1
|
Curi TZ, Passoni MT, Lima Tolouei SE, de Araújo Ramos AT, França de Almeira SC, Scinskas ABAF, Romano RM, de Oliveira JM, Spercoski KM, Carvalho Dos Santos A, Dalsenter PR, Koch HM, Martino-Andrade AJ. Reproductive toxicity following in utero and lactational exposure to a human-relevant phthalate mixture in rats. Toxicol Sci 2023; 197:1-15. [PMID: 37788136 DOI: 10.1093/toxsci/kfad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
This rodent (Wistar rats) study examined reproductive effects of in utero/lactational exposure to a mixture of 6 antiandrogenic phthalates (PMix): diisobutyl phthalate, di-n-butyl phthalate, diisopentyl phthalate, butylbenzyl phthalate, di-2-ethylhexyl phthalate, and diisononyl phthalate. The PMix was defined based on exposure data from pregnant women in Brazil. Experimental groups were established by extrapolating the estimated human dose to rats (0.1 mg/kg/day), followed by up to 3 additional doses corresponding to 5, 1000, and 5000 times the starting rat dose: 0 (control), 0.1, 0.5, 100, and 500 mg/kg/day. The fetal experiment assessed gestational exposure effects on fetal gonads, whereas the postnatal experiment evaluated reproductive parameters in males and females after in utero and lactational exposure. Prenatal exposure decreased fetal testicular testosterone production at 0.5 and 500 mg/kg/day. PMix 500 also reduced mRNA expression of steroidogenesis-related genes, upregulated transcript expression of the retinoic acid-degrading enzyme Cyp26b1, and increased multinucleated gonocytes incidence in fetal testes. Postnatal assessment revealed antiandrogenic effects at the highest dose, including reduced anogenital distance, nipple retention, and decreased weight of reproductive organs. Early puberty onset (preputial separation) was observed at the lowest dose in males. In contrast, females did not show significant changes in fetal and adult endpoints. Overall, the PMix recapitulated early and late male rat phthalate syndrome phenotypes at the highest dose, but also induced some subtle changes at lower doses, which warrant confirmation and mechanistic assessments. Our data support the use of epidemiologically defined mixtures for exposure risk assessments over traditional toxicological approaches.
Collapse
Affiliation(s)
- Tatiana Zauer Curi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Sara Emilia Lima Tolouei
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anderson Tadeu de Araújo Ramos
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Samara Christina França de Almeira
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Anna Beatriz Abreu Ferraz Scinskas
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Renata Marino Romano
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | - Jeane Maria de Oliveira
- Reproductive Toxicology Laboratory, Department of Pharmacy, State University of Centro-Oeste, Guarapuava, PR 85040-167, Brazil
| | | | - Ariany Carvalho Dos Santos
- Histopathology Laboratory, Department of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, MS 9804-970, Brazil
| | - Paulo Roberto Dalsenter
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| | - Holger Martin Koch
- Institute for Prevention and Occupational Medicine of the German Social Accident Insurance, Institute of the Ruhr-University-Bochum (IPA), Bochum 44789, Germany
| | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR 81531-990, Brazil
| |
Collapse
|
2
|
Boizet-Bonhoure B, Déjardin S, Rossitto M, Poulat F, Philibert P. Using Experimental Models to Decipher the Effects of Acetaminophen and NSAIDs on Reproductive Development and Health. FRONTIERS IN TOXICOLOGY 2022; 4:835360. [PMID: 35295217 PMCID: PMC8915900 DOI: 10.3389/ftox.2022.835360] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin (acetylsalicylic acid), diclofenac and ibuprofen (IBU), and analgesic drugs, such as acetaminophen (APAP, or paracetamol), are widely used to treat inflammation and pain. APAP and IBU are over-the-counter drugs and are among the most commonly taken drugs in the first trimester of pregnancy, even in combination. Furthermore, these drugs and their metabolites are released in the environment, and can be frequently detected in wastewater, surface water, and importantly in drinking water. Although their environmental concentrations are much lower than the therapeutics doses, this suggests an uncontrolled low-dose exposure of the general population, including pregnant women and young children, two particularly at risk populations. Epidemiological studies show that exposure to these molecules in the first and second trimester of gestation can favor genital malformations in new-born boys. To investigate the cellular, molecular and mechanistic effects of exposure to these molecules, ex vivo studies with human or rodent gonadal explants and in vivo experiments in rodents have been performed in the past years. This review recapitulates recent data obtained in rodent models after in utero or postnatal exposure to these drugs. The first part of this review discusses the mechanisms by which NSAIDs and analgesics may impair gonadal development and maturation, puberty development, sex hormone production, maturation and function of adult organs, and ultimately fertility in the exposed animals and their offspring. Like other endocrine disruptors, NSAIDs and APAP interfere with endocrine gland function and may have inter/transgenerational adverse effects. Particularly, they may target germ cells, resulting in reduced quality of male and female gametes, and decreased fertility of exposed individuals and their descendants. Then, this review discusses the effects of exposure to a single drug (APAP, aspirin, or IBU) or to combinations of drugs during early embryogenesis, and the consequences on postnatal gonadal development and adult reproductive health. Altogether, these data may increase medical and public awareness about these reproductive health concerns, particularly in women of childbearing age, pregnant women, and parents of young children.
Collapse
Affiliation(s)
- Brigitte Boizet-Bonhoure
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- *Correspondence: Brigitte Boizet-Bonhoure,
| | - Stéphanie Déjardin
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | | | - Francis Poulat
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Pascal Philibert
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
- Laboratory of Biochemistry and Molecular Biology, Carèmeau Hospital, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
3
|
Tran-Guzman A, Culty M. Eicosanoid Biosynthesis in Male Reproductive Development: Effects of Perinatal Exposure to NSAIDs and Analgesic Drugs. FRONTIERS IN TOXICOLOGY 2022; 4:842565. [PMID: 35295224 PMCID: PMC8915844 DOI: 10.3389/ftox.2022.842565] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Increasing rates of infertility associated with declining sperm counts and quality, as well as increasing rates of testicular cancer are contemporary issues in the United States and abroad. These conditions are part of the Testicular Dysgenesis Syndrome, which includes a variety of male reproductive disorders hypothesized to share a common origin based on disrupted testicular development during fetal and neonatal stages of life. Male reproductive development is a highly regulated and complex process that relies on an intricate coordination between germ, Leydig, and Sertoli cells as well as other supporting cell types, to ensure proper spermatogenesis, testicular immune privilege, and endocrine function. The eicosanoid system has been reported to be involved in the regulation of fetal and neonatal germ cell development as well as overall testicular homeostasis. Moreover, non-steroidal anti-inflammatory drugs (NSAIDs) and analgesics with abilities to block eicosanoid synthesis by targeting either or both isoforms of cyclooxygenase enzymes, have been found to adversely affect male reproductive development. This review will explore the current body of knowledge on the involvement of the eicosanoid system in male reproductive development, as well as discuss adverse effects of NSAIDs and analgesic drugs administered perinatally, focusing on toxicities reported in the testis and on major testicular cell types. Rodent and epidemiological studies will be corroborated by findings in invertebrate models for a comprehensive report of the state of the field, and to add to our understanding of the potential long-term effects of NSAID and analgesic drug administration in infants.
Collapse
|
4
|
OUP accepted manuscript. Toxicol Sci 2022; 187:80-92. [DOI: 10.1093/toxsci/kfac016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Passoni MT, Palu G, Grechi N, da Silva Amaral BA, Gomes C, Rülker C, van Ravenzwaay B, Martino-Andrade AJ. Uterotrophic and in vitro screening for (anti)estrogenic activity of dipyrone. Toxicol Lett 2021; 352:1-8. [PMID: 34536523 DOI: 10.1016/j.toxlet.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/26/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022]
Abstract
Dipyrone is a commonly used analgesic in many countries and there is limited data on its possible endocrine disrupting effects. We performed a screening for in vivo and in vitro anti(estrogenic) activity of dipyrone. For the in vivo uterotrophic assay, immature female rats (22-days-old) were treated daily by oral gavage for three days with different doses of dipyrone alone (50, 100, 200 mg/kg/day) and associated with three ethynylestradiol (EE) doses (1, 3 and 10 μg/kg/day), which were based on a dose-response curve experiment. The uterine weight was used as a biomarker for estrogenicity. In a parallel in vitro approach, we used a yeast-based transcriptional activation reporter gene assay (Yeast Estrogen Screening - YES) for assessment of estrogenic agonistic and antagonistic effects of dipyrone and its main metabolites 4-methylaminoantipyrine (MAA) and 4-aminoantipyrine (AA). In the uterotrophic assay, animals that received EE at 1, 3 and 10 μg/kg/day showed an increase in relative uterine weight compared with vehicle-only rats (canola oil). Dipyrone did not increase uterine weight at any dose tested (50, 100 and 200 mg/kg/day) in relation to vehicle control, indicating absence of estrogenic activity. Furthermore, co-administration of dipyrone (50 and 200 mg/kg/day) and EE (1, 3 or 10 μg/kg/day) was unable to block EE estrogenic action in comparison to the groups treated with EE alone, indicating absence of antiestrogenic activity. In the YES assay dipyrone and its metabolites did not demonstrate estrogen agonistic or antagonistic properties in the yeast cells. These results suggest that dipyrone and its metabolites do not produce (anti)estrogenic effects in vivo or in vitro.
Collapse
Affiliation(s)
- Marcella Tapias Passoni
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Gabriele Palu
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Nicole Grechi
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Bruna Andreotti da Silva Amaral
- Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Caroline Gomes
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | - Claudia Rülker
- BASF SE Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Anderson Joel Martino-Andrade
- Reproductive Toxicology Laboratory, Department of Pharmacology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; Animal Endocrine and Reproductive Physiology Laboratory, Department of Physiology, Federal University of Paraná (UFPR), Curitiba, PR, Brazil.
| |
Collapse
|
6
|
Martins ABM, Bezerra MS, da Costa Gomes LT, Trajano FMG, Dantas PB, de Sena MO, Gavioli EC, da Silva Junior ED. Effects of dipyrone and acetylsalicylic acid on contractions of distal cauda epididymis duct, serum testosterone and sperm count in rats. Basic Clin Pharmacol Toxicol 2021; 129:183-195. [PMID: 34196104 DOI: 10.1111/bcpt.13633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 11/27/2022]
Abstract
The effects of dipyrone and acetylsalicylic acid (ASA) on male fertility are still not fully understood, mainly considering the epididymis as a putative target for their anti-fertility effects. Therefore, this study aimed to investigate the effects of dipyrone and ASA on the contractions of distal cauda epididymis duct, serum testosterone levels and sperm parameters in rats. Firstly, we checked the in vitro effects of dipyrone and ASA (10-1000 μM) on the contractions of distal cauda epididymis duct by pharmacological experiments. We also evaluated the effects of in vivo treatment with dipyrone and ASA 100 mg/kg (p.o.) for 15 days on epididymal duct contractions, serum testosterone levels and sperm parameters. In vitro dipyrone or ASA decreased the epididymal duct contractions induced by phenylephrine or carbachol. We observed that in vivo treatment with both drugs decreased the daily sperm production, serum testosterone levels and sperm count through epididymis without altering the epididymal duct contractions and sperm transit time through epididymis. In conclusion, in vitro dipyrone and ASA were able to diminish the contractions of epididymal duct, whilst in vivo administration decreased the sperm count throughout epididymis as a consequence of a low sperm production caused by reduced testosterone levels.
Collapse
Affiliation(s)
| | - Mayara Samala Bezerra
- Mode of Drug Action Laboratory, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Pedro Brüch Dantas
- Mode of Drug Action Laboratory, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Maele Oliveira de Sena
- Mode of Drug Action Laboratory, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Elaine Cristina Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Edilson Dantas da Silva Junior
- Mode of Drug Action Laboratory, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
7
|
Long K, Sha Y, Mo Y, Wei S, Wu H, Lu D, Xia Y, Yang Q, Zheng W, Wei X. Androgenic and Teratogenic Effects of Iodoacetic Acid Drinking Water Disinfection Byproduct in Vitro and in Vivo. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3827-3835. [PMID: 33646749 DOI: 10.1021/acs.est.0c06620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Iodoacetic acid (IAA) is the most genotoxic iodinated disinfection byproduct known in drinking water. Previous studies have shown that IAA may be an endocrine disruptor. However, whether IAA has reproductive and developmental toxicity remains unclear. In this study, the reproductive and developmental toxicity of IAA was evaluated using a battery of in vitro and in vivo reproductive/developmental toxicity screening tests. The results of E-Screen, uterotrophic, and H295R steroidogenesis assays were negative. The Hershberger bioassay revealed that IAA could induce significant increases in absolute and relative weights of paired Cowper's glands. Moreover, there was an increasing trend in the relative weights of the ventral prostate. The micromass test showed that IAA could inhibit the differentiation of midbrain and limb bud cells. A reproductive/developmental toxicity screening test showed that IAA resulted in significantly increased relative weights of testis and seminal vesicles plus coagulating glands in parental male rats, with a dose-response relationship. IAA could not only induce head congestion in offspring but also decrease litter weight, viability index, and anogenital distance index of male pups on postnatal day 4. All these results indicated that IAA had reproductive and developmental toxicity.
Collapse
Affiliation(s)
- Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Yan Mo
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Shumao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Huan Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Du Lu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Ying Xia
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Qiyuan Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Shuang Yong Road 22, Nanning, Guangxi 530021, China
| |
Collapse
|
8
|
Aleixo JF, Pereira MRF, Montagnini BG, Pereira MJD, Forcato S, Moreira EG, Ceravolo GS, Vieira ML, Kiss ACI, Gerardin DCC. Effect of paracetamol treatment on maternal care and reproductive outcomes in female rat offspring. Reprod Fertil Dev 2020; 32:1311-1325. [PMID: 33308393 DOI: 10.1071/rd20007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 11/06/2020] [Indexed: 12/25/2022] Open
Abstract
Paracetamol (PAR) is one of the most commonly used drugs by pregnant women because it is considered safe for the mother and fetus. However, PAR is transferred into breast milk and crosses the blood-placental barrier, being present in the progeny during important stages of development. Intrauterine exposure to PAR may decrease the anogenital distance and follicle reserve in female rodent offspring. Therefore, the aim of the present study was to evaluate whether maternal PAR treatment altered the reproductive behaviour of dams and the sexual development of female rat offspring. Pregnant Wistar rats were gavaged daily with 350mg kg-1 day-1 PAR or water during gestation (from Gestation Day (GD) 6 until delivery) or during gestation and lactation (from GD6 until weaning). Maternal PAR treatment had maternal effects (increased grooming behaviour), and resulted in impaired sexual behaviour, decreased follicle reserve and increased plasma oestradiol concentrations in female offspring.
Collapse
Affiliation(s)
- Jeberson F Aleixo
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Marina R F Pereira
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Bruno G Montagnini
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Matheus Junior D Pereira
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Simone Forcato
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Estefânia G Moreira
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Graziela S Ceravolo
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil
| | - Milene L Vieira
- University Center Philadelphia, Alagoas Street, 2050, 86010-520, Londrina, Paraná, Brazil
| | - Ana C I Kiss
- Department of Physiology, Botucatu Biosciences Institute, São Paulo State University, Distrito de Rubião Júnior s/n, 18618-000, Botucatu, São Paulo, Brazil
| | - Daniela C C Gerardin
- Department of Physiological Sciences. State University of Londrina, Rodovia Celso Garcia Cid, PR 445Km 380, 86051-980, Londrina, Paraná, Brazil; and Corresponding author.
| |
Collapse
|
9
|
Krebs Ribeiro DC, Passoni MT, Meldola H, Curi TZ, da Silva GN, Tolouei SEL, Hey GS, Grechi N, dos Santos AC, Souza RIC, Spercoski KM, Ramos ATDA, Martino-Andrade AJ. Prenatal diclofenac exposure delays pubertal development and induces behavioral changes in rats. Reprod Toxicol 2020; 96:380-389. [DOI: 10.1016/j.reprotox.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 11/28/2022]
|
10
|
de Faria LV, Lisboa TP, Azevedo GC, Sousa RA, Costa Matos MA, Muñoz RAA, Camargo Matos R. Chemically‐reduced Graphene Oxide Sensor for Dipyrone Quantification in Pharmaceutical Samples Using Amperometric Detection. ELECTROANAL 2019. [DOI: 10.1002/elan.201800784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Vinícius de Faria
- NUPIS (Núcleo de Instrumentação e Separações Analíticas)Departamento de QuímicaInstituto de Ciências ExatasUniversidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | - Thalles Pedrosa Lisboa
- BACCAN (Grupo Baccan de Química Analítica)Departamento de QuímicaInstituto de Ciências ExatasUniversidade Federal de Juiz de Fora 36036-330 Juiz de Fora-MG Brazil
| | - Gustavo Chevitarese Azevedo
- NUPIS (Núcleo de Instrumentação e Separações Analíticas)Departamento de QuímicaInstituto de Ciências ExatasUniversidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | - Rafael Arromba Sousa
- BACCAN (Grupo Baccan de Química Analítica)Departamento de QuímicaInstituto de Ciências ExatasUniversidade Federal de Juiz de Fora 36036-330 Juiz de Fora-MG Brazil
| | - Maria Auxiliadora Costa Matos
- NUPIS (Núcleo de Instrumentação e Separações Analíticas)Departamento de QuímicaInstituto de Ciências ExatasUniversidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| | | | - Renato Camargo Matos
- NUPIS (Núcleo de Instrumentação e Separações Analíticas)Departamento de QuímicaInstituto de Ciências ExatasUniversidade Federal de Juiz de Fora 36036-900 Juiz de Fora-MG Brazil
| |
Collapse
|