1
|
Ren X, Tian X, Cai X, Li X, Kong Q. Stilbenes: A new strategy for protecting light-sensitive foods, a review of their structure classification and singlet oxygen quenching mechanism. Crit Rev Food Sci Nutr 2023; 64:9017-9031. [PMID: 37165487 DOI: 10.1080/10408398.2023.2207207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Natural stilbenes have been studied extensively as a result of their complicated structures and diverse biological activities. Singlet oxygen (1O2), a kind of reactive oxygen species (ROS) has a strong destructive effect on food systems (especially for light-sensitive foods). Many cutting-edge scientific studies have found that some stilbenes not only have extensive quenching properties for ROS, but also can selectively quench 1O2. However, the industry devoted too much energy on the development of more new stilbenes, lacking in-depth summaries and reflections on the characteristics of their basic structure and the mechanism of their extraordinary 1O2 quenching abilities. Therefore, we summarized the classification methods for stilbene compounds and evaluated similarities, differences and possible limitations of different classification methods. In addition, we described the role of different functional groups in stilbenes in quenching of 1O2 and summarized the quenching mechanism of 1O2 by stilbenes. By the way, the current application of stilbene compounds and their potential risks in the food industry were also mentioned in this article. The stilbenes can be used as antioxidants (especially new strategies against 1O2 oxidation) in food systems to improve the shelf life. At this stage, it is necessary to develop more effective and safe food antioxidant stilbenes based on their quenching mechanism.
Collapse
Affiliation(s)
- Xueyan Ren
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xiaolu Tian
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xinyu Cai
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Xue Li
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qingjun Kong
- Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi, China
- Shaanxi Engineering Laboratory of Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Mejdrová I, Dušek J, Škach K, Stefela A, Skoda J, Chalupský K, Dohnalová K, Pavkova I, Kronenberger T, Rashidian A, Smutná L, Duchoslav V, Smutny T, Pávek P, Nencka R. Discovery of Novel Human Constitutive Androstane Receptor Agonists with the Imidazo[1,2- a]pyridine Structure. J Med Chem 2023; 66:2422-2456. [PMID: 36756805 PMCID: PMC10017030 DOI: 10.1021/acs.jmedchem.2c01140] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.
Collapse
Affiliation(s)
- Ivana Mejdrová
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Jan Dušek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Kryštof Škach
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Alžbeta Stefela
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Josef Skoda
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karel Chalupský
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Klára Dohnalová
- Czech
Centre for Phenogenomics, Institute of Molecular
Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
- 1st
Medical Faculty, Charles University, Katerinska 32, 112 08 Prague, Czech Republic
| | - Ivona Pavkova
- Faculty
of Military Health Sciences, University
of Defense, Trebeska
1575, 500 01 Hradec
Kralove, Czech Republic
| | - Thales Kronenberger
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
- School
of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
- Department
of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical
Sciences, Eberhard Karls Universität, 72076 Tübingen, Germany
| | - Azam Rashidian
- Department
of Internal Medicine VIII, University Hospital
of Tübingen, 72076 Tübingen, Germany
| | - Lucie Smutná
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Vojtěch Duchoslav
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Tomas Smutny
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department
of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Radim Nencka
- Institute
of Organic Chemistry and Biochemistry, Czech
Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
3
|
Skoda J, Dohnalova K, Chalupsky K, Stahl A, Templin M, Maixnerova J, Micuda S, Grøntved L, Braeuning A, Pavek P. Off-target lipid metabolism disruption by the mouse constitutive androstane receptor ligand TCPOBOP in humanized mice. Biochem Pharmacol 2021; 197:114905. [PMID: 34971590 DOI: 10.1016/j.bcp.2021.114905] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022]
Abstract
The constitutive androstane receptor (CAR) controls xenobiotic clearance, regulates liver glucose, lipid metabolism, and energy homeostasis. These functions have been mainly discovered using the prototypical mouse-specific CAR ligand TCPOBOP in wild-type or CAR null mice. However, TCPOBOP is reported to result in some off-target metabolic effects in CAR null mice. In this study, we compared the metabolic effects of TCPOBOP using lipidomic, transcriptomic, and proteomic analyses in wild-type and humanized CAR-PXR-CYP3A4/3A7 mice. In the model, human CAR retains its constitutive activity in metabolism regulation; however, it is not activated by TCPOBOB. Notably, we observed that TCPOBOP affected lipid homeostasis by elevating serum and liver triglyceride levels and promoted hepatocyte hypertrophy in humanized CAR mice. Hepatic lipidomic analysis revealed a significant accumulation of triglycerides and decrease of its metabolites in humanized CAR mice. RNA-seq analysis has shown divergent gene expression levels in wild-type and humanized CAR mice. Gene expression regulation in humanized mice is mainly involved in lipid metabolic processes and in the PPAR, leptin, thyroid, and circadian clock pathways. In contrast, CAR activation by TCPOBOP in wild-type mice reduced liver and plasma triglyceride levels and induced a typical transcriptomic proliferative response in the liver. In summary, we identified TCPOBOP as a disruptor of lipid metabolism in humanized CAR mice. The divergent effects of TCPOBOP in humanized mice in comparison with the prototypical CAR-mediated response in WT mice warrant the use of appropriate model ligands and humanized animal models during the testing of endocrine disruption and the characterization of adverse outcome pathways.
Collapse
Affiliation(s)
- Josef Skoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Klara Dohnalova
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic; First Faculty of Medicine, Charles University, Katerinska 32, 121 08 Prague, Czech Republic
| | - Karel Chalupsky
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| | - Aaron Stahl
- NMI - Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Markus Templin
- NMI - Natural and Medical Sciences Institute at the University of Tuebingen, Markwiesenstr. 55, 72770 Reutlingen, Germany
| | - Jana Maixnerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Stanislav Micuda
- Department of Pharmacology, Medical Faculty in Hradec Kralove, Charles University, Simkova 870, 500 03 Hradec Kralove, Czech Republic
| | - Lars Grøntved
- Functional Genomics and Metabolism Research Unit, Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense M 5230, Denmark
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, Berlin 10589, Germany
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
4
|
Amen T, Guihur A, Zelent C, Ursache R, Wilting J, Kaganovich D. Resveratrol and related stilbene derivatives induce stress granules with distinct clearance kinetics. Mol Biol Cell 2021; 32:ar18. [PMID: 34432484 PMCID: PMC8693967 DOI: 10.1091/mbc.e21-02-0066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stress granules (SGs) are ribonucleoprotein functional condensates that form under stress conditions in all eukaryotic cells. Although their stress-survival function is far from clear, SGs have been implicated in the regulation of many vital cellular pathways. Consequently, SG dysfunction is thought to be a mechanistic point of origin for many neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Additionally, SGs are thought to play a role in pathogenic pathways as diverse as viral infection and chemotherapy resistance. There is a growing consensus on the hypothesis that understanding the mechanistic regulation of SG physical properties is essential to understanding their function. Although the internal dynamics and condensation mechanisms of SGs have been broadly investigated, there have been fewer investigations into the timing of SG formation and clearance in live cells. Because the lifetime of SG persistence can be a key factor in their function and tendency toward pathological dysregulation, SG clearance mechanisms deserve particular attention. Here we show that resveratrol and its analogues piceatannol, pterostilbene, and 3,4,5,4'-tetramethoxystilbene induce G3BP-dependent SG formation with atypically rapid clearance kinetics. Resveratrol binds to G3BP, thereby reducing its protein-protein association valency. We suggest that altering G3BP valency is a pathway for the formation of uniquely transient SGs.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Christina Zelent
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Robertas Ursache
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | - Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical Center Göttingen, 37073, Goettingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, 37073, Goettingen, Germany.,1Base Pharmaceuticals, Boston, MA, 02129, USA
| |
Collapse
|