1
|
Hosokawa M, Iwasaki Y, Someya A, Tanigawa T. Effects of low concentration of fluoride exposure during fetal on behavior and neurotransmitters in adult mice. Biomed Rep 2025; 22:81. [PMID: 40151797 PMCID: PMC11948299 DOI: 10.3892/br.2025.1959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 02/21/2025] [Indexed: 03/29/2025] Open
Abstract
Fluoride (F) naturally occurs in water in China and India, and in excess, can cause skeletal fluorosis and mottled teeth. Chronic exposure to F during gestation can affect the development of the brain, reducing intelligence quotient and inducing autism spectrum disorder-like behavior. In the present study, it was aimed to clarify the effects of chronic exposure to low concentrations of F in utero on brain function. The behavior was assessed, the levels of brain neurotransmitters were measured in mice and their relationships were analyzed. ICR mice consumed water containing sodium fluoride (F concentrations: 0, 15, or 30 ppm) from 3 weeks of age until the weaning of their pups (F1). The pups then consumed water containing the same concentration of F as their parents from weaning. At 8-weeks old, the F1 mice underwent behavioral testing using the Y-maze, elevated plus maze, Barnes maze (BM) and open-field test (OFT). At 10 weeks of age, they were euthanized, their brains were collected, and the levels of neurotransmitters were measured. Grooming events in the OFT were more frequent in F-exposed groups than in the control group, indicating that F exposure causes anxiety-like behavior. In the BM, the time taken to reach the escape box and the number of errors were higher during the training and test, suggesting spatial memory impairment. Cerebellar glutamate (Glu) concentrations were significantly lower in the F-exposed groups than in the control group. Low Glu concentration was associated with greater grooming frequency in the OFT, lower mean speed and more errors in the BM, and a delay in reaching the escape box. In the F-exposed groups, the midbrain noradrenaline concentrations were significantly lower and the number of errors in the BM was larger than in controls. Thus, F-exposed mice showed poorer spatial memory and differences in the levels of neurotransmitter, suggesting that F is an environmental contributor to disease.
Collapse
Affiliation(s)
- Mayuko Hosokawa
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine, Tokyo 113-8421, Japan
| | - Yuske Iwasaki
- Department of Analytical Chemistry, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo 142-8501, Japan
| | - Akimasa Someya
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takeshi Tanigawa
- Department of Public Health, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Sun W, Yu H, Li X, Wan Y, Mei Y, Yang Y, An L. Subchronic cyanuric acid treatment impairs spatial flexible behavior in female adolescent rats through depressing GluN2B-dependent neuronal and synaptic function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117513. [PMID: 39662458 DOI: 10.1016/j.ecoenv.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Subchronic exposure to cyanuric acid (CA) and its structural analogue melamine induces long-term effects on brain and behavior in male rodents. To examine if this exposure induced negative effects on cognitive function in females, we examined the behavioral performance and further attempted to investigate synaptic and neuronal function. CA was intraperitoneal treated with 20 or 40 mg/kg/day to adolescent female rats for 4 consecutive weeks. Multiple behavioral tests were employed to assess spatial cognition, learning strategy, locomotion and motivation. Hippocampal synaptic function at Schaffer collaterals-CA1 synapses and excitatory postsynaptic currents (EPSCs) in CA1 pyramidal neurons was evaluated. Meanwhile, the glutamate transport inhibitor DL-threo-β-benzyloxyaspartate (DL-TBOA) was infused into hippocampal CA1 region to certify the underlying mechanism. We found that subchronic CA exposure impairs reversal learning ability with dose-dependent effects but did not affect spatial learning and memory, or learning strategy. The expression and phosphorylation of N-methyl-D-aspartate receptor (NMDAR) GluN2B subunits were simultaneously reduced in the hippocampus and the GluN2B-mediated synaptic function, including long-term depression (LTD) and paired-pulse facilitation (PPF), was suppressed. CA could also diminish postsynaptic density protein-95 (PSD-95) expression but did change the levels of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) GluA1 or NMDAR GluN2A subunit, or hippocampal spine density. Meanwhile, CA depressed frequency and amplitude of GluN2B-mediated EPSCs, indicating the presynaptic and postsynaptic actions of CA on neuronal activity. Furthermore, the DL-TBOA infusions could effectively mitigate the diminished GluN2B-LTD and GluN2B-EPSCs and the impairments in behavioral flexibility. Our findings provide the first evidence that CA can exert neurotoxic effects on females and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the GluN2B-mediated signaling pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Haiyang Yu
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Xiaoliang Li
- Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yiwen Wan
- Department of Rehabilitation Medicine, Shenzhen Bao'an Hospital Affiliated of Southern Medical University, Shenzhen, Guangdong 518100, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China
| | - Yang Yang
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China
| | - Lei An
- Department of Pediatrics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China; Department of Chinese Medicine, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Graduate School of Guangzhou University of Chinese Medicine; Guangzhou 510006, China; Department of Proctology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 550001, China.
| |
Collapse
|
3
|
Charron I, Magueresse-Battistoni BL, Habert R, Canivenc-Lavier MC, Mhaouty-Kodja S, Michel-Caillet C. Melamine regulatory assessment for endocrine disruption. ENVIRONMENT INTERNATIONAL 2024; 194:109188. [PMID: 39671826 DOI: 10.1016/j.envint.2024.109188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/18/2024] [Accepted: 12/05/2024] [Indexed: 12/15/2024]
Abstract
Melamine has several domestic and industrial uses as a flame retardant or in the manufacture of melamine-formaldehyde resins. Based on available scientific literature data, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) included this substance in the list of "chemicals that may present endocrine disruptor (ED) properties", and the substance was prioritized to assess whether it should be classified as an ED in European Union (EU) regulations for hazard identification. This review reports the assessment of melamine based on relevant studies from the registration dossier under REACH, and peer-reviewed literature. Among the various adverse effects, reproductive, neurodevelopmental, and thyroid effects were analyzed in particular, because they could be the consequence of an endocrine disruption. The different modes of action (endocrine or non-endocrine) potentially leading to these effects were scrutinized to understand whether the WHO definition for ED and the criteria for hazard identification were met. It was concluded that the reproductive effect on spermatogenesis was not a consequence of endocrine activity. A biologically plausible link between this effect and endocrine activity was not established, and other modes of action (oxidative stress or altered energy metabolism) could be involved. Similarly, thyroid and neurodevelopmental effects appeared at higher doses than those leading to renal toxicity. Our assessment confirms that melamine is a reprotoxic substance but does not support ED classification. This assessment illustrates the scientific and regulatory challenges in differentiating specific endocrine disruption from an indirect endocrine effect resulting from non-ED mediated systemic toxicity.
Collapse
Affiliation(s)
- Isabelle Charron
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, Maisons-Alfort 94701, France.
| | | | - René Habert
- Laboratory of Development of the Gonads, UMR-008 Genetic Stability Stem Cells and Radiations, Université Paris-Cité, Fontenay-aux-Roses 92265, France
| | - Marie-Chantal Canivenc-Lavier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon 21000, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine-Institut de Biologie Paris Seine, Paris 75005, France
| | - Cécile Michel-Caillet
- ANSES, Risk Assessment Department, 14 Rue Pierre et Marie Curie, Maisons-Alfort 94701, France
| |
Collapse
|
4
|
Naeimi R, Safarpour F, Askari H, Ghasemi-Kasman M. Current Insights into the Neurotoxicity of Melamine: A Comprehensive Review. Curr Neuropharmacol 2024; 23:20-35. [PMID: 38591198 PMCID: PMC11519818 DOI: 10.2174/1570159x22666240320133241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Melamine, a heterocyclic nitrogen-rich triazine chemical compound, is widely used in various household products, including furniture, dinnerware, and kitchen appliances. The unauthorized addition of the mixture to various foodstuffs to misrepresent protein content resulted in catastrophic, frequently life-threatening health consequences for kids as well as canines and has garnered international attention. Numerous primary studies and evaluations have been focused on melamine toxicity's implications on kidney function. Despite the profusion of literature on melamine's nephrotoxicity, evidence regarding its toxicity to other organs remains scarce. A number of recent studies suggest melamine can disrupt central nervous system (CNS) function and bring about cognitive impairments, contradicting the commonly held belief that melamine's detrimental effects are limited to the urinary system. The accumulation of melamine in the body is linked to various adverse effects, including depression, impaired synaptic transmission, oxidative stress, and neurodegenerative diseases. Several mechanisms may lead to such complications. However, numerous safeguards against melamine accumulation have been identified. This review could shed light on the potential neurological effects and mechanisms underlying melamine toxicity. Afterward, we will dive into the body's possible protective mechanisms against melamine-induced toxicity.
Collapse
Affiliation(s)
- Reza Naeimi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Fatemeh Safarpour
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Askari
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Physiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
5
|
Sun W, Zhao X, Wan Y, Yang Y, Li X, Chen X, Mei Y, An L. Prenatal cyanuric acid exposure induced spatial learning impairments associated with alteration of acetylcholine-mediated neural information flow at the hippocampal CA3-CA1 synapses of male rats. Hum Exp Toxicol 2023; 42:9603271231163477. [PMID: 36890733 DOI: 10.1177/09603271231163477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Cyanuric acid (CA) is reported to induce nephrotoxicity but its toxic effect is not fully known. Prenatal CA exposure causes neurodevelopmental deficits and abnormal behavior in spatial learning ability. Dysfunction of the acetyl-cholinergic system in neural information processing is correlated with spatial learning impairment and was found in the previous reports of CA structural analogue melamine. To further investigate the neurotoxic effects and the potential mechanism, the acetylcholine (ACh) level was detected in the rats which were exposed to CA during the whole of gestation. Local field potentials (LFPs) were recorded when rats infused with ACh or cholinergic receptor agonist into hippocampal CA3 or CA1 region were trained in the Y-maze task. We found the expression of ACh in the hippocampus was significantly reduced in dose-dependent manners. Intra-hippocampal infusion of ACh into the CA1 but not the CA3 region could effectively mitigate learning deficits induced by CA exposure. However, activation of cholinergic receptors did not rescue the learning impairments. In the LFP recording, we found that the hippocampal ACh infusions could enhance the values of phase synchronization between CA3 and CA1 regions in theta and alpha oscillations. Meanwhile, the reduction in the coupling directional index and the strength of CA3 driving CA1 in the CA-treated groups was also reversed by the ACh infusions. Our findings are consistent with the hypothesis and provide the first evidence that prenatal CA exposure induced spatial learning defect is attributed to the weakened ACh-mediated neuronal coupling and NIF in the CA3-CA1 pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Obstetrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Geriatrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xuanyin Zhao
- Department of Obstetrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yiwen Wan
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China.,Department of Rehabilitation Medicine, 70570Shenzhen Bao'an Hospital Affiliated of Southern Medical University, Shenzhen, China
| | - Yang Yang
- Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China
| | - Xiao Chen
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China
| | - Yazi Mei
- 47879Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Department of Geriatrics, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, 326770The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, China.,47879Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Sun W, Lu Z, Chen X, Yang, Mei Y, Li X, An L. Aluminum Oxide Nanoparticles Impair Working Memory and Neuronal Activity through the GSK3β/BDNF Signaling Pathway of Prefrontal Cortex in Rats. ACS Chem Neurosci 2022; 13:3352-3361. [PMID: 36444509 DOI: 10.1021/acschemneuro.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Studies demonstrated that alumina nanoparticles (alumina NPs) impair spatial cognition and hippocampus-dependent synaptic plasticity. Although alumina NPs accumulate in the prefrontal cortex (PFC), their effects on PFC-mediated neuronal and cognitive function have been not yet documented. Here, alumina NPs (10 or 20 μg/kg of body weight) were bilaterally injected into the medial PFC (mPFC) of adult rats, and the levels of glycogen synthase kinase 3β (GSK3β) and the brain-derived neurotrophic factor (BDNF) were detected. The PFC-dependent working memory task with one-minute or three-minute delay time was conducted. Meanwhile, the neuronal correlates of working memory performance were recorded. The specific expression of neuronal BDNF was assessed by colabeled BDNF expression with the neuronal nuclear antigen (NeuN). Whole-cell patch-clamp recordings were employed to detect neuronal excitability. Intra-mPFC alumina NP infusions significantly enhanced the expression of GSK3β but reduced the phosphorylation of GSK3β (pGSK3β) and BDNF levels more severely at a dose of 20 μg/kg. Alumina NPs acted in a dose-dependent manner to impair working memory. The neuronal expression of BDNF in the 20 μg/kg group was markedly declined compared with the 10 μg/kg group. During the delay time, the neuronal frequency of pyramidal cells but not interneurons was significantly weakened. Furthermore, both the frequency and amplitude of the excitatory postsynaptic currents (EPSCs) were descended in the mPFC slices. Additionally, the infusion of GSK3β inhibitor SB216763 or BDNF could effectively attenuate the impairments in neuronal correlate, neuronal activity, and working memory. From the perspective of the identified GSK3β/BDNF pathway, these findings demonstrated for the first time that alumina NPs exposure can be a risk factor for prefrontal neuronal and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Zhenzhong Lu
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Xiao Chen
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| |
Collapse
|
7
|
Sun W, Chen X, Mei Y, Li X, Yang Y, An L. Co-exposure of melamine and cyanuric acid as a risk factor for oxidative stress and energy metabolism: Adverse effects on hippocampal neuronal and synaptic function induced by excessive ROS production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114230. [PMID: 36306617 DOI: 10.1016/j.ecoenv.2022.114230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Melamine (MEL) and cyanuric acid (CA) alone have relatively low toxicity, but together they may cause serious damage to multiple organs, including the central nervous system, however, the underlying mechanism is unknown. This study aimed to determine and compare the neurotoxic effects of MEL (20 μg/mL), CA (20 μg/mL) and their combination (10 μg/mL MEL and 10 μg/mL CA) on cultured hippocampal neurons. The cell viability, apoptosis, anti-oxidative and energy metabolic indices were detected following 24 h of incubations. The miniature excitatory postsynaptic currents (mEPSCs), miniature inhibitory postsynaptic currents (mIPSCs) and synaptic plasticity in the hippocampal CA1 neurons were recorded. Moreover, ROS scavenger NAC was co-infused to investigate the potential mechanism. We found the complex of MEL and CA but not their alone caused severe cell death and disturbed energy production through activation caspase-3-mediated apoptosis. Meanwhile, the combination significantly reduced the amplitude, decay time and frequency of mEPSCs but not mIPSCs, indicating the pre- and post-synaptic inhibitory actions on neuronal activity. Paired-pulsed ratio (PPR) and long-term potentiation (LTP) at the Schaffer collateral-CA1 synapses were critically depressed. However, the co-application of NAC could effectively mitigate the cellular apoptosis, energy metabolism dysfunction and the impairments in neuronal and synaptic function. Our findings provide the first evidence that the combination of MEL and CA can exert more prominently neurotoxic effects than their alone and certify that one of the potential mechanisms for neuronal and synaptic dysfunction is the ROS-mediated signaling pathway.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
8
|
Sun W, Mei Y, Li X, Yang Y, An L. Maternal immune activation-induced proBDNF-mediated neural information processing dysfunction at hippocampal CA3-CA1 synapses associated with memory deficits in offspring. Front Cell Dev Biol 2022; 10:1018586. [PMID: 36438556 PMCID: PMC9691851 DOI: 10.3389/fcell.2022.1018586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 10/27/2022] [Indexed: 11/07/2023] Open
Abstract
Prenatal exposure to maternal infection increases the risk of offspring developing schizophrenia in adulthood. Current theories suggest that the consequences of MIA on mBDNF secretion may underlie the increased risk of cognitive disorder. There is little evidence for whether the expression of its precursor, proBDNF, is changed and how proBDNF-mediated signaling may involve in learning and memory. In this study, proBDNF levels were detected in the hippocampal CA1 and CA3 regions of male adult rats following MIA by prenatal polyI:C exposure. Behaviorally, learning and memory were assessed in contextual fear conditioning tasks. Local field potentials were recorded in the hippocampal CA3-CA1 pathway. The General Partial Directed Coherence approach was utilized to identify the directional alternation of neural information flow between CA3 and CA1 regions. EPSCs were recorded in CA1 pyramidal neurons to explore a possible mechanism involving the proBDNF-p75NTR signaling pathway. Results showed that the expression of proBDNF in the polyI:C-treated offspring was abnormally enhanced in both CA3 and CA1 regions. Meanwhile, the mBDNF expression was reduced in both hippocampal regions. Intra-hippocampal CA1 but not CA3 injection with anti-proBDNF antibody and p75NTR inhibitor TAT-Pep5 effectively mitigated the contextual memory deficits. Meanwhile, reductions in the phase synchronization between CA3 and CA1 and the coupling directional indexes from CA3 to CA1 were enhanced by the intra-CA1 infusions. Moreover, blocking proBDNF/p75NTR signaling could reverse the declined amplitude of EPSCs in CA1 pyramidal neurons, indicating the changes in postsynaptic information processing in the polyI:C-treated offspring. Therefore, the changes in hippocampal proBDNF activity in prenatal polyI:C exposure represent a potential mechanism involved in NIF disruption leading to contextual memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yazi Mei
- Graduate School, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, China
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
9
|
Choi G, Kuiper JR, Bennett DH, Barrett ES, Bastain TM, Breton CV, Chinthakindi S, Dunlop AL, Farzan SF, Herbstman JB, Karagas MR, Marsit CJ, Meeker JD, Morello-Frosch R, O'Connor TG, Pellizzari ED, Romano ME, Sathyanarayana S, Schantz S, Schmidt RJ, Watkins DJ, Zhu H, Kannan K, Buckley JP, Woodruff TJ. Exposure to melamine and its derivatives and aromatic amines among pregnant women in the United States: The ECHO Program. CHEMOSPHERE 2022; 307:135599. [PMID: 36055588 PMCID: PMC9748524 DOI: 10.1016/j.chemosphere.2022.135599] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/24/2022] [Accepted: 07/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Melamine, melamine derivatives, and aromatic amines are nitrogen-containing compounds with known toxicity and widespread commercial uses. Nevertheless, biomonitoring of these chemicals is lacking, particularly during pregnancy, a period of increased susceptibility to adverse health effects. OBJECTIVES We aimed to measure melamine, melamine derivatives, and aromatic amine exposure in pregnant women across the United States (U.S.) and evaluate associations with participant and urine sample collection characteristics. METHODS We measured 43 analytes, representing 45 chemicals (i.e., melamine, three melamine derivatives, and 41 aromatic amines), in urine from pregnant women in nine diverse ECHO cohorts during 2008-2020 (N = 171). To assess relations with participant and urine sample collection characteristics, we used generalized estimating equations to estimate prevalence ratios (PRs) for analytes dichotomized at the detection limit, % differences (%Δ) for continuous analytes, and 95% confidence intervals. Multivariable models included age, race/ethnicity, marital status, urinary cotinine, and year of sample collection. RESULTS Twelve chemicals were detected in >60% of samples, with near ubiquitous detection of cyanuric acid, melamine, aniline, 4,4'-methylenedianiline, and a composite of o-toluidine and m-toluidine (99-100%). In multivariable adjusted models, most chemicals were associated with higher exposures among Hispanic and non-Hispanic Black participants. For example, concentrations of 3,4-dichloroaniline were higher among Hispanic (%Δ: +149, 95% CI: +17, +431) and non-Hispanic Black (%Δ: +136, 95% CI: +35, +311) women compared with non-Hispanic White women. We observed similar results for ammelide, o-/m-toluidine, 4,4'-methylenedianiline, and 4-chloroaniline. Most chemicals were positively associated with urinary cotinine, with strongest associations observed for o-/m-toluidine (%Δ: +23; 95% CI: +16, +31) and 3,4-dichloroaniline (%Δ: +25; 95% CI: +17, +33). Some chemicals exhibited annual trends (e.g., %Δ in melamine per year: -11; 95% CI: -19, -1) or time of day, seasonal, and geographic variability. DISCUSSION Exposure to melamine, cyanuric acid, and some aromatic amines was ubiquitous in this first investigation of these analytes in pregnant women. Future research should expand biomonitoring, identify sources of exposure disparities by race/ethnicity, and evaluate potential adverse health effects.
Collapse
Affiliation(s)
- Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan R Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Sridhar Chinthakindi
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Julie B Herbstman
- Department of Environmental Health Sciences, Columbia University, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - John D Meeker
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Rachel Morello-Frosch
- Department of Environmental Science, Policy and Management and School of Public Health, University of California, Berkeley, CA, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester, Rochester, NY, USA
| | | | - Megan E Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle Children's Research Institute, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Deborah J Watkins
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Hongkai Zhu
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tracey J Woodruff
- Department of Obstetrics, Gynecology, and Reproductive Sciences and the Philip R. Lee Institute for Health Policy Studies, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Prenatal cyanuric acid exposure disrupts cognitive flexibility and mGluR1-mediated hippocampal long-term depression in male rats. Toxicol Lett 2022; 370:74-84. [PMID: 36152796 DOI: 10.1016/j.toxlet.2022.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/24/2022] [Accepted: 09/20/2022] [Indexed: 11/20/2022]
Abstract
Cyanuric acid is one of the most widely used classes of industrial chemicals and is now well known as food adulterant and contaminant in pet food and infant formula. Previously, it was reported that animals prenatally exposed to cyanuric acid showed neurotoxic effects that impaired memory consolidating and suppressed long-term potentiation (LTP) in the hippocampus. However, it is not clear if prenatal exposure to cyanuric acid induces deficits in reversal learning and long-term depression (LTD), which is required for the developmental reorganization of synaptic circuits and updating learned behaviors. Here, pregnant rats were i.p. injected with cyanuric acid (20 mg/kg) during the whole of gestation, and male offspring were selected to examine the levels of hippocampal mGluR1 and mGluR2/3 in young adulthood. The LTD at the Schaffer collateral-CA1 pathway was induced by low-frequency stimulation (LFS) and recorded. Reversal learning and hippocampus-dependent learning strategy were tested in Morris-water maze (MWM) and T-maze tasks, respectively. To further confirm the potential mechanism, selective agonists of mGluR1 and mGluR2/3 and antagonists of mGluR were intra-hippocampal infused before behavioral and neuronal recording. We found the levels of alkaline phosphatase were markedly increased in the maternal placenta and fetal brain following prenatal exposure. The expression of mGluR1 but not mGluR2/3 was significantly decreased and mGluR1-mediated LTD was selectively weakened. Prenatal cyanuric acid impaired reversal learning ability, without changing place learning strategy. The mGluR1 agonist could effectively enhance LFS-induced LTD and mitigate reversal learning deficits. Meanwhile, the reductions in the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPAR)-mediated spontaneous excitatory postsynaptic currents (sEPSCs) amplitude and frequency of cyanuric acid offspring were simultaneously alleviated by mGluR1 agonist infusions. Therefore, the results indicate the cognitive and synaptic impairments induced by prenatal cyanuric acid exposure are attributed to the disruption of the hippocampal mGluR1 signaling. Our findings provided the first evidence for the deteriorated effects of cyanuric acid on synaptic depression and advanced cognitive performance.
Collapse
|
11
|
Sun W, Li J, Li X, Chen X, Mei Y, Yang Y, An L. Aluminium oxide nanoparticles compromise spatial memory performance and proBDNF-mediated neuronal function in the hippocampus of rats. Part Fibre Toxicol 2022; 19:34. [PMID: 35538555 PMCID: PMC9087928 DOI: 10.1186/s12989-022-00477-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
Background Alumina nanoparticles (aluminaNPs), which are widely used in a range of daily and medical fields, have been shown to penetrate blood-brain barrier, and distribute and accumulate in different brain areas. Although oral treatment of aluminaNPs induces hippocampus-dependent learning and memory impairments, characteristic effects and exact mechanisms have not been fully elucidated. Here, male adult rats received a single bilateral infusion of aluminaNPs (10 or 20 µg/kg of body weight) into the hippocampal region, and their behavioral performance and neural function were assessed. Results The results indicated that the intra-hippocampus infusions at both doses of aluminaNPs did not cause spatial learning inability but memory deficit in the water maze task. This impairment was attributed to the effects of aluminaNP on memory consolidation phase through activation of proBDNF/RhoA pathway. Inhibition of the increased proBDNF by hippocampal infusions of p75NTR antagonist could effectively rescue the memory impairment. Incubation of aluminaNPs exaggerated GluN2B-dependent LTD induction with no effects on LTD expression in hippocampal slices. AluminaNP could also depress the amplitude of NMDA-GluN2B EPSCs. Meanwhile, increased reactive oxygen specie production was reduced by blocking proBDNF-p75NTR pathway in the hippocampal homogenates. Furthermore, the neuronal correlate of memory behavior was drastically weakened in the aluminaNP-infused groups. The dysfunction of synaptic and neuronal could be obviously mitigated by blocking proBDNF receptor p75NTR, implying the involvement of proBDNF signaling in aluminaNP-impaired memory process. Conclusions Taken together, our findings provide the first evidence that the accumulation of aluminaNPs in the hippocampus exaggeratedly activates proBDNF signaling, which leads to neural and memory impairments.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Jia Li
- College of Acupuncture and Orthopedics, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Xiao Chen
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou, University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Sun W, Chen X, Mei Y, Yang Y, Li X, An L. Prelimbic proBDNF Facilitates Retrieval-Dependent Fear Memory Destabilization by Regulation of Synaptic and Neural Functions in Juvenile Rats. Mol Neurobiol 2022; 59:4179-4196. [PMID: 35501631 DOI: 10.1007/s12035-022-02849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/23/2022] [Indexed: 10/18/2022]
Abstract
Fear regulation changes as a function of the early life is a key developmental period for the continued maturation of fear neural circuitry. The mechanisms of fear retrieval-induced reconsolidation have been investigated but remain poorly understood. The involvement of prelimbic proBDNF in fear memory extinction and its mediated signaling have been reported previously. Specifically, blocking the proBDNF/p75NTR pathway during the postnatal stage disrupts synaptic development and neuronal activity in adulthood. Given the inherent high expression of proBDNF during the juvenile period, we tested whether the prelimbic proBDNF regulated synaptic and neuronal functions allowing to influencing retrieval-dependent memory processing. By examining the freezing behavior of auditory fear-conditioned rats, we found the high level of the prelimbic proBDNF in juvenile rats enhanced the destabilization of the retrieval-dependent weak but not strong fear memory through activating p75NTR-GluN2B signaling. This modification of fear memory traces was attributed to the increment in the proportion of thin-type spine and promotion in synaptic function, as evidenced by the facilitation of NMDA-mediated EPSCs and GluN2B-dependent synaptic depression at the prelimbic projection. Furthermore, the strong prelimbic theta- and gamma-oscillation coupling predicted the suppressive effect of juvenile proBDNF on the recall of postretrieval memory. Our results critically emphasize the importance of developmental proBDNF for modification of retrieval-dependent memory and provide a potential critical targeting to inhibit threaten memories associated with neurodevelopment disorders.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China.,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, 550001, Guizhou, China. .,Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan, 250013, China. .,Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Sun W, Yang Y, Mei Y, Wu Y, Chen X, An L. Prenatal cyanuric acid exposure depresses hippocampal synaptic plasticity and induces spatial learning and memory deficits. Toxicol Lett 2021; 354:24-32. [PMID: 34757177 DOI: 10.1016/j.toxlet.2021.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 01/23/2023]
Abstract
The infant and fetus may be exposed to cyanuric acid (CA) via several different routes into the diet or milk product as well as deliberate contamination. Previous findings indicated chronic CA treatment caused neurotransmission and synaptic impairment in the early developing hippocampus. This study was designed to characterize the effects of different doses (10 mg/kg, 20 mg/kg and 40 mg/kg) of CA exposure on the developing fetus. Pregnant rats were intraperitoneally exposed to CA during the entire period of gestation and male offspring were selected for water maze task, neural recording and N-methyl-d-aspartate (NMDA) receptor detection around the eighth postnatal week. We found that CA exposure impaired the learning and memory function in a dose-dependent manner. The paired-pulse ratio (PPR) and GluN2A-dependent long-term potentiation (LTP) at the Schaffer collateral-CA1 pathway were affected in CA-exposed rats. Remarkably, hippocampal levels of NMDA-GluN2A, but not NMDA-GluN2B, were significantly decreased. Meanwhile, the spine density of hippocampal CA1 neurons was not altered by the CA exposure. Our findings are consistent with the hypothesis that CA treatment during the prenatal period produces deficits in spatial cognition by disrupting hippocampal synaptic function.
Collapse
Affiliation(s)
- Wei Sun
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Yazi Mei
- Graduate School of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Xiao Chen
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China
| | - Lei An
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China; Behavioral Neuroscience Laboratory, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550001, China.
| |
Collapse
|
14
|
Sun W, Tang D, Yang Y, Wu Z, Li X, An L. Melamine impairs working memory and reduces prefrontal activity associated with inhibition of AMPA receptor GluR2/3 subunit expression. Toxicol Lett 2021; 350:171-184. [PMID: 34280503 DOI: 10.1016/j.toxlet.2021.07.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/11/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
Recent studies have reported that melamine can accumulate in several regions of the brain including the medial prefrontal cortex (mPFC). Although melamine accumulation in the hippocampus has been verified to induce cognitive impairments, whether it can cause mPFC-dependent working memory deficits is still unknown. After chronic treatment with melamine (150 (Mel(150)) or 300 (Mel(300)) mg/kg), rats were tested during both delay nonmatching-to-sample spatial and odor discrimination tasks. Levels of AMPA receptor subunits in the mPFC were detected using western blotting. To further explore the mechanism at the cellular level, prefrontal activity was recorded during the odor discrimination. The working memory of Mel(150) rats was found to be significantly impaired in a 3-minute delay odor discrimination task (control: n = 6, Mel(150): n = 6; P < 0.05). Compared with the control group (n = 6), rats in the 300 mg/kg Mel(300)-treated group (n = 8) displayed working memory deficits in 60-second delay Y-maze task (P < 0.05), 1-minute and 3-minute delay odor discrimination tasks (both P < 0.05). The levels of AMPA receptor mGluR2/3 subunit were significantly decreased in rats of the Mel(150) (n = 7) and Mel(300) (n = 7) groups (both P < 0.05). Exposure to 150 (n = 7) or 300 mg/kg (n = 7) melamine resulted in significant inhibition of the regular-spiking neuron activity during the delay period of the memory test (both P < 0.05). Intraperitoneal (n = 7) and intra-mPFC (n = 6) infusions of GluR2/3 agonists, effectively enhanced the neural correlate (both P < 0.05) while rescuing cognitive deficits in Mel(300)-treated rats (both P < 0.05). Collectively, these findings suggested that melamine could induce prefrontal dysfunction and cause cognitive impairments.
Collapse
Affiliation(s)
- Wei Sun
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Dongxin Tang
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Zexiang Wu
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Geriatric/Rehabilitation Hospital, Jinan 250013, China
| | - Lei An
- Behavioural Neuroscience Lab, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China; Department of Neurology, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550001, China.
| |
Collapse
|
15
|
Sun W, Cheng H, Yang Y, Tang D, Li X, An L. Requirements of Postnatal proBDNF in the Hippocampus for Spatial Memory Consolidation and Neural Function. Front Cell Dev Biol 2021; 9:678182. [PMID: 34336832 PMCID: PMC8319730 DOI: 10.3389/fcell.2021.678182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/17/2022] Open
Abstract
Mature brain-derived neurotrophic factor (BDNF) and its downstream signaling pathways have been implicated in regulating postnatal development and functioning of rodent brain. However, the biological role of its precursor pro-brain-derived neurotrophic factor (proBDNF) in the postnatal brain remains unknown. The expression of hippocampal proBDNF was blocked in postnatal weeks, and multiple behavioral tests, Western blot and morphological techniques, and neural recordings were employed to investigate how proBDNF played a role in spatial cognition in adults. The peak expression and its crucial effects were found in the fourth but not in the second or eighth postnatal week. Blocking proBDNF expression disrupted spatial memory consolidation rather than learning or memory retrieval. Structurally, blocking proBDNF led to the reduction in spine density and proportion of mature spines. Although blocking proBDNF did not affect N-methyl-D-aspartate (NMDA) receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, the learning-induced phosphorylation of the GluN2B subunit level declined significantly. Functionally, paired-pulse facilitation, post-low-frequency stimulation (LFS) transiently enhanced depression, and GluN2B-dependent short-lasting long-term depression in the Schaffer collateral-CA1 pathway were weakened. The firing rate of pyramidal neurons was significantly suppressed around the target region during the memory test. Furthermore, the activation of GluN2B-mediated signaling could effectively facilitate neural function and mitigate memory impairment. The findings were consistent with the hypothesis that postnatal proBDNF played an essential role in synaptic and cognitive functions.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hong Cheng
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yang Yang
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaolian Li
- Department of Neurology, Jinan Geriatric Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
16
|
Tharmatt A, Thakur S, Singh A, Kaur M, Shahtaghi NR, Malhotra D, Jain SK. Olive oil and oleic acid-based self nano-emulsifying formulation of omega-3-fatty acids with improved strength, stability, and therapeutics. J Microencapsul 2021; 38:298-313. [PMID: 33863269 DOI: 10.1080/02652048.2021.1914760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM To develop, characterise, and optimise SNEDDS formulation to enhance organoleptics, bioavailability, physical & oxidative-stability, and extend shelf-life of pure Ω-3-fatty acids oil for use in the food fortification industry as nutraceuticals. METHODS SNEDDS formulations were prepared using a simple stirring technique and optimised based on in-vitro characterisation. RESULTS The optimised SNEDDS formulation (F3) had a mean diameter of 52.9 ± 0.4 nm, PDI of 0.229 ± 0.02, zeta potential of -17.3 ± 0.1 mV, cloud temperature of 92 ± 0.2 °C, self-emulsification time of 50 ± 0.2 sec, and stable under accelerated stability conditions. Intestinal permeability study on rat ileum depicted absorption of 88.5 ± 0.2% DHA at 5 h for F3 formulation in comparison to 61.5 ± 0.2% for commercial counterpart. F3 formulation exhibited better therapeutics for melamine-induced cognitive dysfunction. CONCLUSIONS The developed Ω-3-loaded SNEDDS heralds the future for an efficacious, safer, and higher strength formulation intended as a better substitute for currently available formulations.
Collapse
Affiliation(s)
- Abhay Tharmatt
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Divay Malhotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
17
|
Erisgin Z, Mutlu HS, Tekelioglu Y, Deveci E, Seker U. Hepatotoxic effects of melamine exposure from the weaning period in rats: a flow cytometric, electron microscopic, and histopathologic study. Toxicol Res (Camb) 2021; 10:418-424. [PMID: 34141155 DOI: 10.1093/toxres/tfab022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study aims to investigate the effects of melamine exposure from the weaning period (21st postnatal days in rats) on liver tissue. Female Wistar albino rats (n = 18) were divided into three groups. About 0.1-ml saline was applied to the control group by gavage for 21 days from the postnatal 21st day. The second group was taken 50-mg/kg melamine (in 0.1-ml saline) and the third group was taken 75-mg/kg melamine (in 0.1-ml saline) p.o. On the postnatal 45th day, all rats were sacrificed under anesthesia. Then, liver tissues were cut into three parts and two of them placed in neutral formalin for histopathological and flow cytometric analysis, and one of them placed in 2.5% glutaraldehyde. Histopathological analysis was performed with hematoxylin & eosin, Masson trichrome, periodic acid Schiff stained sections, and also with transmission electron microscopy. Apoptosis (Annexin V positivity) was analyzed by flow cytometry. According to histopathological analysis, hepatocyte damage, sinusoidal dilatation, and inflammatory cell infiltration significantly increased in both melamine groups compared with the control group. Apoptosis significantly increased in the 50 and 75-mg melamine groups compared with the control group. In the results of transmission electron microscopy analysis, there was abnormal chromatin distribution in the hepatocyte nuclei, loss in the cristae of the mitochondria, and organelle loss in large areas in the cytoplasm in both melamine exposure groups. As result, melamine exposure from the weaning period causes liver damage with increasing doses.
Collapse
Affiliation(s)
- Zuleyha Erisgin
- Giresun University, Faculty of Medicine, Department of Histology and Embryology, Gazipasa Campus, Giresun 28200, Turkey
| | - Hasan Serdar Mutlu
- Istanbul University, Faculty of Medicine, Department of Histology and Embryology, Fatih, Istanbul 34093, Turkey
| | - Yavuz Tekelioglu
- Karadeniz Technic University, Faculty of Medicine, Department of Histology and Embryology, Ortahisar, Trabzon 61080, Turkey
| | - Engin Deveci
- Dicle University, Faculty of Medicine, Department of Histology and Embryology, Sur, Diyarbakir 21200, Turkey
| | - Ugur Seker
- Dicle University, Faculty of Medicine, Department of Histology and Embryology, Sur, Diyarbakir 21200, Turkey
| |
Collapse
|
18
|
Chronic Cyanuric Acid Exposure Depresses Hippocampal LTP but Does Not Disrupt Spatial Learning or Memory in the Morris Water Maze. Neurotox Res 2021; 39:1148-1159. [PMID: 33751468 DOI: 10.1007/s12640-021-00355-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/26/2021] [Accepted: 03/17/2021] [Indexed: 01/03/2023]
Abstract
Exposure to cyanuric acid (CA) causes multiple organ failure accompanied by the involvement in kinds of target proteins, which are detectable and play central roles in the CNS. The hippocampus has been identified as a brain area which was especially vulnerable in developmental condition associated with cognitive dysfunction. No studies have examined the effects of CA on hippocampal function after in vitro or in vivo treatment. Here, we aimed to examine hippocampal synaptic function and adverse behavioral effects using a rat model administered CA intraperitoneally or intrahippocampally. We found that infusion of CA induced a depression in the frequency but not the amplitude of spontaneous excitatory postsynaptic currents (sEPSCs), miniature excitatory postsynaptic currents (mEPSCs), or N-methyl-D-aspartate (NMDA)-mediated excitatory postsynaptic currents (EPSCs) of the CA1 neurons in dose-dependent pattern. Both intraperitoneal and intrahippocampal injections of CA suppressed hippocampal LTP from Schaffer collaterals to CA1 regions. Paired-pulse facilitation (PPF), a presynaptic phenomenon, was enhanced while the total and phosphorylated expression of NMDA-GluN1, NMDA-GluN2A, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-GluA1 subunits were comparable between CA-treated and control groups. In Morris water maze test, both groups could effectively learn and retain spatial memory. Our studies provide the first evidence for the neurotoxic effect of CA and the insight into its potential mechanisms.
Collapse
|
19
|
Erisgin Z. Melamine exposure from the weaning period causes apoptosis, inflammation, and damage to the blood-brain barrier. J Chem Neuroanat 2021; 113:101939. [PMID: 33639231 DOI: 10.1016/j.jchemneu.2021.101939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/20/2021] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study to investigate the effects of melamine exposure from the weaning period on the developing brain in rats. Female Wistar albino rats (21 days old, n = 18) were divided into 3 groups, all animals were weighed daily and dose-adjusted. For 3 weeks, 0.1 mL of saline was administered by oral gavage to the control group, 50 mg/kg of melamine to the second group, and 75 mg/kg of melamine to the third group were administered by oral gavage by dissolving in 0.1 mL of saline. On the postnatal 45th day, the rats were sacrificed under anesthesia and brain tissues placed in neutral formalin. After routine tissue processing, brain sections were stained with hematoxylin&eosin(H&E) and Terminal deoxynucleotidyl transferase(TdT) dUTP Nick-End Labeling(TUNEL), IBA-1, Glial Fibrillar Acidic Protein(GFAP), Tumor necrosis factor-α (TNF-α), and SMI-70 antibodies as immunohistochemically. In the results, according to apoptotic index(AI) results, there was a significant increase in the 75 mg/kg and 50 mg/kg melamine groups compared to the control groups (p < 005). There was a significant increase in the number of anti- TNF-α positive neurons and the number of anti-GFAP positive astrocytes in both melamine groups compared to the control group (p < 001). In terms of SMI-71, an increase was found in the 75 mg/kg group compared to other groups (p < 001), while no significant difference was found between the groups in terms of IBA-1 (p > 0.05). It has been observed an increase in dilatation of blood vessels, inflammatory cell infiltration, and endothelial cell degeneration in the 50 mg/kg and 75 mg/kg melamine groups compared to the control group (p < 0.01). there was no statistically significant difference in the body and brain weight between both melamine treatment groups (75 mg/kg and 50 mg/kg) and the control group (p > 005). Melamine exposure (50 mg/kg and 75 mg/kg) from the weaning period causes apoptosis and inflammation in the developing brain, and the disruptions in the blood-brain barrier (BBB) significantly increase exposure to 75 mg/kg.
Collapse
Affiliation(s)
- Zuleyha Erisgin
- Giresun University Faculty of Medicine Department of Histology and Embryology, Giresun, Turkey.
| |
Collapse
|
20
|
Sun W, Liu P, Tang C, An L. Melamine Disrupts Acetylcholine-Mediated Neural Information Flow in the Hippocampal CA3-CA1 Pathway. Front Behav Neurosci 2021; 15:594907. [PMID: 33679339 PMCID: PMC7930216 DOI: 10.3389/fnbeh.2021.594907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/15/2021] [Indexed: 01/23/2023] Open
Abstract
Considering the cognitive and synaptic deficits following intragastric administration of melamine, the aim of the current investigation was to test whether the hippocampal oscillations were affected. The local field potential (LFP) was recorded in the hippocampal CA3–CA1 pathway of Wistar rats during a spatial-dependent Y-maze task. The general partial directed coherence (gPDC) method was used to assess the directionality of neural information flow (NIF) between the CA3 and CA1 regions. The levels of acetylcholine (ACh) and its esterolytic protease, acetylcholinesterase (AChE), were detected in the hippocampus (HPC) following the behavioral test. The values of phase synchronization between the CA3 and CA1 regions in delta, low theta, and high theta oscillations were reduced significantly in the melamine-treated group. Moreover, the coupling directional index and the strength of CA3 driving CA1 were critically decreased in the above three frequency bands as well. Meanwhile, a reduction in ACh expression and an enhancement in AChE activity were found in the HPC of melamine-treated rats. Intrahippocampal infusion with ACh could mitigate the weakened neural coupling and directional NIF in parallel with spatial learning improvements. However, infusion of scopolamine, an acetylcholine receptor antagonist, could block the mitigative effects of ACh treatment in melamine rats. These findings provide first evidence that ACh-mediated neuronal coupling and NIF in the CA3–CA1 pathway are involved in spatial learning deficits induced by chronic melamine exposure.
Collapse
Affiliation(s)
- Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Peidong Liu
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
21
|
Sun W, Wu Y, Tang D, Li X, An L. Melamine disrupts spatial reversal learning and learning strategy via inhibiting hippocampal BDNF-mediated neural activity. PLoS One 2021; 16:e0245326. [PMID: 33428671 PMCID: PMC7799824 DOI: 10.1371/journal.pone.0245326] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/28/2020] [Indexed: 01/21/2023] Open
Abstract
Although several studies showed adverse neurotoxic effects of melamine on hippocampus (HPC)-dependent learning and reversal learning, the evidence for this mechanism is still unknown. We recently demonstrated that intra-hippocampal melamine injection affected the induction of long-term depression, which is associated with novelty acquisition and memory consolidation. Here, we infused melamine into the HPC of rats, and employed behavioral tests, immunoblotting, immunocytochemistry and electrophysiological methods to sought evidence for its effects on cognitive flexibility. Rats with intra-hippocampal infusion of melamine displayed dose-dependent increase in trials to the criterion in reversal learning, with no locomotion or motivation defect. Compared with controls, melamine-treated rats avoided HPC-dependent place strategy. Meanwhile, the learning-induced BDNF level in the HPC neurons was significantly reduced. Importantly, bilateral intra-hippocampal BDNF infusion could effectively mitigate the suppressive effects of melamine on neural correlate with reversal performance, and rescue the strategy bias and reversal learning deficits. Our findings provide first evidence for the effect of melamine on cognitive flexibility and suggest that the reversal learning deficit is due to the inability to use place strategy. Furthermore, the suppressive effects of melamine on BDNF-mediated neural activity could be the mechanism, thus advancing the understanding of compulsive behavior in melamine-induced and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
- Department of Pediatric, The First Affiliated Hospital, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Neurology, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
22
|
Sun W, Li X, Tang D, Wu Y, An L. Subacute melamine exposure disrupts task-based hippocampal information flow via inhibiting the subunits 2 and 3 of AMPA glutamate receptors expression. Hum Exp Toxicol 2020; 40:928-939. [PMID: 33243008 DOI: 10.1177/0960327120975821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although melamine exposure induces cognitive deficits and dysfunctional neurotransmission in hippocampal Cornus Ammonis (CA) 1 region of rats, it is unclear whether the neural function, such as neural oscillations between hippocampal CA3-CA1 pathway and postsynaptic receptors involves in these effects. The levels of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) subunit glutamate receptor (GluR) 1 and GluR2/3 in CA1 region of melamine-treated rats, which were intragastric treated with 300 mg/kg/day for 4 weeks, were detected. Following systemic or intra-hippocampal CA1 injection with GluR2/3 agonist, spatial learning of melamine-treated rats was assessed in Morris water maze (MWM) task. Local field potentials were recorded in CA3-CA1 pathway before and during behavioral test. General Partial Directed Coherence approach was applied to determine directionality of neural information flow between CA3 and CA1 regions. Results showed that melamine exposure reduced GluR2/3 but not GluR1 level and systemic or intra-hippocampal CA1 injection with GluR2/3 agonist effectively mitigated the learning deficits. Phase synchronization between CA3 and CA1 regions were significantly diminished in delta, theta and alpha oscillations. Coupling directional index and strength of CA3 driving CA1 were marked reduced as well. Intra-hippocampal CA1 infusion with GluR2/3 agonist significantly enhanced the phase locked value and reversed the melamine-induced reduction in the neural information flow (NIF) from CA3 to CA1 region. These findings support that melamine exposure decrease the expression of GluR2/3 subunit involved in weakening directionality index of NIF, and thereby induced spatial learning deficits.
Collapse
Affiliation(s)
- Wei Sun
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaoliang Li
- Department of Neurology, Jinan Hospital, Jinan, China
| | - Dongxin Tang
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yuanhua Wu
- Department of Neurology, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lei An
- Behavioral Neuroscience Laboratory, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China.,Department of Neurology, Jinan Hospital, Jinan, China.,Department of Neurology, The First Affiliated Hospital of 326770Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
23
|
Sun W, Che H, Li J, Tang D, Liu X, Liu W, An L. Dorsolateral Striatal proBDNF Improves Reversal Learning by Enhancing Coordination of Neural Activity in Rats. Mol Neurobiol 2020; 57:4642-4656. [DOI: 10.1007/s12035-020-02051-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 07/30/2020] [Indexed: 12/31/2022]
|
24
|
Abstract
We investigated the possible toxic effects of melamine on muscle tissue in rats using biochemical, hematological and histopathological methods. We used three groups of female albino Wistar rats. The first group was given 0.1 ml saline. The second and third groups were given 50 and 75 mg/kg melamine dissolved in 0.1 ml saline, respectively, daily for 21 days. On day 45, all rats were sacrificed, and whole blood and plasma were analyzed for hematologic and biochemical characteristics. Muscle samples were stained with hematoxylin and eosin for histopathological investigation. Other sections were immunostained for matrix metalloproteinase-9 (MMP-9) and type IV collagen. We found a significant increase in the lymphocytosis-compliant leukocyte number in the 75 mg/kg melamine group compared to the other groups. We also found significant decreases in the hemoglobin levels and hematocrit values in the 75 mg/kg compared to the other groups. We found that the 75 mg/kg melamine group exhibited a significant increase in plasma aspartate aminotransferase (AST) activity compared to the other groups. Changes in plasma creatine kinase and lactate dehydrogenase activity were not statistically significant. Plasma AST activity and mean corpuscular hemoglobin levels were correlated with the lymphocyte:neutrophil ratio. We found mononuclear cell infiltration at the periphery of muscle bundles and in the connective tissue bundles in the melamine treated group. We found MMP-9 expression in muscle cell membranes and type IV collagen expression in degenerative connective tissue fibers. Whole blood, plasma and muscle tissue analysis indicated that the 75 mg/kg melamine group exhibited rhabdomyolysis that was associated with lymphocytosis and anemia. The underlying mechanisms by which melamine causes rhabdomyolytic effects remain unclear.
Collapse
Affiliation(s)
- Zuleyha Erisgin
- Department of Histology and Embryology, Faculty of Medicine, Giresun University , Giresun, Turkey
| | - Murat Usta
- Department of Medical Biochemistry, Faculty of Medicine, Giresun University , Giresun, Turkey
| |
Collapse
|
25
|
|
26
|
Development and characterization of Solid-SNEDDS formulation of DHA using hydrophilic carrier with improved shelf life, oxidative stability and therapeutic activity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Prenatal melamine exposure impairs cognitive flexibility and hippocampal synaptic plasticity in adolescent and adult female rats. Pharmacol Biochem Behav 2019; 186:172791. [DOI: 10.1016/j.pbb.2019.172791] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 11/24/2022]
|
28
|
Sleep Deprivation Disrupts Acquisition of Contextual Fear Extinction by Affecting Circadian Oscillation of Hippocampal-Infralimbic proBDNF. eNeuro 2019; 6:ENEURO.0165-19.2019. [PMID: 31585927 PMCID: PMC6800296 DOI: 10.1523/eneuro.0165-19.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/22/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Extensive evidence showed that mature brain-derived neurotrophic factor (mBDNF) levels displayed a circadian pattern. Circadian disruption, for example, sleep deprivation (SD), induced functional and behavioral deficits. However, compared with that of mature form, the biological role of the pro-peptide, proBDNF, was poorly understood. Here, we found that proBDNF was expressed under circadian rhythm in the ventral hippocampus (vHPC). SD rats exhibited deficits in acquisition of conditioned extinction and damped rhythmicity in vHPC proBDNF activity that were accompanied by SD between zeitgeber time (ZT)0 and ZT4, but not the late stage of sleep period. Furthermore, SD affected fear extinction through vHPC-IL proBDNF signaling, which was associated with NR2B subunits of NMDA receptors. More importantly, infusion of proBDNF could mitigate SD-induced abnormal neural activity, by suppressing the enhanced basal firing rate of IL-RS and elevating the depressed neural response that evoked by acquisition of conditioned extinction. Therefore, this finding provided the first evidence that circadian oscillation of vHPC proBDNF activity contributed to the effects of SD on acquisition of conditioned fear extinction, and suggested a new therapeutic target to reverse the cognitive deficits in sleep-related mental disorder, such as post-traumatic stress disorder (PTSD).
Collapse
|
29
|
Derafshpour L, Saboory E, Vafaei AA, Rashidy-Pour A, Roshan-Milani S, Rasmi Y, Panahi Y, Sameni H. Interactive Effects of Exercise, Sex Hormones, and Transient Congenital Hypothyroidism on Long-Term Potentiation in Hippocampal Slices of Rat Offspring. Basic Clin Neurosci 2019; 10:119-135. [PMID: 31031899 PMCID: PMC6484195 DOI: 10.32598/bcn.9.10.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/25/2017] [Accepted: 04/30/2018] [Indexed: 11/20/2022] Open
Abstract
Introduction: The long-term adverse effects of transient thyroid function abnormalities at birth on intellectual development are proven. The effect of exercise increases in the presence of sex hormones. The current study aimed at investigating the possibility that a combination of sex hormones and exercise has synergistic effects on neural plasticity in Transient Congenital Hypothyroidism (TCH) rats. Methods: To induce hypothyroidism in the mothers, Propylthiouracil (PTU) was added to drinking water (100 mg/L) on the 6th day of gestation and continued until the 21st Postnatal Day. From Postnatal Day (PND) 28 to 47, the female and male pups received 17β-estradiol and testosterone, respectively. The mild treadmill exercise began 30 minutes after the sex hormones or vehicle administration. On PND 48, electrophysiological experiments were performed on brain slices. Results: Increase of Long-Term Potentiation (LTP) was observed in sedentary-non-hormone female rats of TCH group, compared with that of the control. The exercise enhanced LTP in control rats, but the hormones showed no significant effect. The effect of exercise and sex hormone was not significant in the TCH group. The combination of exercise and testosterone enhanced LTP in TCH male rats, while the combination of exercise and estradiol or each of them individually did not produce such an effect on LTP in TCH female rats. Conclusion: The study findings showed an increase in excitatory transmission despite the returning of thyroid hormone levels to normal range in TCH female rats. Also a combination treatment including exercise and testosterone enhanced LTP in male rats of TCH group, which was a gender-specific event.
Collapse
Affiliation(s)
- Leila Derafshpour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.,Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Ali Vafaei
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Rashidy-Pour
- Laboratory of Learning and Memory, Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Panahi
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
30
|
Li X, Sun W, An L. Nano-CuO impairs spatial cognition associated with inhibiting hippocampal long-term potentiation via affecting glutamatergic neurotransmission in rats. Toxicol Ind Health 2018; 34:409-421. [DOI: 10.1177/0748233718758233] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Manufactured metal nanoparticles and their applications are continuously expanding because of their unique characteristics while their increasing use may predispose to potential health problems. Several studies have reported the adverse effects of copper oxide nanoparticles (nano-CuO) relative to ecotoxicity and cell toxicity, whereas little is known about the neurotoxicity of nano-CuO. The present study aimed to examine its effects on spatial cognition, hippocampal function, and the possible mechanisms. Male Wistar rats were used to establish an animal model, and nano-CuO was administered at a dose of 0.5 mg/kg/day for 2 weeks. The Morris water maze (MWM) test was employed to evaluate learning and memory. The long-term potentiation (LTP) from Schaffer collaterals to the hippocampal CA1 region, and the effects of nano-CuO on synases were recorded in the hippocampal CA1 neurons of rats. MWM test showed that learning and memory abilities were impaired significantly by nano-CuO ( p < 0.05). The LTP test demonstrated that the field excitatory postsynaptic potential (fEPSP) slopes were significantly lower in nano-CuO-treated groups compared with the control group ( p < 0.01). Furthermore, the data of whole-cell patch-clamp experiments showed that nano-CuO markedly depressed the frequencies of both spontaneous excitatory postsynaptic currents (sEPSCs) and miniature EPSCs (mEPSCs), indicating an effect of nano-CuO on inhibiting the release frequency of glutamate presynapticly ( p < 0.01). Meanwhile, the amplitudes of both sEPSC and mEPSC were significantly reduced in nano-CuO-treated animals, which suggested that the effect of nano-CuO modulates postsynaptic receptor kinetics ( p < 0.01). Paired pulse facilitation (PPF) ( p < 0.05) and the expression of NR2A, but not NR2B, of N-methyl-d-aspartate (NMDA) subunits ( p < 0.05), were decreased significantly. In conclusion, nano-CuO impaired glutamate transmission presynapticly and postsynapticly, which may contribute importantly to diminished LTP and other induced cognitive deficits.
Collapse
Affiliation(s)
- Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
31
|
Chu CY, Fung KP, Wang CC. Effects of low-dose melamine exposure during pregnancy on maternal and fetal kidneys in rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:370-380. [PMID: 29265596 DOI: 10.1002/tox.22525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 06/07/2023]
Abstract
Despite the previous reports on melamine contamination in high concentrations some years ago, there were not many studies on low-level exposure in daily life, particularly in pregnancy. We investigated the effect of low-dose melamine on the kidneys of the pregnant rats and their developing embryos/fetuses during various gestational stages namely implantation, gastrulation, organogenesis, maturation and whole pregnancy. Our results showed that the repeated low level of melamine (12.5, 25, and 50 mg/kg bw/d) during pregnancy did not cause obstruction of renal tubules although more precipitating crystals were found in the early gestational periods. Simple hyperplasia in the maternal tubules and pelvic epithelium were more prominent after exposed to melamine during the whole gestational period. Neonatal kidneys significantly suffered more from congestion in glomeruli and interstitium, dilated tubules and interstitial edema after melamine administration to the mother in the late and the whole gestational periods. A trend of advance of glomerular development in fetuses was also observed. We conclude that in utero exposure of low-level melamine could post a risk on the kidneys of the pregnant mother as well as the developing fetuses, which may further increase the possibility of other health problems later in life.
Collapse
Affiliation(s)
- Ching Yan Chu
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong
| | - Kwok Pui Fung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics & Gynaecology, The Chinese University of Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
32
|
Prenatal melamine exposure induces impairments of spatial cognition and hippocampal synaptic plasticity in female adolescent rats. Neurotoxicology 2017; 62:56-63. [DOI: 10.1016/j.neuro.2017.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/12/2017] [Accepted: 05/16/2017] [Indexed: 11/24/2022]
|
33
|
A Brief Review of Neurotoxicity Induced by Melamine. Neurotox Res 2017; 32:301-309. [DOI: 10.1007/s12640-017-9731-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/26/2017] [Accepted: 04/04/2017] [Indexed: 12/21/2022]
|