1
|
Zhang J, Fan W, Wu H, Yao Y, Jin L, Chen R, Xu Z, Su W, Wang Y, Li P. Naringenin attenuated airway cilia structural and functional injury induced by cigarette smoke extract via IL-17 and cAMP pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155053. [PMID: 38359483 DOI: 10.1016/j.phymed.2023.155053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/24/2023] [Indexed: 02/17/2024]
Abstract
BACKGROUND Cigarette smoke impairs mucociliary clearance via mechanisms such as inflammatory response and oxidative injury, which in turn induces various respiratory diseases. Naringenin, a naturally occurring flavonoid in grapes and grapefruit, has exhibited pharmacological properties such as anti-inflammatory, expectorant, and antioxidant properties. However, it is still unclear whether naringenin protects airway cilia from injury caused by cigarette smoke. PURPOSE This study aimed to investigate the effect of naringenin on cigarette smoke extract (CSE)-induced structural and functional abnormalities in airway cilia and highlight the potential regulatory mechanism. METHODS Initially, network pharmacology was used to predict the mechanism of action of naringenin in ciliary disease. Next, HE staining, immunofluorescence, TEM, qRT-PCR, western blot, and ELISA were performed to assess the effects of naringenin on airway cilia in tracheal rings and air-liquid interface (ALI) cultures of Sprague Dawley rats after co-exposure to CSE (10% or 20%) and naringenin (0, 25, 50, 100 μM) for 24 h. Finally, transcriptomics and molecular biotechnology methods were conducted to elucidate the mechanism by which naringenin protected cilia from CSE-induced damage in ALI cultures. RESULTS The targets of ciliary diseases regulated by naringenin were significantly enriched in inflammation and oxidative stress pathways. Also, the CSE decreased the number of cilia in the tracheal rings and ALI cultures and reduced the ciliary beat frequency (CBF). However, naringenin prevented CSE-induced cilia damage via mechanisms such as the downregulation of cilia-related genes (e.g., RFX3, DNAI1, DNAH5, IFT88) and ciliary marker proteins such as DNAI2, FOXJ1, and β-tubulin IV, the upregulation of inflammatory factors (e.g., IL-6, IL-8, IL-13), ROS and MDA. IL-17 signaling pathway might be involved in the protective effect of naringenin on airway cilia. Additionally, the cAMP signaling pathway might also be related to the enhancement of CBF by naringenin. CONCLUSION In this study, we first found that naringenin reduces CSE-induced structural disruption of airway cilia in part via modulation of the IL-17 signaling pathway. Furthermore, we also found that naringenin enhances CBF by activating the cAMP signaling pathway. This is the first report to reveal the beneficial effects of naringenin on airway cilia and the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jiashuo Zhang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiyang Fan
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hao Wu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yue Yao
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Linlin Jin
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ruiqi Chen
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Xu
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Weiwei Su
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yonggang Wang
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Peibo Li
- Guangdong Engineering and Technology Research Center for Quality and Efficacy Re-evaluation of Post-marketed Traditional Chinese Medicine (TCM), State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Wang L, Jiang W, Wang J, Xie Y, Wang W. Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway. Aging (Albany NY) 2022; 14:1253-1264. [PMID: 35134750 PMCID: PMC8876910 DOI: 10.18632/aging.203317] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/27/2021] [Indexed: 12/30/2022]
Abstract
Increasing evidence suggests that the pathogenesis of chronic obstructive pulmonary disease (COPD) is associated with FUN14 domain protein 1 (FUNDC1)-mediated mitophagy. Recently, studies have reported that puerarin has protective effects against excessive oxidative damage in cells. Therefore, we hypothesized that puerarin may be involved in COPD progression via regulating FUNDC1 mediated mitophagy. We found that the viability of cigarette smoke extract (CSE)-stimulated human bronchial epithelial cells (HBECs) was enhanced and apoptosis was reduced after treatment with different concentrations of puerarin. Puerarin reversed mitochondrial membrane potential (MMP) levels and ATP content, and decreased reactive oxygen species (ROS) content in CSE stimulated HBECs. Moreover, puerarin significantly inhibited apoptosis related proteins, as well as the expression of mitophagy related proteins. After inhibition of FUNDC1 phosphorylation by protein phosphatase inhibitor (PH0321), puerarin restored MMP level, decreased ROS content, promoted ATP synthesis, and downregulated autophagy related protein expression in HBECs. In addition, mitochondrial division inhibitor (Mdivi) inhibited the expression of autophagy related proteins and reduced apoptosis after blocking cell autophagy, which was the same as the inhibition of puerarin. Finally, puerarin activated the PI3K/Akt/mTOR signaling pathway to participate in COPD progression by up regulating the phosphorylation levels of PI3K, Akt and mTOR.
Collapse
Affiliation(s)
- Li Wang
- Department of Respiratory Medicine, Yan’an University Affiliated Hospital, Yan’an 716000, China
| | - Weizhou Jiang
- Department of Pulmonology, Weifang Traditional Chinese Hospital, Weifang 261041, China
| | - Jing Wang
- Endoscopy Room, Tai’an Maternal and Child Health Hospital, Tai’an 271000, China
| | - Yuanyuan Xie
- Department of Geriatrics, Yan’an University Affiliated Hospital, Yan’an 716000, China
| | - Weisi Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310005, China
| |
Collapse
|
3
|
Yang H, Zhang L, Wang Q. MicroRNA-221-3p alleviates cell apoptosis and inflammatory response by targeting cyclin dependent kinase inhibitor 1B in chronic obstructive pulmonary disease. Bioengineered 2021; 12:5705-5715. [PMID: 34516316 PMCID: PMC8806819 DOI: 10.1080/21655979.2021.1967837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
As a chronic bronchitis or emphysema featured by airflow obstruction, chronic obstructive pulmonary disease (COPD) can further develop into respiratory failure and pulmonary heart diseases. MicroRNAs (miRNAs) are crucial mediators in COPD. Nevertheless, the specific role and molecular mechanism of microRNA-221-3p (miR-221-3p) in COPD are unclear. This research aimed to probe into the role of miR-221-3p in COPD. Bioinformatics analysis and a series of assays including western blot, luciferase reporter, reverse transcription quantitative polymerase chain reaction, flow cytometry, cell counting kit-8 and enzyme linked immunosorbent assay were used to explore the functions and mechanism of miR-221-3p in COPD. First, miR-221-3p level was validated to be lowly expressed in the lung tissues of COPD patients and 16HBE cells stimulated by cigarette smoke extract (CSE). Functionally, miR-221-3p overexpression inhibited inflammatory response and apoptosis in CSE-treated 16HBE cells. Moreover, we predicted 5 potential targets of miR-221-3p and found that miR-221-3p shared binding site with cyclin dependent kinase inhibitor 1B (CDKN1B). CDKN1B was targeted by miR-221-3p in CSE-treated 16HBE cells. CDKN1B was negatively modulated by miR-221-3p. Finally, rescue experiments demonstrated that overexpressed CDKN1B counteracted the influences of miR-221-3p on apoptosis and inflammatory response in CSE-treated 16HBE cells. Our data showed that miR-221-3p alleviated cell apoptosis and inflammatory response via targeting CDKN1B in an in vitro model of COPD.
Collapse
Affiliation(s)
- Hua Yang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Lijuan Zhang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| | - Quandong Wang
- Department of Gerontology, The First People's Hospital of Lianyungang, Xuzhou Medical University Affiliated Hospital of Lianyungang, Lianyungang, Jiangsu, China
| |
Collapse
|
4
|
Abstract
As a transparent avascular tissue located at the front of the eyeball, the cornea is an important barrier to external damage. Both epithelial and endothelial cells of the cornea harbor primary cilia, which sense changes in the external environment and regulate intracellular signaling pathways. Accumulating evidence suggests that the primary cilium regulates corneal development in several ways, including participation in corneal epithelial stratification and maintenance of corneal endothelial cell morphology. In addition, the primary cilium has been implicated in the pathogenesis of several corneal diseases. In this review, we discuss recent findings that demonstrate the critical role of the primary cilium in corneal development. We also discuss the link between ciliary dysfunction and corneal diseases, which suggests that the primary cilium could be targeted to treat these diseases.
Collapse
Affiliation(s)
- Ting Song
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Jun Zhou
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China. E-mail:
| |
Collapse
|