1
|
Ito R, Maruoka S, Soda K, Katano I, Kawai K, Yagoto M, Hanazawa A, Takahashi T, Ogura T, Goto M, Takahashi R, Toyoshima S, Okayama Y, Izuhara K, Gon Y, Hashimoto S, Ito M, Nunomura S. A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis. JCI Insight 2018; 3:121580. [PMID: 30385714 DOI: 10.1172/jci.insight.121580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Asthma is one of the most common immunological diseases and is characterized by airway hyperresponsiveness (AHR), mucus overproduction, and airway eosinophilia. Although mouse models have provided insight into the mechanisms by which type-2 cytokines induce asthmatic airway inflammation, differences between the rodent and human immune systems hamper efforts to improve understanding of human allergic diseases. In this study, we aim to establish a preclinical animal model of asthmatic airway inflammation using humanized IL-3/GM-CSF or IL-3/GM-CSF/IL-5 Tg NOD/Shi-scid-IL2rγnull (NOG) mice and investigate the roles of human type-2 immune responses in the asthmatic mice. Several important characteristics of asthma - such as AHR, goblet cell hyperplasia, T cell infiltration, IL-13 production, and periostin secretion - were induced in IL-3/GM-CSF Tg mice by intratracheally administered human IL-33. In addition to these characteristics, human eosinophilic inflammation was observed in IL-3/GM-CSF/IL-5 Tg mice. The asthmatic mechanisms of the humanized mice were driven by activation of human Th2 and mast cells by IL-33 stimulation. Furthermore, treatment of the humanized mice with an anti-human IL-13 antibody significantly suppressed these characteristics. Therefore, the humanized mice may enhance our understanding of the pathophysiology of allergic disorders and facilitate the preclinical development of new therapeutics for IL-33-mediated type-2 inflammation in asthma.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ikumi Katano
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Mika Yagoto
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Asami Hanazawa
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | | | - Tomoyuki Ogura
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
2
|
Ito R. [Development of the next generation humanized mouse for drug discovery]. Nihon Yakurigaku Zasshi 2018; 151:160-165. [PMID: 29628464 DOI: 10.1254/fpj.151.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A humanized mouse, which is efficiently engrafted human cells and tissues, is an important tool to mimic human physiology for biomedical researches. Since 2000s, severe combined immunodeficient mouse strains such as NOG, BRG, and NSG mice have been generated. They are great recipients to create humanized mouse models compared to previous other immunodeficient strains due to their multiple dysfunctions of innate and acquired immunity. Especially, the transfer of human hematopoietic stem cells into these immunodeficient mice has been enabled to reconstitute human immune systems, because the mice show high engraftment level of human leukocyte in peripheral blood (~50%), spleen and bone marrow (60~90%) and generate well-differentiated multilineage human immune cells including lymphoid and myeloid lineage cells. Using these mice, several human disease models such as cancer, allergy, graft-versus-host disease (GVHD), and etc. have been established to understand the pathogenic mechanisms of the diseases and to evaluate the efficacy and safety of novel drugs. In this review, I provide an overview of recent advances in the humanized mouse technology, including generation of novel platforms of genetically modified NOG (next generation NOG) mice and some applications of them to create human disease models for drug discovery in preclinical researches.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals
| |
Collapse
|