1
|
Lynch HN, Kozal JS, Vincent MJ, Freid RD, Beckett EM, Brown S, Mathis C, Schoeny RS, Maier A. Systematic review of the human health hazards of propylene dichloride. Regul Toxicol Pharmacol 2023; 144:105468. [PMID: 37562533 DOI: 10.1016/j.yrtph.2023.105468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/05/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Propylene dichloride (PDC) is a chlorinated substance used primarily as an intermediate in basic organic chemical manufacturing. The United States Environmental Protection Agency (EPA) is currently evaluating PDC as a high-priority substance under the Toxic Substances Control Act (TSCA). We conducted a systematic review of the non-cancer and cancer hazards of PDC using the EPA TSCA and Integrated Risk Information System (IRIS) frameworks. We identified 12 epidemiological, 16 toxicokinetic, 34 experimental animal, and 49 mechanistic studies. Point-of-contact respiratory effects are the most sensitive non-cancer effects after inhalation exposure, and PDC is neither a reproductive nor a developmental toxicant. PDC is not mutagenic in vivo, and while in vitro evidence is mixed, DNA strand breaks consistently occur. Nasal tumors in rats and lung tumors in mice occurred after lifetime high-level inhalation exposure. Cholangiocarcinoma (CCA) was observed in Japanese print workers exposed to high concentrations of PDC. However, co-exposures, as well as liver parasites, hepatitis, and other risk factors, may also have contributed. The cancer mode of action (MOA) analysis revealed that PDC may act through multiple biological pathways occurring sequentially and/or simultaneously, although chronic tissue damage and inflammation likely dominate. Critically, health benchmarks protective of non-cancer effects are expected to protect against cancer in humans.
Collapse
|
2
|
Kozal JS, Lynch HN, Klapacz J, Schoeny RS, Jean PA, Maier A. Mode of action assessment for propylene dichloride as a human carcinogen. Chem Biol Interact 2023; 382:110382. [PMID: 36754223 DOI: 10.1016/j.cbi.2023.110382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/16/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
As part of a systematic review of the non-cancer and cancer hazards of propylene dichloride (PDC), with a focus on potential carcinogenicity in workers following inhalation exposures, we determined that a mode of action (MOA)-centric framing of cancer effects was warranted. In our MOA analysis, we systematically reviewed the available mechanistic evidence for PDC-induced carcinogenesis, and we mapped biologically plausible MOA pathways and key events (KEs), as guided by the International Programme on Chemical Safety (IPCS)-MOA framework. For the identified pathways and KEs, biological concordance, essentiality of KEs, concordance of empirical observations among KEs, consistency, and analogy were evaluated. The results of this analysis indicate that multiple biologically plausible pathways may contribute to the cancer MOA for PDC, but that the relevant pathways vary by exposure route and level, tissue type, and species; further, more than one pathway may occur concurrently at high exposure levels. While several important data gaps exist, evidence from in vitro mechanistic studies, in vivo experimental animal studies, and ex vivo human tumor tissue analyses indicates that the predominant MOA pathway likely involves saturation of cytochrome p450 2E1 (CYP2E1)-glutathione (GSH) detoxification (molecular initiating event; MIE), accumulation of CYP2E1-oxidative metabolites, cytotoxicity, chronic tissue damage and inflammation, and ultimately tumor formation. Tumors may occur through several subsets of inflammatory KEs, including inflammation-induced aberrant expression of activation-induced cytidine deaminase (AID), which causes DNA strand breaks and mutations and can lead to tumors with a characteristic mutational signature found in occupational cholangiocarcinoma. Dose concordance analysis showed that low-dose mutagenicity (from any pathway) is not a driving MOA, and that prevention of target tissue damage and inflammation (associated with saturation of CYP2E1-GSH detoxification) is expected to also prevent the cascade of processes responsible for tumor formation.
Collapse
Affiliation(s)
| | | | - Joanna Klapacz
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, 48674, USA
| | | | | | | |
Collapse
|
3
|
Yamashita M, Adachi T, Ono S, Yoshino K, Imamura H, Matsushima H, Tanaka T, Kosaka T, Soyama A, Hidaka M, Kanetaka K, Eguchi S. Helicobacter bilis infection induces oxidative stress in and enhances the proliferation of human cholangiocytes. Helicobacter 2022; 27:e12908. [PMID: 35661483 DOI: 10.1111/hel.12908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/02/2022] [Accepted: 05/17/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Helicobacter bilis, an enterohepatic Helicobacter species, represents a carcinogenic risk factor for cholangiocytes owing to the prevalence of infections in patients with biliary tract cancer, cholecystitis, and pancreaticobiliary maljunction. However, the effect of H. bilis infection on cholangiocytes and the process and mechanism of carcinogenesis are not known. We aimed to determine the effects of H. bilis on cholangiocytes, focusing on inflammation and oxidative stress. MATERIALS AND METHODS Helicobacter bilis and MMNK-1 cells were cocultured for 24 h and inflammatory cytokine secretion was evaluated. Furthermore, MMNK-1 cell proliferation, intracellular reactive oxidant species (ROS) production, and DNA damage caused by ROS were investigated. All factors were compared with and without H. bilis infection. RESULTS Interleukin (IL)-6 and IL-8 secretion were significantly increased in MMNK-1 cocultures with H. bilis (IL-6, 24.3 ± 12.2 vs. 271.1 ± 286.4 pg/ml; IL-8, 167.6 ± 78.7 vs. 1085.1 ± 1047.1 pg/ml, p < .05). MMNK-1 proliferation was also significantly higher in H. bilis cocultures (1.05 ± 0.02 vs. 1.00-fold, respectively; p < .05). Coculturing enhanced the production of ROS in MMNK-1 cells depending on the cell concentration of H. bilis (1.0 vs. 1.17 ± 0.06, p < .05); however, DNA injury was not observed in cocultures with H. bilis (5.35 ± 0.87 vs. 6.08 ± 0.55 pg/μl, p = .06). CONCLUSIONS Helicobacter bilis infection induced ROS production in and enhanced the proliferation of cholangiocytes.
Collapse
Affiliation(s)
- Mampei Yamashita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Shinichiro Ono
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kyohei Yoshino
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tanaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Taichiro Kosaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
4
|
Liu D, Cheng Y, Tang Z, Mei X, Cao X, Liu J. Toxicity mechanism of acrolein on DNA damage and apoptosis in BEAS-2B cells: Insights from cell biology and molecular docking analyses. Toxicology 2021; 466:153083. [PMID: 34958888 DOI: 10.1016/j.tox.2021.153083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023]
Abstract
Acrolein is a hazardous air pollutant for humans and is responsible for many pulmonary diseases, but the underlying mechanisms have not been completely elucidated. This work is focused on the genotoxicity effects of human bronchial epithelial (BEAS-2B) cells induced by acrolein (20, 40, 80 μM). The molecular mechanism was investigated base on DNA damage and mitochondrial apoptosis pathways. The results showed that after exposure to acrolein, the cell viability, glutathione (GSH) of BEAS-2B cells were reduced. Reactive oxygen species (ROS) level significantly increased, accompanied by increased levels of DNA damage-related indicators 8-hydroxy-2 deoxyguanosine (8-OHdG), DNA content of comet tail (Tail DNA%), olive tail moment (OTM), and nucleus morphology. Cell arrested at the G2/M phase. Then, the DNA damage response (DDR) signaling pathway (Ataxia-telangiectasia-mutated (ATM) and Rad-3-related (ATR)/Chk1 and ATM/Chk2) and the consequent cell cycle checkpoints were activated. The expression of γ-H2AX was significantly increased, indicating that acrolein induced DNA double-strand breaks. Molecular docking assay showed that acrolein bound to DNA in a spontaneous process. Moreover, mitochondrial apoptosis pathway involved in apoptosis, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) content of BEAS-2B cells were significantly reduced, and the apoptosis rate was significantly increased. The protein expression of Bax/Bcl-2 and Cleaved Caspase-3 were increased, and JNK signaling pathway was activated. All the results indicated that acrolein induced DNA damage, activated DDR and mitochondrial apoptosis pathways, which might be the pivotal factors to mediate cytotoxicity in BEAS-2B cells.
Collapse
Affiliation(s)
- Dan Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Ye Cheng
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Zhipeng Tang
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xueying Mei
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China
| | - Xiangyu Cao
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| | - Jianli Liu
- Department of Biological Sciences, School of Life Science, Liaoning University, Shenyang, 110036, PR China.
| |
Collapse
|
5
|
Yang F, Li G, Sang N. The phytotoxicities of agricultural soil samples from a coal gangue stacking area to several maize cultivars (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52319-52328. [PMID: 34009574 DOI: 10.1007/s11356-021-14250-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
In Shanxi, a major energy province in China, environmental pollution caused by coal gangue accumulation is becoming an increasingly serious problem. In addition, crops are the first trophic level in the human food chain, and the security and production of crops are closely related to human well-being. The objective of this study was to estimate the phytotoxicities of agricultural soil samples contaminated by coal gangue accumulation using maize (Zea mays L.) as a model organism. Finally, a tolerant maize cultivar was screened for coal gangue stacking areas. Seven cultivars of maize seeds were treated with agricultural soil leachate around the coal gangue stacking area at various concentrations of 0, 1:27, 1:9, 1:3, and 1:1. The results revealed that the agricultural soil leachate treatment could inhibit seed germination and the growth of roots and shoots and that the soil leachate-induced phytotoxicities were cultivar-dependent. At the same exposure concentration, tolerant maize cultivar displayed lower toxicity symptoms than sensitive maize cultivar in terms of growth inhibition, oxidative damage, and DNA damage. Stronger activities of antioxidant enzymes were observed in the tolerant maize cultivar than in the sensitive maize cultivar, indicating that the difference between cultivars in antioxidant capacity is one reason for the difference in plant tolerance. Our study provides experimental evidence for the ecological risk assessment of soil and the selection of maize cultivars with high environmental pollutant tolerance for use in coal gangue stacking areas.
Collapse
Affiliation(s)
- Fenglong Yang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, People's Republic of China
| |
Collapse
|
6
|
Takizawa R, Ichihara S, Zong C, Kinoshita K, Sakurai T, Ikegami A, Mise N, Ichihara G. 1,2-Dichloropropane induces γ-H2AX expression in human cholangiocytes only in the presence of macrophages. Toxicol Lett 2021; 349:134-144. [PMID: 34153406 DOI: 10.1016/j.toxlet.2021.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/13/2023]
Abstract
Recent epidemiological studies reported cases of cholangiocarcinoma in workers exposed to 1,2-dichloropropane (1,2-DCP) in an offset proof printing factory in Japan. The present study investigated the effects of 1,2-DCP on the expression of histone family member X (H2AX) phosphorylated on Ser 139 (γ-H2AX), a marker of DNA double strand break, in human immortalized cholangiocytes MMNK-1 cells. Mono-cultures of MMNK-1 cells and co-cultures of MMNK-1 cells with THP-1 macrophages were exposed to 1,2-DCP at concentrations of 100 and 500 μM for 24 h. Expression of γ-H2AX was visualized by immunofluorescence staining. Exposure to 1,2-DCP had no effect on the expression of γ-H2AX in mono-cultured MMNK-1 cells, but significantly increased the number of nuclear foci stained by γ-H2AX in MMNK-1 cells co-cultured with THP-1 macrophages. Exposure to 1,2-DCP also significantly increased the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-6 in co-cultured MMNK-1 cells. The results suggest that macrophages play a critical role by producing cytokines in 1,2-DCP-induced DNA double strand break in MMNK-1 cells.
Collapse
Affiliation(s)
- Ryoya Takizawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan; Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, Shizuoka, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan
| | - Akihiko Ikegami
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda, Japan.
| |
Collapse
|
7
|
Ekuban A, Zong C, Ekuban FA, Kimura Y, Takizawa R, Morikawa K, Kinoshita K, Ichihara S, Ohsako S, Ichihara G. Role of Macrophages in Cytotoxicity, Reactive Oxygen Species Production and DNA Damage in 1,2-Dichloropropane-Exposed Human Cholangiocytes In Vitro. TOXICS 2021; 9:toxics9060128. [PMID: 34205922 PMCID: PMC8228395 DOI: 10.3390/toxics9060128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
1,2-Dichloropropane (1,2-DCP), a synthetic chlorinated organic compound, was extensively used in the past in offset color proof-printing. In 2014, the International Agency for Research on Cancer (IARC) reclassified 1,2-DCP from its initial Group 3 to Group 1. Prior to the reclassification, cholangiocarcinoma was diagnosed in a group of workers exposed to 1,2 -DCP in an offset color proof-printing company in Japan. In comparison with other forms of cholangiocarcinoma, 1,2-DCP-induced cholangiocarcinoma was of early onset and accompanied by extensive pre-cancerous lesions in large bile ducts. However, the mechanism of 1,2-DCP-induced cholangiocarcinoma is poorly understood. Inflammatory cell proliferation was observed in various sites of the bile duct in the noncancerous hepatic tissues of the 1,2-DCP-induced cholangiocarcinoma. The aim of this study was to enhance our understanding of the mechanism of 1,2-DCP-related cholangiocarcinogenesis. We applied an in vitro system to investigate the effects of 1,2-DCP, using MMNK-1 cholangiocytes cultured alone or with THP-1 macrophages. The cultured cells were exposed to 1,2-DCP at 0, 0.1, 0.2, 0.4, and 0.8 mM for 24 h, and then assessed for cell proliferation, cell cytotoxicity, DNA damage, and ROS production. Exposure to 1,2-DCP increased proliferation of MMNK-1 cholangiocytes cultured alone, but not those cultured with macrophages. 1,2-DCP also increased LDH cytotoxicity, DNA damage, and ROS production in MMNK-1 cholangiocytes co-cultured with macrophages but not those cultured alone. 1,2-DCP increased TNFα and IL-1β protein expression in macrophages. The results highlight the role of macrophages in enhancing the effects of 1,2-DCP on cytotoxicity, ROS production, and DNA damage in cholangiocytes.
Collapse
Affiliation(s)
- Abigail Ekuban
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Cai Zong
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Frederick Adams Ekuban
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Yusuke Kimura
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Ryoya Takizawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan;
| | - Kota Morikawa
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shizuoka Graduate University of Public Health, Shizuoka 420-0881, Japan;
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan;
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan;
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Tokyo University of Science, Noda 278-8510, Japan; (A.E.); (C.Z.); (F.A.E.); (Y.K.); (R.T.); (K.M.)
- Correspondence:
| |
Collapse
|
8
|
Wang Z, Faria J, Penning LC, Masereeuw R, Spee B. Tissue-Engineered Bile Ducts for Disease Modeling and Therapy. Tissue Eng Part C Methods 2021; 27:59-76. [PMID: 33267737 DOI: 10.1089/ten.tec.2020.0283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recent biotechnical advances in the in vitro culture of cholangiocytes and generation of bioengineered biliary tissue have a high potential for creating biliary tissue to be used for disease modeling, drug screening, and transplantation. For the past few decades, scientists have searched for a source of cholangiocytes, focused on primary cholangiocytes or cholangiocytes derived from hepatocytes or stem cells. At the same time, the development of scaffolds for biliary tissue engineering for transplantation and modeling of cholangiopathies has been explored. In this review, we provide an overview on the current understanding of cholangiocytes sources, the effect of signaling molecules, and transcription factors on cell differentiation, along with the effects of extracellular matrix molecules and scaffolds on bioengineered biliary tissues, and their application in disease modeling and drug screening. Impact statement Over the past few decades, biliary tissue engineering has acquired significant attention, but currently a number of factors hinder this field to eventually generate bioengineered bile ducts that mimic in vivo physiology and are suitable for transplantation. In this review, we present the latest advances with respect to cell source selection, influence of growth factors and scaffolds, and functional characterization, as well as applications in cholangiopathy modeling and drug screening. This review is suited for a broad spectrum of readers, including fundamental liver researchers and clinicians with interest in the current state and application of bile duct engineering and disease modeling.
Collapse
Affiliation(s)
- Zhenguo Wang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - João Faria
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Louis C Penning
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Bart Spee
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
9
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Sandler DP, White AJ. Airborne mammary carcinogens and breast cancer risk in the Sister Study. ENVIRONMENT INTERNATIONAL 2019; 130:104897. [PMID: 31226564 PMCID: PMC6679994 DOI: 10.1016/j.envint.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
INTRODUCTION Potentially carcinogenic hazardous air pollutants (air toxics) have been inconsistently associated with breast cancer. Whether metabolic factors modify these associations is unknown. We studied 29 non-metallic air toxics classified as mammary gland carcinogens in animal studies in relation to breast cancer risk. METHODS Participants included 49,718 women from the Sister Study. Census tract air toxic concentration estimates from the 2005 National Air Toxics Assessment were linked to enrollment residential addresses. Adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for individual air toxics were estimated using Cox regression. Body mass index (BMI) was considered a potential modifier. Relevant mixtures were identified using classification trees. RESULTS Over follow-up (average = 8.4 years), 2975 women were newly diagnosed with breast cancer (invasive or ductal carcinoma in situ). Several air toxics, including methylene chloride, polycyclic organic matter, propylene dichloride, and styrene, were associated with increased risk. Of these, methylene chloride was most consistently associated with risk across multiple analyses. It was associated with overall (HRquintile 4vs1 = 1.21 (95%CI = 1.07-1.38)) and estrogen receptor positive (ER+) invasive breast cancer (HRquintile 4vs1 = 1.28 (95%CI = 1.08-1.52)) in individual pollutant models, although no dose-response was observed. Associations were stronger among overweight/obese (vs. non-overweight/obese) women (p < 0.05) for six air toxics. The classification tree identified combinations of age, methylene chloride, BMI, and four other toxics (propylene dichloride, ethylene dibromide, ethylidene dichloride, styrene) related to overall breast cancer. CONCLUSIONS Some non-metallic air toxics, particularly methylene chloride, were associated with the hazard for overall and ER+ breast cancer. Overweight/obese women may be particularly susceptible to air toxics.
Collapse
Affiliation(s)
- Nicole M Niehoff
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America.
| | - Marilie D Gammon
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Alexander P Keil
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Hazel B Nichols
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Lawrence S Engel
- Department of Epidemiology, University of North Carolina, 135 Dauer Drive, Chapel Hill, NC 27599, United States of America
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| | - Alexandra J White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States of America
| |
Collapse
|
10
|
Niehoff NM, Gammon MD, Keil AP, Nichols HB, Engel LS, Taylor JA, White AJ, Sandler DP. Hazardous air pollutants and telomere length in the Sister Study. Environ Epidemiol 2019; 3:e053. [PMID: 32984752 PMCID: PMC7517667 DOI: 10.1097/ee9.0000000000000053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/19/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Telomeres are vital for genomic integrity and telomere length has been linked to many adverse health outcomes. Some hazardous air pollutants, or air toxics, increase oxidative stress and inflammation, two possible determinants of shortened telomere length. No studies have examined air toxic-telomere length associations in a non-occupational setting. METHODS This study included 731 Sister Study participants (enrolled 2003-2007) who were randomly selected to assess telomere length in baseline blood samples. Multiplex qPCR was used to determine telomere to single copy gene (T/S) ratios. Census tract concentration estimates of 29 air toxics from the 2005 National Air Toxics Assessment were linked to baseline residential addresses. Air toxics were classified into tertile-based categories of the exposure. Multivariable linear regression was used to estimate β coefficients and 95% confidence intervals (CI) in single pollutant models. Multipollutant groups were identified with regression trees. RESULTS The average T/S ratio was 1.24. Benzidine (T3vsT1 β= -0.08; 95% CI: -0.14, -0.01) and 1,4-dioxane (T3vsT1 β= -0.06; 95% CI: -0.13, 0.00) in particular, as well as carbon tetrachloride, chloroprene, ethylene dibromide, and propylene dichloride, were associated with shorter relative telomere length. Benzidine (p=0.02) and 1,4-dioxane (p=0.06) demonstrated some evidence of a monotonic trend. The regression tree identified age, BMI, physical activity, ethylene oxide, acrylonitrile, ethylidene dichloride, propylene dichloride, and styrene in multipollutant groups related to telomere length. CONCLUSIONS In this first study of air toxics and telomere length in a non-occupational setting, several air toxics, particularly 1,4-dioxane and benzidine, were associated with shorter relative telomere length.
Collapse
Affiliation(s)
- Nicole M. Niehoff
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Marilie D. Gammon
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alexander P. Keil
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Hazel B. Nichols
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lawrence S. Engel
- Department of Epidemiology, University of North Carolina, Chapel Hill, North Carolina
| | - Jack A. Taylor
- Epigenetic and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Alexandra J. White
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| |
Collapse
|
11
|
Zong C, Kimura Y, Kinoshita K, Takasu S, Zhang X, Sakurai T, Sekido Y, Ichihara S, Endo G, Ichihara G. Exposure to 1,2-Dichloropropane Upregulates the Expression of Activation-Induced Cytidine Deaminase (AID) in Human Cholangiocytes Co-Cultured With Macrophages. Toxicol Sci 2018; 168:137-148. [DOI: 10.1093/toxsci/kfy280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Yusuke Kimura
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Kazuo Kinoshita
- Evolutionary Medicine, Shiga Medical Center Research Institute, Moriyama 524-8524, Japan
| | - Shigetada Takasu
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Xiao Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | | | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Ginji Endo
- Osaka Occupational Health Service Centre, Japan Industrial Safety and Health Association, Osaka 550-0001, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| |
Collapse
|
12
|
Wang H, Chen J, Suda M, Yanagiba Y, Weng Z, Wang RS. Acute inhalation co-exposure to 1,2-dichloropropane and dichloromethane cause liver damage by inhibiting mitochondrial respiration and defense ability in mice. J Appl Toxicol 2018; 39:260-270. [PMID: 30240022 DOI: 10.1002/jat.3715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/19/2018] [Accepted: 07/24/2018] [Indexed: 11/07/2022]
Abstract
1,2-Dichloropropane (1,2-DCP) is used as an industrial solvent, insecticide fumigant and household dry cleaning product. Carcinogenicity caused by long-term exposure to 1,2-DCP is well established. However, the possible liver damage and related toxic mechanisms associated with acute inhalation exposure to 1,2-DCP are rarely reported. In this study, we investigated the effects of individual and combined exposure to 1,2-DCP and dichloromethane (DCM) on mice liver. The results showed that 1,2-DCP significantly caused liver necrosis, possibly due to 1,2-DCP-induced inhibition of the mitochondrial respiratory chain complex I-IV activities, resulting in mitochondrial dysfunction and extreme ATP consumption. Moreover, 1,2-DCP also decreased mitochondrial defense ability by inhibiting the mitochondrial glutathione S-transferase 1 (MGST1) activity, further aggravating liver damage. Additionally, we found that DCM co-exposure potentially enhanced 1,2-DCP toxicity. Our findings suggest that inhibition of mitochondrial function and MGST1 activity play critical roles in modulating 1,2-DCP-induced liver damage. Furthermore, our results contribute to study the new mechanism of mitochondria-dominated signaling pathways underlying liver injury induced by 1,2-DCP and DCM.
Collapse
Affiliation(s)
- Hufei Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Jiamin Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Megumi Suda
- Japan National Institute of Occupational Safety and Health, Kawasaki, Japan
| | - Yukie Yanagiba
- Japan National Institute of Occupational Safety and Health, Kawasaki, Japan
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Rui-Sheng Wang
- Japan National Institute of Occupational Safety and Health, Kawasaki, Japan
| |
Collapse
|
13
|
Qi Y, Toyooka T, Kashiwagi H, Yanagiba Y, Koda S, Ohta H, Wang RS. 2,4-Dimethylaniline generates phosphorylated histone H2AX in human urothelial and hepatic cells through reactive oxygen species produced by cytochrome P450 2E1. Arch Toxicol 2018; 92:3093-3101. [DOI: 10.1007/s00204-018-2289-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/16/2018] [Indexed: 01/21/2023]
|
14
|
Toyooka T, Yanagiba Y, Ibuki Y, Wang RS. Trichloroethylene exposure results in the phosphorylation of histone H2AX in a human hepatic cell line through cytochrome P450 2E1-mediated oxidative stress. J Appl Toxicol 2018; 38:1224-1232. [PMID: 29722447 DOI: 10.1002/jat.3632] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/21/2023]
Abstract
Trichloroethylene (TCE), a chlorinated hydrocarbon, was recently reclassified as a human carcinogen by the International Agency for Research on Cancer. Genotoxic events are known to be crucial steps in the initiation of cancer. The genotoxic properties of TCE have been examined in many studies using a standard battery of genotoxicity tests both in vitro and in vivo. However, consistent results have not been obtained, and studies investigating the mechanism behind the genotoxicity of this compound are lacking. In the present study, we examined the genotoxicity of TCE by assessing phosphorylated histone H2AX (γ-H2AX), a new sensitive and reliable marker of DNA damage, in WRL-68 cells, cultured human hepatocytes and mouse livers. Our results showed that TCE exposure results in the generation of γ-H2AX, both in vitro and in vivo. By investigating the in vitro mechanism, we found that TCE increases the levels of intracellular reactive oxygen species (ROS) and that this increase in ROS levels is attenuated in the presence of disulfiram, a specific cytochrome P450 2E1 (CYP2E1) inhibitor. Furthermore, γ-H2AX induced by TCE was also attenuated by CYP2E1 inhibitors and the antioxidant N-acetylcysteine. These results suggested that ROS, produced via cytochrome P450 2E1-mediated metabolic processing, is a major causal factor for γ-H2AX generation upon exposure to TCE.
Collapse
Affiliation(s)
- Tatsushi Toyooka
- Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| | - Yukie Yanagiba
- Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Japan
| | - Rui-Sheng Wang
- Industrial Toxicology and Health Effects Research Group, National Institute of Occupational Safety and Health, Japan
| |
Collapse
|
15
|
Yuza K, Nagahashi M, Watanabe S, Takabe K, Wakai T. Hypermutation and microsatellite instability in gastrointestinal cancers. Oncotarget 2017; 8:112103-112115. [PMID: 29340115 PMCID: PMC5762383 DOI: 10.18632/oncotarget.22783] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/13/2017] [Indexed: 02/07/2023] Open
Abstract
Recent progress in cancer genome analysis using next-generation sequencing has revealed a high mutation burden in some tumors. The particularly high rate of somatic mutation in these tumors correlates with the generation of neo-antigens capable of eliciting an immune response. Identification of hypermutated tumors is therefore clinically valuable for selecting patients suitable for immunotherapy treatment. There are several known causes of hypermutation in tumors, such as ultraviolet light in melanoma, tobacco smoke in lung cancer, and excessive APOBEC (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) activity in breast and gastric cancer. In gastrointestinal cancers, one of the leading causes of hypermutation is a defect in DNA mismatch repair, which results in microsatellite instability (MSI). This review will focus on the frequency, characteristics and genomic signature of hypermutated gastrointestinal cancers with MSI. Detection of tumor hypermutation in cancer is expected to not only predict the clinical benefit of immune checkpoint inhibitor treatment, but also to provide better surgical strategies for the patients with hypermutated tumors. Thus, in an era of precision medicine, identification of hypermutation and MSI will play an important role directing surgical and chemotherapeutic treatment.
Collapse
Affiliation(s)
- Kizuki Yuza
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| | - Kazuaki Takabe
- Breast Surgery, Department of Surgical Oncology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
- Department of Surgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, The State University of New York, Buffalo, NY 14203, USA
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata City, Niigata 951-8510, Japan
| |
Collapse
|
16
|
Zhang X, Zong C, Zhang L, Garner E, Sugie S, Huang C, Wu W, Chang J, Sakurai T, Kato M, Ichihara S, Kumagai S, Ichihara G. Exposure of Mice to 1,2-Dichloropropane Induces CYP450-Dependent Proliferation and Apoptosis of Cholangiocytes. Toxicol Sci 2017; 162:559-569. [DOI: 10.1093/toxsci/kfx272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Xiao Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510300, China
| | - Cai Zong
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Lingyi Zhang
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Edwin Garner
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico 87108
| | - Shigeyuki Sugie
- Department of Diagnostic Pathology, Asahi University Murakami Memorial Hospital, Gifu 500-8523, Japan
| | - Chinyen Huang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Wenting Wu
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Jie Chang
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Toshihiro Sakurai
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Sahoko Ichihara
- Department of Environmental and Preventive Medicine, Jichi Medical University School of Medicine, Shimotsuke 329-0498, Japan
| | - Shinji Kumagai
- Department of Occupational and Environmental Management, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan
| | - Gaku Ichihara
- Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda 278-8510, Japan
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|