ciudad de México, Mexico
| | - Rocío Ortíz-Muñiz
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186 CP, 09340, Ciudad de México, Mexico
| | - Teresita Vallarino-Kelly
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México C. P., 52750, Mexico
| | - Elsa Cervantes-Ríos
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186 CP, 09340, Ciudad de México, Mexico
| | - Pedro Morales-Ramírez
- Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca s/n, La Marquesa, Ocoyoacac, Estado de México C. P., 52750, Mexico
| |
Collapse
|
4
|
Morales-Ramírez P, Vallarino-Kelly T, Cruz-Vallejo VL. The OECD's micronucleus test guideline for single exposure to an agent and the genotox-kinetic alternative. Mutagenesis 2018; 32:411-415. [PMID: 28472308 DOI: 10.1093/mutage/gex010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/05/2017] [Indexed: 11/13/2022] Open
Abstract
The 'Organization for Economic Co-operation and Development (OECD) guidelines for the Testing of Chemicals' aims to identify whether a chemical is a genotoxic hazard, and these guidelines 'are periodically reviewed in the light of scientific progress, changing regulatory needs and animal welfare considerations'. OECD published a mammalian erythrocyte micronucleus test guideline for testing chemicals (1) that proposes: 'Animals are treated with the test chemical once…Samples of peripheral blood are taken at least twice (from the same group of animals), starting not earlier than 36 h after treatment, with appropriate intervals following the first sample, but not extending beyond 72 h'. This guidelines are base on the report by the Collaborative Study Group for the Micronucleus Test (CSGMT), which was based on the sampling of mice peripheral blood every 24 h We investigated the kinetics of micronucleus induction by taking samples prior to administration and every 8 or 10 h after single treatment. The comparisons suggest that 24-h sampling could cause not only an underestimation of the responses to various agents but also a misestimation of the time of maximal induction. We proposed that samples of peripheral blood must be collected at two different times during an optimal 25-h sampling range (from 25 to 50 h). Besides, we hypothesize that the time of maximal EPC-MN induction depends on the time required for the mechanisms involved in micronucleus production; and we suggest that a kinetic analysis of MN-PCE induction by several agents with well-known mechanisms of micronuclei induction would allow derivation of a specific relationship between the kinetics of MN-PCE induction and some process of DNA breaks and/or micronuclei induction.
Collapse
Affiliation(s)
- Pedro Morales-Ramírez
- Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 México, D.F., México
| | | | | |
Collapse
|
5
|
Genotoxicity kinetics in murine normoblasts as an approach for the in vivo action of difluorodeoxycytidine. Cancer Chemother Pharmacol 2017; 79:843-853. [DOI: 10.1007/s00280-017-3290-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/14/2017] [Indexed: 12/30/2022]
|
6
|
Mhaidat NM, Alzoubi KH, Khabour OF, Alawneh KZ, Raffee LA, Alsatari ES, Hussein EI, Bani-Hani KE. Assessment of genotoxicity of vincristine, vinblastine and vinorelbine in human cultured lymphocytes: a comparative study. Balkan J Med Genet 2016; 19:13-20. [PMID: 27785403 PMCID: PMC5026275 DOI: 10.1515/bjmg-2016-0002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vincristine (VCR), vinblastine (VBL) and vinorelbine (VRL) are anticancer agents from the Vinca alkaloid family that have the potential to induce genotoxic effect. The aim of the present study was to compare the genotoxic effect of VCR, VBL and VRL. Levels of 8-hydroxy-2-deoxy guanosine (8-OHdG) and sister chromatid exchanges (SCEs) were measured in cultured human blood lymphocytes treated with VCR, VBL and VRL at concentrations of 0.01 and 0.1 μg/mL. Results showed that VCR, VBL and VRL significantly increased the 8-OHdG levels (p <0.05), whereas it did not cause a significant increase in the frequencies of SCEs in human blood lymphocytes as compared to controls. On the other hand, all three agents significantly increased cells mitotic index (p <0.05). At both tested concentrations, the magnitude of the increase in 8-OHdG was VBL>VCR>VRL. In conclusion, VCR, VBL and VRL induce DNA damage as indicated by the increase in the 8-OHdG biomarker but with different magnitude.
Collapse
Affiliation(s)
- N M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - K H Alzoubi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - O F Khabour
- Department of Medical Laboratory Sciences, Faculty of Applied Medical sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - K Z Alawneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - L A Raffee
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - E S Alsatari
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - E I Hussein
- Department of Biology, Faculty of Science, Yarmouk University, Irbid, Jordan
| | - K E Bani-Hani
- Faculty of Medicine, Hashemite University, Zarqaa, Jordan
| |
Collapse
|
7
|
Flórez MM, Fêo HB, da Silva GN, Yamatogi RS, Aguiar AJ, Araújo JP, Rocha NS. Cell cycle kinetics, apoptosis rates and gene expressions of MDR-1, TP53, BCL-2 and BAX in transmissible venereal tumour cells and their association with therapy response. Vet Comp Oncol 2016; 15:793-807. [PMID: 26879698 DOI: 10.1111/vco.12220] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/06/2016] [Accepted: 01/12/2016] [Indexed: 12/17/2022]
Abstract
Transmissible venereal tumour (TVT) generally presents different degrees of aggressiveness, which makes them unresponsive to conventional treatment protocols. This implies a progressive alteration of their biological profile. This study aimed to evaluate the cytotoxicity, cell survival, apoptosis and cell cycle alterations in TVT cell cultures subjected to treatment with vincristine. Similarly, it assessed possible implications of MDR-1, TP53, BCL-2, and BAX gene expressions in eight TVT primary cultures for both resistance to chemotherapy and biological behaviour. When comparing TVT cells receiving vincristine to those untreated, a statistical difference related to increased cytotoxicity and decreased survival rates, and alterations in G1 and S cell cycle phases were found but without detectable differences in apoptosis. Increased MDR-1 gene expression was observed after treatment. The groups did not differ statistically in relation to the TP53, BAX and BCL-2 genes. Although preliminary, the findings suggest that such augmented expression is related to tumour malignancy and chemotherapy resistance.
Collapse
Affiliation(s)
- M M Flórez
- Department of Veterinary Clinics, Faculty of Veterinary Medicine, São Paulo State University-UNESP, Botucatu, Brazil.,Veterinary Pathology Research Group, Faculty of Agricultural Sciences, Universidad de Caldas, Manizales, Colombia
| | - H B Fêo
- Department of Veterinary Clinics, Faculty of Veterinary Medicine, São Paulo State University-UNESP, Botucatu, Brazil
| | - G N da Silva
- Department of Clinical Analysis. Pharmacy School, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - R S Yamatogi
- Department of Microbiology and immunology, Institute of Biosciences of Botucatu (IBB) and Biotechnology Institute (IBTEC), São Pablo State University-UNESP, Botucatu, Brazil
| | - A J Aguiar
- Department of Veterinary Clinics, Faculty of Veterinary Medicine, São Paulo State University-UNESP, Botucatu, Brazil
| | - J P Araújo
- Department of Microbiology and immunology, Institute of Biosciences of Botucatu (IBB) and Biotechnology Institute (IBTEC), São Pablo State University-UNESP, Botucatu, Brazil
| | - N S Rocha
- Department of Veterinary Clinics, Faculty of Veterinary Medicine, São Paulo State University-UNESP, Botucatu, Brazil
| |
Collapse
|