1
|
Blachier F, Andriamihaja M. Effects of the L-tyrosine-derived bacterial metabolite p-cresol on colonic and peripheral cells. Amino Acids 2021; 54:325-338. [PMID: 34468872 DOI: 10.1007/s00726-021-03064-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
Abstract
Specific families of bacteria present within the intestinal luminal content produce p-cresol from L-tyrosine. Although the hosts do not synthesize p-cresol, they can metabolize this compound within their colonic mucosa and liver leading to the production of co-metabolites including p-cresyl sulfate (p-CS) and p-cresyl glucuronide (p-CG). p-Cresol and its co-metabolites are recovered in the circulation mainly conjugated to albumin, but also in their free forms that are excreted in the urine. An increased dietary protein intake raises the amount of p-cresol recovered in the feces and urine, while fecal excretion of p-cresol is diminished by a diet containing undigestible polysaccharides. p-Cresol in excess is genotoxic for colonocytes. In addition, in these cells, this bacterial metabolite decreases mitochondrial oxygen consumption, while increasing the anion superoxide production. In chronic kidney disease (CKD), marked accumulation of p-cresol and p-CS in plasma is measured, and in renal tubular cells, p-cresol and p-CS increase oxidative stress, affect mitochondrial function, and lead to cell death, strongly suggesting that these 2 compounds act as uremic toxins that aggravate CKD progression. p-Cresol and p-CS are also suspected to play a role in the CKD-associated adverse cardiovascular events, since they affect endothelial cell proliferation and migration, decrease the capacity of endothelial wound repair, and increase the senescence of endothelial cells. Finally, the fact that concentration of p-cresol is transiently increased in young autistic children biological fluids, and that intraperitoneal injection of p-cresol in animal models induces some behavioral characteristics observed in the autism spectrum disorders (ASD), raise the view that p-cresol may possibly represent one of the components involved in ASD etiology. Further pre-clinical and clinical studies are obviously needed to determine if the lowering of p-cresol and/or p-CS circulating concentrations, by dietary and/or pharmacological means, would allow, by itself or in combination with other interventions, to improve CKD progression and associated cardiovascular outcomes, as well as some neurological outcomes in children with an early diagnosis of autism.
Collapse
Affiliation(s)
- F Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France.
| | - M Andriamihaja
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| |
Collapse
|
2
|
Favero C, Carriazo S, Cuarental L, Fernandez-Prado R, Gomá-Garcés E, Perez-Gomez MV, Ortiz A, Fernandez-Fernandez B, Sanchez-Niño MD. Phosphate, Microbiota and CKD. Nutrients 2021; 13:1273. [PMID: 33924419 PMCID: PMC8070653 DOI: 10.3390/nu13041273] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
Phosphate is a key uremic toxin associated with adverse outcomes. As chronic kidney disease (CKD) progresses, the kidney capacity to excrete excess dietary phosphate decreases, triggering compensatory endocrine responses that drive CKD-mineral and bone disorder (CKD-MBD). Eventually, hyperphosphatemia develops, and low phosphate diet and phosphate binders are prescribed. Recent data have identified a potential role of the gut microbiota in mineral bone disorders. Thus, parathyroid hormone (PTH) only caused bone loss in mice whose microbiota was enriched in the Th17 cell-inducing taxa segmented filamentous bacteria. Furthermore, the microbiota was required for PTH to stimulate bone formation and increase bone mass, and this was dependent on bacterial production of the short-chain fatty acid butyrate. We review current knowledge on the relationship between phosphate, microbiota and CKD-MBD. Topics include microbial bioactive compounds of special interest in CKD, the impact of dietary phosphate and phosphate binders on the gut microbiota, the modulation of CKD-MBD by the microbiota and the potential therapeutic use of microbiota to treat CKD-MBD through the clinical translation of concepts from other fields of science such as the optimization of phosphorus utilization and the use of phosphate-accumulating organisms.
Collapse
Affiliation(s)
- Chiara Favero
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Sol Carriazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Leticia Cuarental
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Raul Fernandez-Prado
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Elena Gomá-Garcés
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
| | - Maria Vanessa Perez-Gomez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Av Reyes Católicos 2, 28040 Madrid, Spain; (C.F.); (S.C.); (L.C.); (R.F.-P.); (E.G.-G.); (M.V.P.-G.)
- Red de Investigacion Renal (REDINREN), Av Reyes Católicos 2, 28040 Madrid, Spain
- School of Medicine, Department of Pharmacology and Therapeutics, Universidad Autonoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Alcalde-Estévez E, Sosa P, Asenjo-Bueno A, Plaza P, Olmos G, Naves-Díaz M, Rodríguez-Puyol D, López-Ongil S, Ruiz-Torres MP. Uraemic toxins impair skeletal muscle regeneration by inhibiting myoblast proliferation, reducing myogenic differentiation, and promoting muscular fibrosis. Sci Rep 2021; 11:512. [PMID: 33436654 PMCID: PMC7804102 DOI: 10.1038/s41598-020-79186-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/04/2020] [Indexed: 01/29/2023] Open
Abstract
Uraemic toxins increase in serum parallel to a decline in the glomerular filtration rate and the development of sarcopenia in patients with chronic kidney disease (CKD). This study analyses the role of uraemic toxins in sarcopenia at different stages of CKD, evaluating changes in the muscular regeneration process. Cultured C2C12 cells were incubated with a combination of indoxyl sulphate and p-cresol at high doses (100 µg/mL) or low doses (25 µg/mL and 10 µg/mL) resembling late or early CKD stages, respectively. Cell proliferation (analysed by scratch assays and flow cytometry) was inhibited only by high doses of uraemic toxins, which inactivated the cdc2-cyclin B complex, inhibiting mitosis and inducing apoptosis (analysed by annexin V staining). By contrast, low doses of uraemic toxins did not affect proliferation, but reduced myogenic differentiation, primed with 2% horse serum, by inhibiting myogenin expression and promoting fibro-adipogenic differentiation. Finally, to assess the in vivo relevance of these results, studies were performed in gastrocnemii from uraemic rats, which showed higher collagen expression and lower myosin heavy chain expression than those from healthy rats. In conclusion, uraemic toxins impair the skeletal muscular regeneration process, even at low concentrations, suggesting that sarcopenia can progress from the early stages of CKD.
Collapse
Affiliation(s)
- Elena Alcalde-Estévez
- grid.7159.a0000 0004 1937 0239Departamento de Biología de Sistemas, Facultad de Medicina Y Ciencias de La Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Patricia Sosa
- grid.7159.a0000 0004 1937 0239Departamento de Biología de Sistemas, Facultad de Medicina Y Ciencias de La Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Ana Asenjo-Bueno
- grid.411336.20000 0004 1765 5855Unidad de Investigación de La Fundación Para La Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Patricia Plaza
- grid.411336.20000 0004 1765 5855Unidad de Investigación de La Fundación Para La Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Gemma Olmos
- grid.7159.a0000 0004 1937 0239Departamento de Biología de Sistemas, Facultad de Medicina Y Ciencias de La Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain ,Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain ,grid.420232.50000 0004 7643 3507Area 3-Fisiología y Fisiopatología Renal Y Vascular del IRYCIS, Madrid, Spain
| | - Manuel Naves-Díaz
- Unidad de Gestión Clínica de Metabolismo Óseo. Hospital Universitario Central de Asturias, ISPA, Oviedo, Spain
| | - Diego Rodríguez-Puyol
- Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain ,grid.420232.50000 0004 7643 3507Area 3-Fisiología y Fisiopatología Renal Y Vascular del IRYCIS, Madrid, Spain ,grid.411336.20000 0004 1765 5855Departamento de Medicina Y Especialidades Médicas, Universidad de Alcalá Y Servicio de Nefrología del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Susana López-Ongil
- grid.411336.20000 0004 1765 5855Unidad de Investigación de La Fundación Para La Investigación Biomédica del Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain ,Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain ,grid.420232.50000 0004 7643 3507Area 3-Fisiología y Fisiopatología Renal Y Vascular del IRYCIS, Madrid, Spain
| | - María P. Ruiz-Torres
- grid.7159.a0000 0004 1937 0239Departamento de Biología de Sistemas, Facultad de Medicina Y Ciencias de La Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain ,Instituto Reina Sofía de Investigación Nefrológica, IRSIN, Madrid, Spain ,grid.420232.50000 0004 7643 3507Area 3-Fisiología y Fisiopatología Renal Y Vascular del IRYCIS, Madrid, Spain
| |
Collapse
|
4
|
Hirano S, Kanno S. Relevance of autophagy markers to cytotoxicity of zinc compounds in macrophages. Toxicol In Vitro 2020; 65:104816. [PMID: 32126253 DOI: 10.1016/j.tiv.2020.104816] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Autophagy molecules such as microtubule-associated protein light chain 3 (LC3) and p62/SQSTM1 have been used as biomarkers of protective or conversely adverse effects of exposure to toxicants. In the present study we show changes in LC3-II (a lipidated form of LC3-I) and p62 levels in response to zinc compounds and some other toxicants in J774.1 murine macrophages. The cytotoxicity of either ZnO or ZnSO4 largely depended on the concentration of FBS or albumin in the culture medium. Accordingly, these authophagy markers were more remarkably increased when the cells were exposed to ZnO or ZnSO4 in the absence of FBS. We next addressed lysosomal function impairment and changes in LC3-II and p62 levels following exposure to TiO2, ZnO, and ZnSO4. Lysosomal pH was quickly decreased by autolysosome inhibitors such as bafilomycin A1 and chloroquine, while TiO2, ZnO and ZnSO4 did not decrease lysosomal pH. However, the amounts of LC3-II and p62 and the LC3-II/LC3-I ratio were increased either by the lysosomal inhibitors and the Zn compounds. LC3-II and p62 levels were increased after exposure to arsenite and lipopolysaccharide (LPS). The p62 and phospho-p62 levels were also increased by either ZnSO4 and bafilomycin A1 in HEK293 cells stably expressing RFP-LC3. The current observations suggest that LC3-II and p62 levels were increased as consequences of early effects of toxicants without changing lysosomal pH.
Collapse
Affiliation(s)
- Seishiro Hirano
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Sanae Kanno
- Department of Forensic Medicine, Nagoya City University Graduate School of Medical Sciences, Japan
| |
Collapse
|
5
|
Zhao H, Wang Y, Fei D, Guo M, Yang X, Mu M, Yu H, Xing M. Destruction of redox and mitochondrial dynamics co-contributes to programmed cell death in chicken kidney under arsenite or/and copper (II) exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 179:167-174. [PMID: 31039459 DOI: 10.1016/j.ecoenv.2019.04.062] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/19/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Sub-chronic arsenic (arsenite) exposure-induced oxidative toxicity leads to adverse effects in various organ systems, especially the kidney. Copper sulphate (Cu2+), known for its extensive uses in agriculture, has also been reported to have pro-oxidation properties. Both of these two potential toxic elements can bio-accumulate through food chain, thus endangering human health. However, their interaction study in the kidney is scanty. AIM To investigate the synergism effects of Cu2+ in arseniasis-elicited oxidative stress and cascaded renal injury in chickens. RESULTS Arsenite intoxication decreased renal antioxidant system along with ATPases. Arsenite exposure also significantly elicited disequilibrium of mitochondrial homeostasis, accompanying by elevated apoptotic and autophagic cell death. The disturbed morphological and ultrastructural changes further corroborated arsenite nephrotoxicity. These anomalies aligned with the findings in Cu2+ groups, which co-administrated with arsenic further deteriorated these pathological changes. This synergism was achieved partially via the inactivation of phosphoinositide-3-kinase/protein kinase b/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway through the activation of P53. CONCLUSIONS Copper excess and arsenic exposure can function independently or cooperatively to affect oxidative stress, mitochondrial dynamics and programmed cell death. These results highlighted the need to take precautions against copper and arsenic co-exposure when considering their impact in susceptible animals/populations.
Collapse
Affiliation(s)
- Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Menghao Guo
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Xin Yang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Mengyao Mu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongxian Yu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|
6
|
Kuo HL, Huang CC, Lin TY, Lin CY. IL-17 and CD40 ligand synergistically stimulate the chronicity of diabetic nephropathy. Nephrol Dial Transplant 2019; 33:248-256. [PMID: 28339909 DOI: 10.1093/ndt/gfw397] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/28/2016] [Indexed: 12/17/2022] Open
Abstract
Background Early stages of diabetic nephropathy (DN) are characterized by an influx of inflammatory cells. Interactions between infiltrating T cells and podocytes may play an important role in the ongoing inflammatory response and remodelling. The aim of this study was to explore the role of IL-17 and CD40 ligand (CD40L) in DN. Methods The study design involved a case series. Kidney biopsy samples of 69 patients with type 2 diabetes were assessed for the presence of CD4+ IL-17+ T cells. The number of CD4+ IL-17+ T cells were counted and correlated with clinical and laboratory findings. Additionally, advanced glycation end-products (AGEs) were added to cultured podocytes to imitate diabetic conditions and thus to elucidate the role of CD4+ IL-17+ T cells in renal sclerosis. Results CD80 expression was detected in early phases of DN but was absent during diffused glomerurosclerosis in DN kidney specimens. In DN samples, CD40 expression was not only observed in most of the infiltrating cells, but also increased in podocytes and tubular epithelial cells. CD40L is locally expressed on infiltrating cells. CD4+ IL-17+ T cells were found in DN, and the number of CD4+ IL-17+ T cells was positively correlated with the deterioration in glomerular filtration rate (GFR). IL-17A was the key cytokine produced by CD4+ IL-17+ T cells. IL-17A levels were elevated in DN renal tissue and were correlated with declining GFR. IL-17 and CD40L synergistically enhanced IL-6, monocyte chemoattractant protein-1 (MCP-1), regulated on activation, normal T cell expressed and secreted (RANTES), transforming growth factor beta 1 (TGF-β1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) production in vitro. AGEs induced podocyte activation with increasing expression of IL-17A, CD40 and TGF-β1 in vitro. Blockade with an anti-IL-17 monoclonal antibody reduced the expression of CD40 and TGF-β1, but increased the viability of cultured podocytes. Conclusions IL-17 and CD40L synergistically mediate the inflammatory response and remodelling associated with tissue injury and glomerular sclerosis in DN.
Collapse
Affiliation(s)
- Huey-Liang Kuo
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan, China.,Department of Medicine, Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan, China
| | - Chiu-Ching Huang
- Department of Medicine, Division of Nephrology and Kidney Institute, China Medical University Hospital, Taichung, Taiwan, China
| | - Tze-Yi Lin
- Department of Pathology, China Medical University Hospital, Taichung, Taiwan, China
| | - Ching-Yuang Lin
- Graduate Institute of Clinical Medical Science, College of Medicine, China Medical University, Taichung, Taiwan, China.,Clinical Immunological Center, Children's Hospital, China Medical University, Taichung, Taiwan, China
| |
Collapse
|
7
|
Savira F, Magaye R, Hua Y, Liew D, Kaye D, Marwick T, Wang BH. Molecular mechanisms of protein-bound uremic toxin-mediated cardiac, renal and vascular effects: underpinning intracellular targets for cardiorenal syndrome therapy. Toxicol Lett 2019; 308:34-49. [PMID: 30872129 DOI: 10.1016/j.toxlet.2019.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 02/21/2019] [Accepted: 03/05/2019] [Indexed: 02/07/2023]
Abstract
Cardiorenal syndrome (CRS) remains a global health burden with a lack of definitive and effective treatment. Protein-bound uremic toxin (PBUT) overload has been identified as a non-traditional risk factor for cardiac, renal and vascular dysfunction due to significant albumin-binding properties, rendering these solutes non-dialyzable upon the state of irreversible kidney dysfunction. Although limited, experimental studies have investigated possible mechanisms in PBUT-mediated cardiac, renal and vascular effects. The ultimate aim is to identify relevant and efficacious targets that may translate beneficial outcomes in disease models and eventually in the clinic. This review will expand on detailed knowledge on mechanisms involved in detrimental effects of PBUT, specifically affecting the heart, kidney and vasculature, and explore potential effective intracellular targets to abolish their effects in CRS initiation and/or progression.
Collapse
Affiliation(s)
- Feby Savira
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Ruth Magaye
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - David Kaye
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Tom Marwick
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia
| | - Bing Hui Wang
- Monash Centre of Cardiovascular Research and Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
8
|
Development of the LC-MS/MS method for determining the p-cresol level in plasma. J Pharm Biomed Anal 2019; 167:149-154. [PMID: 30772758 DOI: 10.1016/j.jpba.2019.01.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 01/22/2023]
Abstract
p-Cresol is a protein-bound uremic retention solute that originates in the intestine through bacterial metabolism and accumulates throughout the body in case of kidney failure. To date, there has been no method to analyze unconjugated p-cresol concentration in the blood with a limit of detection lower than 75 pg. Thus, the aim of this study was to develop and validate a novel liquid chromatography-tandem mass spectrometry method for the determination of unconjugated p-cresol in plasma with a lower detection limit than what has been determined using previously described methods. Sample preparation included derivatization of p-cresol with dansyl chloride (derivatization reagent) showed to be a better approach to analyze the compound. The method optimization involved various pH, time of the reaction, and concentration of derivatization reagent. The validation process was performed according to the procedures prescribed by the European Medicines Agency. All analyzed validation criteria were fulfilled. The novel validated method was applied to compare the level of p-cresol in patients with chronic renal failure before and after dialysis (n = 24). Additionally, the concentration of p-cresol was determined in patients with multiple organ dysfunction syndrome (n = 23). The established method can be used for determination of p-cresol in the plasma in further clinical research.
Collapse
|
9
|
Yun SP, Han YS, Lee JH, Kim SM, Lee SH. Melatonin Rescues Mesenchymal Stem Cells from Senescence Induced by the Uremic Toxin p-Cresol via Inhibiting mTOR-Dependent Autophagy. Biomol Ther (Seoul) 2018; 26:389-398. [PMID: 28655071 PMCID: PMC6029684 DOI: 10.4062/biomolther.2017.071] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/22/2017] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
p-Cresol, found at high concentrations in the serum of chronic kidney failure patients, is known to cause cell senescence and other complications in different parts of the body. p-Cresol is thought to mediate cytotoxic effects through the induction of autophagy response. However, toxic effects of p-cresol on mesenchymal stem cells have not been elucidated. Thus, we aimed to investigate whether p-cresol induces senescence of mesenchymal stem cells, and whether melatonin can ameliorate abnormal autophagy response caused by p-cresol. We found that p-cresol concentration-dependently reduced proliferation of mesenchymal stem cells. Pretreatment with melatonin prevented pro-senescence effects of p-cresol on mesenchymal stem cells. We found that by inducing phosphorylation of Akt and activating the Akt signaling pathway, melatonin enhanced catalase activity and thereby inhibited the accumulation of reactive oxygen species induced by p-cresol in mesenchymal stem cells, ultimately preventing abnormal activation of autophagy. Furthermore, preincubation with melatonin counteracted other pro-senescence changes caused by p-cresol, such as the increase in total 5′-AMP-activated protein kinase expression and decrease in the level of phosphorylated mechanistic target of rapamycin. Ultimately, we discovered that melatonin restored the expression of senescence marker protein 30, which is normally suppressed because of the induction of the autophagy pathway in chronic kidney failure patients by p-cresol. Our findings suggest that stem cell senescence in patients with chronic kidney failure could be potentially rescued by the administration of melatonin, which grants this hormone a novel therapeutic role.
Collapse
Affiliation(s)
- Seung Pil Yun
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yong-Seok Han
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| | - Jun Hee Lee
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine, Birmingham, AL 35294, USA
| | - Sang Min Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sang Hun Lee
- Medical Science Research Institute, Soonchunhyang University Seoul Hospital, Seoul 04401, Republic of Korea
| |
Collapse
|
10
|
Bosch-Panadero E, Mas S, Civantos E, Abaigar P, Camarero V, Ruiz-Priego A, Ortiz A, Egido J, González-Parra E. Bisphenol A is an exogenous toxin that promotes mitochondrial injury and death in tubular cells. ENVIRONMENTAL TOXICOLOGY 2018; 33:325-332. [PMID: 29214717 DOI: 10.1002/tox.22519] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/08/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Uremic toxins that accumulate in chronic kidney disease (CKD) contribute to CKD complications, such as CKD progression. Bisphenol A (BPA) is a ubiquitous environmental toxin, structurally related with p-cresol, that accumulates in CKD. Our aim was to characterize the nephrotoxic potential of BPA. Specifically, we addressed BPA toxicity over energy-demanding proximal tubular cells. METHODS Cell death and oxidative stress were evaluated by flow cytometry and confocal microscopy in HK-2 human proximal tubular epithelial cells. Functional assays tested ATP, intracellular Ca2+ , mitochondrial function (tetramethylrhodamine methyl [TMRM]), oxygen consumption, Nrf2-binding, MitoSOX, and NADPH oxidase activity. Gene expression was assessed by qRT-PCR. RESULTS Following acute exposure (24 hours), proximal tubular cell viability was decreased by BPA concentrations ≥50 μM while a seven-day exposure resulted in a progressive loss of cell viability at a nanomolar range. Within 24 hours, BPA promoted mitochondrial dysfunction leading to energy depletion and increased mitochondrial and cytoplasmic oxidative stress and apoptosis in a concentration-dependent manner. An antioxidant response was observed manifested by nuclear Nrf2 translocation and increased expression of the Nrf2 target genes Heme oxygenase 1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO-1). CONCLUSIONS This study demonstrates for the first time that BPA causes mitochondrial injury, oxidative stress and apoptotic death in tubular cells. These results characterize BPA as an exogenous toxin that, similar to uremic toxins, may contribute to CKD progression.
Collapse
Affiliation(s)
- Enrique Bosch-Panadero
- Renal, Vascular and Diabetes Research Laboratory, Av Reyes Catolicos 2, Madrid, E-28040, Spain
| | - Sebastian Mas
- Renal, Vascular and Diabetes Research Laboratory, Av Reyes Catolicos 2, Madrid, E-28040, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Esther Civantos
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Pedro Abaigar
- Division of Nephrology, Hospital Universitario de Burgos, Burgos, Spain
| | - Vanesa Camarero
- Division of Nephrology, Hospital Universitario de Burgos, Burgos, Spain
| | - Alberto Ruiz-Priego
- Renal, Vascular and Diabetes Research Laboratory, Av Reyes Catolicos 2, Madrid, E-28040, Spain
| | - Alberto Ortiz
- Renal, Vascular and Diabetes Research Laboratory, Av Reyes Catolicos 2, Madrid, E-28040, Spain
- Division of Nephrology and Hypertension, IIS-Fundación Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, UAM, Madrid, Spain
- Kidney Research Network (REDINREN), Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, Av Reyes Catolicos 2, Madrid, E-28040, Spain
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
- Division of Nephrology and Hypertension, IIS-Fundación Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, UAM, Madrid, Spain
| | - Emilio González-Parra
- Renal, Vascular and Diabetes Research Laboratory, Av Reyes Catolicos 2, Madrid, E-28040, Spain
- Division of Nephrology and Hypertension, IIS-Fundación Jimenez Diaz UAM, Madrid, Spain
- Department of Medicine, UAM, Madrid, Spain
- Kidney Research Network (REDINREN), Madrid, Spain
| |
Collapse
|
11
|
Apoptosis signal-regulating kinase 1 inhibition attenuates cardiac hypertrophy and cardiorenal fibrosis induced by uremic toxins: Implications for cardiorenal syndrome. PLoS One 2017; 12:e0187459. [PMID: 29107962 PMCID: PMC5673193 DOI: 10.1371/journal.pone.0187459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/22/2017] [Indexed: 01/16/2023] Open
Abstract
Intracellular accumulation of protein-bound uremic toxins in the setting of cardiorenal syndrome leads to adverse effects on cardiorenal cellular functions, where cardiac hypertrophy and cardiorenal fibrosis are the hallmarks. In this study, we sought to determine if Apoptosis Signal-Regulated Kinase 1 (ASK1), an upstream regulator of cellular stress response, mediates cardiac hypertrophy and cardiorenal fibrosis induced by indoxyl sulfate (IS) and p-cresol sulfate (PCS) in vitro, and whether ASK1 inhibition is beneficial to ameliorate these cellular effects. PCS augmented cardiac myocyte hypertrophy and fibroblast collagen synthesis (as determined by 3H-leucine and 3H-proline incorporation, respectively), similar to our previous finding with IS. IS and PCS also increased collagen synthesis of proximal tubular cells and renal mesangial cells. Pro-hypertrophic (α-skeletal muscle actin and β-MHC) and pro-fibrotic genes (TGF-β1 and ctgf) were induced by both IS and PCS. Western blot analyses revealed the activation of ASK1 and downstream mitogen activated protein kinases (MAPKs) (p38MAPK and ERK1/2) as well as nuclear factor-kappa B (NF-κB) by IS and PCS. ASK1, OAT1/3, ERK1/2 and p38MAPK inhibitors suppressed all these effects. In summary, IS and PCS exhibit pro-hypertrophic and pro-fibrotic properties, at least in part, via the activation of ASK1 and its downstream pathways. ASK1 inhibitor is an effective therapeutic agent to alleviate protein-bound uremic toxin-induced cardiac hypertrophy and cardiorenal fibrosis in vitro, and may be translated further for cardiorenal syndrome therapy.
Collapse
|
12
|
Hocher B, Adamski J. Metabolomics for clinical use and research in chronic kidney disease. Nat Rev Nephrol 2017; 13:269-284. [PMID: 28262773 DOI: 10.1038/nrneph.2017.30] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chronic kidney disease (CKD) has a high prevalence in the general population and is associated with high mortality; a need therefore exists for better biomarkers for diagnosis, monitoring of disease progression and therapy stratification. Moreover, very sensitive biomarkers are needed in drug development and clinical research to increase understanding of the efficacy and safety of potential and existing therapies. Metabolomics analyses can identify and quantify all metabolites present in a given sample, covering hundreds to thousands of metabolites. Sample preparation for metabolomics requires a very fast arrest of biochemical processes. Present key technologies for metabolomics are mass spectrometry and proton nuclear magnetic resonance spectroscopy, which require sophisticated biostatistic and bioinformatic data analyses. The use of metabolomics has been instrumental in identifying new biomarkers of CKD such as acylcarnitines, glycerolipids, dimethylarginines and metabolites of tryptophan, the citric acid cycle and the urea cycle. Biomarkers such as c-mannosyl tryptophan and pseudouridine have better performance in CKD stratification than does creatinine. Future challenges in metabolomics analyses are prospective studies and deconvolution of CKD biomarkers from those of other diseases such as metabolic syndrome, diabetes mellitus, inflammatory conditions, stress and cancer.
Collapse
Affiliation(s)
- Berthold Hocher
- Department of Basic Medicine, Medical College of Hunan University, 410006 Changsha, China
| | - Jerzy Adamski
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| |
Collapse
|