1
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
2
|
Oxidative-stress and long-term hepatotoxicity: comparative study in Upcyte human hepatocytes and hepaRG cells. Arch Toxicol 2022; 96:1021-1037. [PMID: 35156134 DOI: 10.1007/s00204-022-03236-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
Drug-induced liver injury (DILI) is one of the most common and serious adverse drug reactions and a major cause of drug development failure and withdrawal. Although different molecular mechanisms are implicated in DILI, enhanced ROS levels have been described as a major mechanism. Human-derived cell models are increasingly used in preclinical safety assessment because they provide quick and relatively inexpensive information in early stages of drug development. We have analyzed and compared the phenotype and functionality of two liver cell models (Upcyte human hepatocytes and HepaRG cells) to demonstrate their suitability for long-term hepatotoxicity assessments and mechanistic studies. The transcriptomic and functional analysis revealed the maintenance of phase I and phase II enzymes, and antioxidant enzymes along time in culture, although the differences found between both test systems underlie the differential sensitivity to hepatotoxins. The evaluation of several mechanisms of cell toxicity, including oxidative stress, by high-content screening, demonstrated that, by combining the stable phenotype of liver cells and repeated-dose exposure regimes to 12 test compounds at clinically relevant concentrations, both Upcyte hepatocytes and HepaRG offer suitable properties to be used in routine screening assays for toxicological assessments during drug preclinical testing.
Collapse
|
3
|
Berggren E, White A, Ouedraogo G, Paini A, Richarz AN, Bois FY, Exner T, Leite S, Grunsven LAV, Worth A, Mahony C. Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 4:31-44. [PMID: 29214231 PMCID: PMC5695905 DOI: 10.1016/j.comtox.2017.10.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
We describe and illustrate a workflow for chemical safety assessment that completely avoids animal testing. The workflow, which was developed within the SEURAT-1 initiative, is designed to be applicable to cosmetic ingredients as well as to other types of chemicals, e.g. active ingredients in plant protection products, biocides or pharmaceuticals. The aim of this work was to develop a workflow to assess chemical safety without relying on any animal testing, but instead constructing a hypothesis based on existing data, in silico modelling, biokinetic considerations and then by targeted non-animal testing. For illustrative purposes, we consider a hypothetical new ingredient x as a new component in a body lotion formulation. The workflow is divided into tiers in which points of departure are established through in vitro testing and in silico prediction, as the basis for estimating a safe external dose in a repeated use scenario. The workflow includes a series of possible exit (decision) points, with increasing levels of confidence, based on the sequential application of the Threshold of Toxicological (TTC) approach, read-across, followed by an "ab initio" assessment, in which chemical safety is determined entirely by new in vitro testing and in vitro to in vivo extrapolation by means of mathematical modelling. We believe that this workflow could be applied as a tool to inform targeted and toxicologically relevant in vitro testing, where necessary, and to gain confidence in safety decision making without the need for animal testing.
Collapse
Affiliation(s)
- Elisabet Berggren
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Alicia Paini
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Andrea-Nicole Richarz
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | | | | - Sofia Leite
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrew Worth
- Chemical Safety and Alternative Methods Unit, & EURL ECVAM, Directorate F – Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | | |
Collapse
|
4
|
Sala Benito JV, Paini A, Richarz AN, Meinl T, Berthold MR, Cronin MTD, Worth AP. Automated workflows for modelling chemical fate, kinetics and toxicity. Toxicol In Vitro 2017; 45:249-257. [PMID: 28323105 PMCID: PMC5745146 DOI: 10.1016/j.tiv.2017.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/15/2023]
Abstract
Automation is universal in today's society, from operating equipment such as machinery, in factory processes, to self-parking automobile systems. While these examples show the efficiency and effectiveness of automated mechanical processes, automated procedures that support the chemical risk assessment process are still in their infancy. Future human safety assessments will rely increasingly on the use of automated models, such as physiologically based kinetic (PBK) and dynamic models and the virtual cell based assay (VCBA). These biologically-based models will be coupled with chemistry-based prediction models that also automate the generation of key input parameters such as physicochemical properties. The development of automated software tools is an important step in harmonising and expediting the chemical safety assessment process. In this study, we illustrate how the KNIME Analytics Platform can be used to provide a user-friendly graphical interface for these biokinetic models, such as PBK models and VCBA, which simulates the fate of chemicals in vivo within the body and in vitro test systems respectively. The VCBA is a mathematical model that simulates in vitro fate of chemicals and the corresponding cellular effect. The VCBA has been implemented in an open access web-based KNIME platform for ease of use. KNIME Analytics Platform can be used to provide a user-friendly graphical interface for biokinetic models.
Collapse
Affiliation(s)
- J V Sala Benito
- Chemical Safety and Alternative Methods Unit, EURL ECVAM, Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| | - Alicia Paini
- Chemical Safety and Alternative Methods Unit, EURL ECVAM, Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy.
| | - Andrea-Nicole Richarz
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, UK
| | | | - Michael R Berthold
- Universität Konstanz, Fachbereich Informatik und Informationswissenschaft, Box 712, 78457 Konstanz, Germany
| | - Mark T D Cronin
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool L3 3AF, UK
| | - Andrew P Worth
- Chemical Safety and Alternative Methods Unit, EURL ECVAM, Directorate F - Health, Consumers and Reference Materials, Joint Research Centre, European Commission, Ispra, Italy
| |
Collapse
|
5
|
Graepel R, Lamon L, Asturiol D, Berggren E, Joossens E, Paini A, Prieto P, Whelan M, Worth A. The virtual cell based assay: Current status and future perspectives. Toxicol In Vitro 2017; 45:258-267. [PMID: 28108195 PMCID: PMC5742635 DOI: 10.1016/j.tiv.2017.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/15/2016] [Accepted: 01/15/2017] [Indexed: 12/22/2022]
Abstract
In order to replace the use of animals in toxicity testing, there is a need to predict in vivo toxic doses from concentrations that cause toxicological effects in relevant in vitro systems. The Virtual Cell Based Assay (VCBA) estimates time-dependent concentration of a test chemical in the cell and cell culture for a given in vitro system. The concentrations in the different compartments of the cell and test system are derived from ordinary differential equations, physicochemical parameters of the test chemical and properties of the cell line. The VCBA has been developed for a range of cell lines including BALB/c 3T3 cells, HepG2, HepaRG, lung A459 cells, and cardiomyocytes. The model can be used to design and refine in vitro experiments and extrapolate in vitro effective concentrations to in vivo doses that can be applied in risk assessment. In this paper, we first discuss potential applications of the VCBA: i) design of in vitro High Throughput Screening (HTS) experiments; ii) hazard identification (based on acute systemic toxicity); and iii) risk assessment. Further extension of the VCBA is discussed in the second part, exploring potential application to i) manufactured nanomaterials, ii) additional cell lines and endpoints, and considering iii) other opportunities. VCBA as an alternative approach can be applied in the domain of nanotoxicology. VCBA can support better testing strategies in acute toxicity. Refinement of the VCBA taking into account biological oscillators could improve toxicity prediction. Extensions of the VCBA can capture effects related to additional subcellular compartments.
Collapse
Affiliation(s)
- Rabea Graepel
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Lara Lamon
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy.
| | - David Asturiol
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Elisabet Berggren
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Elisabeth Joossens
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Alicia Paini
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Pilar Prieto
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Maurice Whelan
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| | - Andrew Worth
- Chemical Safety and Alternative Methods Unit incorporating EURL ECVAM, Directorate Health, Consumers and Reference Materials, European Commission, Joint Research Centre, Ispra, Italy
| |
Collapse
|
6
|
Teng S, Tebby C, Barcellini-Couget S, De Sousa G, Brochot C, Rahmani R, Pery ARR. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models. Toxicol Appl Pharmacol 2016; 305:118-126. [PMID: 27317371 DOI: 10.1016/j.taap.2016.06.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/06/2016] [Accepted: 06/13/2016] [Indexed: 11/23/2022]
Abstract
Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro - in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds.
Collapse
Affiliation(s)
- S Teng
- Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - C Tebby
- Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - S Barcellini-Couget
- ODESIA Neosciences, Sophia Antipolis, 400 route des chappes, 06903 Sophia Antipolis, France
| | - G De Sousa
- INRA, ToxAlim, 400 route des Chappes, BP, 167 06903 Sophia Antipolis, Cedex, France
| | - C Brochot
- Models for Toxicology and Ecotoxicology Unit, INERIS, Parc Technologique Alata, BP 2, 60550 Verneuil-en-Halatte, France
| | - R Rahmani
- INRA, ToxAlim, 400 route des Chappes, BP, 167 06903 Sophia Antipolis, Cedex, France
| | - A R R Pery
- AgroParisTech, UMR 1402 INRA-AgroParisTech Ecosys, 78850 Thiverval Grignon, France; INRA, UMR 1402 INRA-AgroParisTech Ecosys, 78850 Thiverval Grignon, France.
| |
Collapse
|
7
|
Bois FY, Ochoa JGD, Gajewska M, Kovarich S, Mauch K, Paini A, Péry A, Benito JVS, Teng S, Worth A. Multiscale modelling approaches for assessing cosmetic ingredients safety. Toxicology 2016; 392:130-139. [PMID: 27267299 DOI: 10.1016/j.tox.2016.05.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/30/2015] [Accepted: 05/31/2016] [Indexed: 12/27/2022]
Abstract
The European Union's ban on animal testing for cosmetic ingredients and products has generated a strong momentum for the development of in silico and in vitro alternative methods. One of the focus of the COSMOS project was ab initio prediction of kinetics and toxic effects through multiscale pharmacokinetic modeling and in vitro data integration. In our experience, mathematical or computer modeling and in vitro experiments are complementary. We present here a summary of the main models and results obtained within the framework of the project on these topics. A first section presents our work at the organelle and cellular level. We then go toward modeling cell levels effects (monitored continuously), multiscale physiologically based pharmacokinetic and effect models, and route to route extrapolation. We follow with a short presentation of the automated KNIME workflows developed for dissemination and easy use of the models. We end with a discussion of two challenges to the field: our limited ability to deal with massive data and complex computations.
Collapse
Affiliation(s)
- Frédéric Y Bois
- INERIS, DRC/VIVA/METO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France.
| | - Juan G Diaz Ochoa
- Insilico Biotechnology AG, Meitnerstrasse 8, 70563 Stuttgart, Germany
| | - Monika Gajewska
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, Via Enrico Fermi 2749, Ispra, VA, Italy
| | - Simona Kovarich
- S-IN Soluzioni Informatiche, via G. Ferrari 14, 36100 Vicenza, Italy
| | - Klaus Mauch
- Insilico Biotechnology AG, Meitnerstrasse 8, 70563 Stuttgart, Germany
| | - Alicia Paini
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, Via Enrico Fermi 2749, Ispra, VA, Italy
| | - Alexandre Péry
- INERIS, DRC/VIVA/METO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Jose Vicente Sala Benito
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, Via Enrico Fermi 2749, Ispra, VA, Italy
| | - Sophie Teng
- INERIS, DRC/VIVA/METO, Parc ALATA, BP2, 60550 Verneuil-en-Halatte, France
| | - Andrew Worth
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Systems Toxicology Unit, Via Enrico Fermi 2749, Ispra, VA, Italy
| |
Collapse
|
8
|
Klein S, Maggioni S, Bucher J, Mueller D, Niklas J, Shevchenko V, Mauch K, Heinzle E, Noor F. In Silico Modeling for the Prediction of Dose and Pathway-Related Adverse Effects in Humans From In Vitro Repeated-Dose Studies. Toxicol Sci 2015; 149:55-66. [PMID: 26420750 DOI: 10.1093/toxsci/kfv218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Long-term repeated-dose toxicity is mainly assessed in animals despite poor concordance of animal data with human toxicity. Nowadays advanced human in vitro systems, eg, metabolically competent HepaRG cells, are used for toxicity screening. Extrapolation of in vitro toxicity to in vivo effects is possible by reverse dosimetry using pharmacokinetic modeling. We assessed long-term repeated-dose toxicity of bosentan and valproic acid (VPA) in HepaRG cells under serum-free conditions. Upon 28-day exposure, the EC50 values for bosentan and VPA decreased by 21- and 33-fold, respectively. Using EC(10) as lowest threshold of toxicity in vitro, we estimated the oral equivalent doses for both test compounds using a simplified pharmacokinetic model for the extrapolation of in vitro toxicity to in vivo effect. The model predicts that bosentan is safe at the considered dose under the assumed conditions upon 4 weeks exposure. For VPA, hepatotoxicity is predicted for 4% and 47% of the virtual population at the maximum recommended daily dose after 3 and 4 weeks of exposure, respectively. We also investigated the changes in the central carbon metabolism of HepaRG cells exposed to orally bioavailable concentrations of both drugs. These concentrations are below the 28-day EC(10) and induce significant changes especially in glucose metabolism and urea production. These metabolic changes may have a pronounced impact in susceptible patients such as those with compromised liver function and urea cycle deficiency leading to idiosyncratic toxicity. We show that the combination of modeling based on in vitro repeated-dose data and metabolic changes allows the prediction of human relevant in vivo toxicity with mechanistic insights.
Collapse
Affiliation(s)
- Sebastian Klein
- *Biochemical Engineering, Saarland University, 66123 Saarbruecken, Germany
| | - Silvia Maggioni
- IRCCS - Instituto di Ricerche Farmacologiche "Mario Negri," 20156 Milan, Italy
| | - Joachim Bucher
- Insilico Biotechnology AG, 70563 Stuttgart, Germany, and
| | - Daniel Mueller
- *Biochemical Engineering, Saarland University, 66123 Saarbruecken, Germany
| | - Jens Niklas
- Insilico Biotechnology AG, 70563 Stuttgart, Germany, and
| | | | - Klaus Mauch
- Insilico Biotechnology AG, 70563 Stuttgart, Germany, and
| | - Elmar Heinzle
- *Biochemical Engineering, Saarland University, 66123 Saarbruecken, Germany
| | - Fozia Noor
- *Biochemical Engineering, Saarland University, 66123 Saarbruecken, Germany,
| |
Collapse
|