1
|
Chan WS, Wong GF, Hung CW, Wong YN, Fung KM, Lee WK, Dao KL, Leung CW, Lo KM, Lee WM, Cheung BKK. Interpol review of toxicology 2016-2019. Forensic Sci Int Synerg 2020; 2:563-607. [PMID: 33385147 PMCID: PMC7770452 DOI: 10.1016/j.fsisyn.2020.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022]
Abstract
This review paper covers the forensic-relevant literature in toxicology from 2016 to 2019 as a part of the 19th Interpol International Forensic Science Managers Symposium. The review papers are also available at the Interpol website at: https://www.interpol.int/content/download/14458/file/Interpol%20Review%20.Papers%202019.pdf.
Collapse
|
2
|
Etemad L, Moshiri M, Balali-Mood M. Advances in treatment of acute sulfur mustard poisoning - a critical review. Crit Rev Toxicol 2020; 49:191-214. [PMID: 31576778 DOI: 10.1080/10408444.2019.1579779] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sulfur mustard (SM) is a blistering chemical warfare agent that was used during the World War I and in the Iraq-Iran conflict. The aim of this paper is to discuss and critically review the published results of experiments on the treatment of SM poisoning based on our clinical and research experience. The victims must remove from the contaminated zone immediately. The best solution for decontamination is large amounts of water, using neutral soap and 0.5% sodium hypochlorite. Severely intoxicated patients should be treated according to advanced life support protocols and intensive care therapy for respiratory disorders and the chemical burn. Sodium thiosulfate infusion (100-500 mg/kg/min) should be started up to 60 min after SM exposure. However, N-acetyle cysteine (NAC) is recommended, none of them acts as specific or effective antidote. The important protective and conservative treatment of SM-induced pulmonary injuries include humidified oxygen, bronchodilators, NAC as muculytic, rehydration, mechanical ventilation, appropriate antibiotics and respiratory physiotherapy as clinically indicated. Treatment of acute SM ocular lesions start with topical antibiotics; preferably sulfacetamide eye drop, continue with lubricants, and artificial tears. Treatment for cutaneous injuries include: moist dressing; preferably with silver sulfadiazine cream, analgesic, anti-pruritic, physically debridement, debridase, Laser debridement, followed by skin autologous split-thickness therapy as clinically indicated. The new suggested medications and therapeutic approaches include: anti-inflammatory agents, Niacinamide, Silibinin, Calmodulin antagonists, Clobetasol, full-thickness skin grafting for skin injuries; Doxycycline; Bevacizumab, and Colchicine for ocular injuries. Recommended compounds based on animal studies include Niacinamide, Aprotinin, des-aspartate-angiotensin-I, Gamma-glutamyltransferase, vitamin E, and vitamin D. In vitro studies revealed that Dimethylthiourea, L-nitroarginine, Methyl-ester, Sodium pyruvate, Butylated hydroxyanisole, ethacrynic acid, and macrolide antibiotics are effective. However, none of them, except macrolide antibiotics have been proved clinically. Avoidance of inappropriate polypharmacy is advisable.
Collapse
Affiliation(s)
- Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mohammad Moshiri
- Medical Toxicology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Mahdi Balali-Mood
- Medical Toxicology and Drug Abuse Research Center, Birjand University of Medical Sciences , Birjand , Iran
| |
Collapse
|
3
|
Rothmiller S, Balszuweit F, Menacher G, Steinritz D, Kehe K, Thiermann H, Schmidt A. Validation of automated pipetting systems for cell culture seeding, exposure and bio-analytical assays in sulfur mustard toxicology. Toxicol Lett 2020; 320:80-86. [PMID: 31809884 DOI: 10.1016/j.toxlet.2019.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 11/27/2022]
Abstract
In vitro cell culture experiments are highly important techniques to accelerate drug discovery, conduct safety testing and reduce the need for animal studies. Therefore, automatization may help to enhance the technical precision, reduce external (including operator's) influence on the data and thus improve reliability. Prior to application in scientific studies, validation of automated systems is absolutely necessary. In this study we present the validation of two combined automated pipetting systems to conduct toxicity studies in HaCaT cells consisting of cell seeding, noxious agent exposure and several assays to assess cell survival, apoptosis and interleukin production. After initial validation of pipetting accuracy, we compared homogeneity after automated seeding to plates seeded by expert laboratory technicians. Moreover, automated dispensing of a potentially unstable noxious agent was analyzed in terms of speed and consistency. We found a 2 % technical imprecision for the cell survival assay and 4.5-6 % for the other assays, bioluminescent and ELISA techniques. Thus, we could demonstrate the excellent technical precision of our assays. In a final step, we found that intraday variations, though acceptable, were much larger than technical variations and had to assume an intraday biological variability between different wells of the same experimental group.
Collapse
Affiliation(s)
- Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Frank Balszuweit
- Bundeswehr Joint Medical Service Headquarters, 56070 Koblenz, Germany
| | - Georg Menacher
- Central Institute of the Bundeswehr, Medical Service Munich, 85748 Garching, Germany
| | - Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336 Munich, Germany
| | - Kai Kehe
- Walther Straub Institute of Pharmacology and Toxicology, University of Munich, 80336 Munich, Germany; Bundeswehr Medical Service Academy, 80937 Munich, Germany
| | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany
| | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany; Universität der Bundeswehr München, Faculty of Human Sciences, Department for Sports Sciences, 85577 Neubiberg, Germany.
| |
Collapse
|
4
|
NAD + in sulfur mustard toxicity. Toxicol Lett 2020; 324:95-103. [PMID: 32017979 DOI: 10.1016/j.toxlet.2020.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 12/21/2022]
Abstract
Sulfur mustard (SM) is a toxicant and chemical warfare agent with strong vesicant properties. The mechanisms behind SM-induced toxicity are not fully understood and no antidote or effective therapy against SM exists. Both, the risk of SM release in asymmetric conflicts or terrorist attacks and the usage of SM-derived nitrogen mustards as cancer chemotherapeutics, render the mechanisms of mustard-induced toxicity a highly relevant research subject. Herein, we review a central role of the abundant cellular molecule nicotinamide adenine dinucleotide (NAD+) in molecular mechanisms underlying SM toxicity. We also discuss the potential beneficial effects of NAD+ precursors in counteracting SM-induced damage.
Collapse
|
5
|
Steinritz D, Lang S, Popp T, Siegert M, Rothmiller S, Kranawetvogl A, Schmidt A, John H, Gudermann T, Thiermann H, Kehe K. Skin sensitizing effects of sulfur mustard and other alkylating agents in accordance to OECD guidelines. Toxicol Lett 2019; 314:172-180. [PMID: 31404593 DOI: 10.1016/j.toxlet.2019.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/20/2019] [Indexed: 11/28/2022]
Abstract
Vesicants cause a multitude of cutaneous reactions like erythema, blisters and ulcerations. After exposure to sulfur mustard (SM) and related compounds, patients present dermal symptoms typically known for chemicals categorized as skin sensitizer (e.g. hypersensitivity and flare-up phenomena). However, although some case reports led to the assumption that SM and other alkylating compounds represent sensitizers, a comprehensive investigation of SM-triggered immunological responses has not been conducted so far. Based on a well-structured system of in chemico and in vitro test methods, the Organization for Economic Co-operation and Development (OECD) established procedures to categorize agents on their skin sensitizing abilities. In this study, the skin sensitizing potential of SM and three related alkylating agents (AAs) was assessed following the OECD test guidelines. Besides SM, investigated AAs were chlorambucil (CHL), nitrogen mustard (HN3) and 2-chloroethyl ethyl sulfide (CEES). The methods are described in detail in the EURL ECVAM DataBase service on ALternative Methods to animal experimentation (DB-ALM). In accordance to OECD recommendations, skin sensitization is a pathophysiological process starting with a molecular initiating step and ending with the in vivo outcome of an allergic contact dermatitis. This concept is called adverse outcome pathway (AOP). An AOP links an adverse outcome to various key events which can be assayed by established in chemico and in vitro test methods. Positive outcome in two out of three key events indicates that the chemical can be categorized as a skin sensitizer. In this study, key event 1 "haptenation" (covalent modification of epidermal proteins), key event 2 "activation of epidermal keratinocytes" and key event 3 "activation of dendritic cells" were investigated. Covalent modification of epidermal proteins measured by using the DPRA-assay provided distinct positive results for all tested substances. Same outcome was seen in the KeratinoSens assay, investigating the activation of epidermal keratinocytes. The h-CLAT assay performed to determine the activation of dendritic cells provided positive results for SM and CEES but not for CHL and HN3. Altogether, following OECD requirements, our results suggest the classification of all investigated substances as skin sensitizers. Finally, a tentative AOP for SM-induced skin sensitization is suggested.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany.
| | - Simon Lang
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Tanja Popp
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Institute of Radiobiology, 80937, Munich, Germany
| | - Markus Siegert
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Annette Schmidt
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany; Faculty of Human Sciences, Bundeswehr University, 85579, Neubiberg, Germany
| | - Harald John
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | | | - Horst Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, 80937, Munich, Germany
| | - Kai Kehe
- Walther-Straub-Institute of Pharmacology and Toxicology, LMU Munich, 80336 Munich, Germany; Bundeswehr Medical Service Academy, 80937, Munich, Germany
| |
Collapse
|