1
|
Zhang Y, Liang J, Jiang H, Qian M, Zhao W, Bai W. Protective effect of sterols extracted from Lotus plumule on ethanol-induced injury in GES-1 cells in vitro. Food Funct 2021; 12:12659-12670. [PMID: 34821900 DOI: 10.1039/d1fo02684d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, sterols were isolated from Lotus plumule by Soxhlet extraction and saponification and were further characterized by GC-MS analysis. The results showed that the sterols extracted from Lotus plumule mainly contained β-sitosterol, fucosterol, and campesterol. Models were established in vitro to investigate the protective effects of Lotus plumule sterols (LPSs) on ethanol-induced injury in human gastric epithelium (GES-1) cells. The results showed that appropriate concentrations of LPSs and β-sitosterol could protect GES-1 cells from ethanol-induced injury by reducing ROS levels, reducing calcium ion release, increasing antioxidant enzyme activity and maintaining mitochondrial membrane potential. Western blot experiment results also showed that appropriate concentrations of LPSs and β-sitosterol could up-regulate the expression of the anti-apoptotic protein Bcl-2 and down-regulate the pro-apoptotic proteins Bax and caspase-3 in GES-1 cells. Meanwhile, sterol pretreatment groups down-regulated the protein expression levels of p-P38 and p-JNK in ethanol-damaged GES-1 cells and up-regulated the expression level of p-ERK, suggesting that sterols protect GES-1 cells from ethanol-induced damage by regulating the MAPK signaling pathway. Taken together, Lotus plumule sterols could effectively prevent gastric cell damage in vitro and suggest the potential application of LPSs as bioactive ingredients for healthy foods.
Collapse
Affiliation(s)
- Ying Zhang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jiao Liang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Hao Jiang
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Min Qian
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Science, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China. .,Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Zhao M, Wang Y, Jia X, Liu W, Zhang X, Cui J. The effect of ochratoxin A on cytotoxicity and glucose metabolism in human esophageal epithelium Het-1A cells. Toxicon 2021; 198:80-92. [PMID: 33965433 DOI: 10.1016/j.toxicon.2021.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 12/24/2022]
Abstract
Ochratoxin A (OTA) is a widespread mycotoxin worldwide that causes major health risks. The esophageal epithelium is unavoidably exposed to food contaminated OTA after ingestion. Yet, few studies have involved in the putative effects of OTA on the cytotoxicity and glucose metabolism responses on esophageal epithelial cells. In this in vitro study, we aimed to investigate the effects of OTA on esophageal epithelial cell intracellular apoptosis, oxidative stress, DNA damage, mitochondrial function and glucose metabolism. Human esophageal epithelial Het-1A cells were exposed to 2.5, 5 or 10 μM OTA for 24 h. The results showed that OTA decreased cell viability and concomitantly increased apoptosis-related indices, reactive oxygen species generation, oxidative DNA damage, mitochondrial dysfunction and mitochondrial apoptotic pathway activation. In addition, OTA switched the glucose metabolism of Het-1A cells from oxidative phosphorylation towards glycolysis by decreasing the expression of tricarboxylic acid cycle-associated enzymes such as α-ketoglutarate dehydrogenase and isocitrate dehydrogenase 1 and by increasing pyruvate dehydrogenase kinase 1 expression. The data indicated that cell apoptosis, oxidative damage, mitochondrial dysfunction and glucose metabolism perturbation might play pivotal roles in the mechanism of OTA-induced esophageal toxicity.
Collapse
Affiliation(s)
- Man Zhao
- Metabolic Disease and Cancer Research Center, Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Wang
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xin Jia
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Weina Liu
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Xianghong Zhang
- Metabolic Disease and Cancer Research Center, Laboratory of Pathology, Hebei Medical University, Shijiazhuang, China; Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China
| | - Jinfeng Cui
- Department of Pathology, The Second Hospital, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
7
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
8
|
Chang JF, Hsu JL, Sheng YH, Leu WJ, Yu CC, Chan SH, Chan ML, Hsu LC, Liu SP, Guh JH. Phosphodiesterase Type 5 (PDE5) Inhibitors Sensitize Topoisomerase II Inhibitors in Killing Prostate Cancer Through PDE5-Independent Impairment of HR and NHEJ DNA Repair Systems. Front Oncol 2019; 8:681. [PMID: 30705876 PMCID: PMC6344441 DOI: 10.3389/fonc.2018.00681] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 12/27/2018] [Indexed: 01/17/2023] Open
Abstract
Human castration-resistant prostate cancer (CRPC) is a significant target of clinical research. The use of DNA-damaging agents has a long history in cancer chemotherapy but is limited by their toxicities. The combination with a safer drug can be a strategy in reducing dosage and toxicity while increasing anticancer activity in CRPC treatment. Phosphodiesterase type 5 (PDE5) inhibitors are used to treat erectile dysfunction through the selective inhibition of PDE5 that is responsible for cGMP degradation in the corpus cavernosum. Several studies have reported that PDE5 inhibitors display protective effect against doxorubicin-induced cardiotoxicity. The combinatory treatment of CRPC with doxorubicin and PDE5 inhibitors has been studied accordingly. The data demonstrated that sildenafil or vardenafil (two structure-related PDE5 inhibitors) but not tadalafil (structure-unrelated to sildenafil) sensitized doxorubicin-induced apoptosis in CRPC cells with deteriorating the down-regulation of anti-apoptotic Bcl-2 family members, including Bcl-xL and Mcl-1, and amplifying caspase activation. Homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair systems were inhibited in the apoptotic sensitization through detection of nuclear foci formation of Rad51 and DNA end-binding of Ku80. PDE5 knockdown to mimic the exposure to PDE5 inhibitors did not reproduce apoptotic sensitization, suggesting a PDE5-independent mechanism. Not only doxorubicin, sildenafil combined with other inhibitors of topoisomerase II but not topoisomerase I also triggered apoptotic sensitization. In conclusion, the data suggest that sildenafil and vardenafil induce PDE5-independent apoptotic sensitization to doxorubicin (or other topoisomerase II inhibitors) through impairment of both HR and NHEJ repair systems that are evident by a decrease of nuclear Rad51 levels and their foci formation in the nucleus, and an inhibition of Ku80 DNA end-binding capability. The combinatory treatment may enable an important strategy for anti-CRPC development.
Collapse
Affiliation(s)
- Jo-Fan Chang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hua Sheng
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Chun Yu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - She-Hung Chan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Cosmetic Science, Providence University, Taichung, Taiwan
| | - Mei-Ling Chan
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Ping Liu
- Department of Urology, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
9
|
Kuroda K, Hibi D, Ishii Y, Yokoo Y, Takasu S, Kijima A, Matsushita K, Masumura KI, Kodama Y, Yanai T, Sakai H, Nohmi T, Ogawa K, Umemura T. Role of p53 in the progression from ochratoxin A-induced DNA damage to gene mutations in the kidneys of mice. Toxicol Sci 2015; 144:65-76. [PMID: 25636497 DOI: 10.1093/toxsci/kfu267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Carcinogenic doses of ochratoxin A (OTA) cause increases of mutant frequencies (MFs) of the red/gam gene (Spi(-)) in the kidneys of p53-deficient gpt delta mice, but not in p53-proficient mice. Here, we investigated the role of p53 in the progression from OTA-induced DNA damage to gene mutations. To this end, p53-proficient and -deficient mice were administered 5 mg/kg OTA for 3 days or 4 weeks by gavage. After 3 days of administration, comet assays were performed and there were no differences in the degrees of OTA-induced DNA damage between p53-proficient and -deficient mice. However, the frequencies of γ-H2AX-positive tubular epithelial cells in p53-deficient mice were significantly higher than those in p53-proficient mice, implying that p53 inhibited the progression from DNA damage to DNA double-strand breaks (DSBs). Evaluation of global gene expression and relevant mRNA/protein expression levels demonstrated that OTA increased the expression of Cdkn1a, which encodes the p21 protein, in p53-proficient mice, but not in p53-deficient mice. Moreover, in p53-deficient mice, mRNA levels of cell cycle progression and DSB repair (homologous recombination repair [HR])-related genes were significantly increased. Thus, G1/S arrest due to activation of the p53/p21 pathway may contribute to the prevention of DSBs in p53-proficient mice. In addition, single base deletions/insertions/substitutions were predominant, possibly due to HR. Overall, these results suggested that OTA induced DSBs at the carcinogenic target site in mice and that p53/p21-mediated cell cycle control prevented an increase in the formation of DSBs, leading to gene mutations.
Collapse
Affiliation(s)
- Ken Kuroda
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Daisuke Hibi
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yuji Ishii
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yuh Yokoo
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Shinji Takasu
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Aki Kijima
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kohei Matsushita
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Ken-ichi Masumura
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Yukio Kodama
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Tokuma Yanai
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Hiroki Sakai
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takehiko Nohmi
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Kumiko Ogawa
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| | - Takashi Umemura
- *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan *Division of Pathology, Division of Genetics and Mutagenesis, Division of Toxicology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193 and Biological Safety Research Center, National Institute of Health Sciences, Tokyo 158-8501, Japan
| |
Collapse
|