1
|
Krakowian D, Żemła P, Gądarowska D, Mrzyk I. Comparison of two biological systems used for phototoxicity testing: Cellular and tissue. Toxicol Appl Pharmacol 2024; 489:117014. [PMID: 38914165 DOI: 10.1016/j.taap.2024.117014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
The OECD has approved two similar methods for testing the phototoxic potency of chemicals. The first method, OECD 432, is based on the cytotoxicity properties of materials to the mouse 3T3 (clone A31) cell line (fibroblasts) after exposure to light. The second method, OECD 498, is based on the same properties but using reconstructed human epidermis - EpiDerm (stratified keratinocytes). The aim of this study was to compare these two methods using statistical tests (specificity, sensitivity, negative predictive value, positive predictive value and accuracy) and non-statistical characteristics (e.g. price and experimental duration, amount of material, level of complications, cell type, irradiation dose). Both tests were performed according to the relevant guidelines using the same 11 control substances. Higher performance values were observed for OECD 432 in both phototoxic and non-phototoxic classifications. The accuracy of OECD 432 was 90.9%, while that of OECD 498 was 72.7%. OECD 432 was also shorter and less expensive. On the other hand, OECD 498 was less complicated, and used human cells with stratum corneum, which better reflects real skin. This method can also be used with oily substances that are poorly soluble in water. However, both methods are important for testing the phototoxic properties of materials, and can be used alone or in a tiered strategy.
Collapse
Affiliation(s)
- Daniel Krakowian
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry Branch Pszczyna, Toxicology Research Group, 27 Doświadczalna Str., 43-200 Pszczyna, Poland.
| | - Przemysław Żemła
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry Branch Pszczyna, Toxicology Research Group, 27 Doświadczalna Str., 43-200 Pszczyna, Poland
| | - Dominika Gądarowska
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry Branch Pszczyna, Toxicology Research Group, 27 Doświadczalna Str., 43-200 Pszczyna, Poland
| | - Inga Mrzyk
- Łukasiewicz Research Network - Institute of Industrial Organic Chemistry Branch Pszczyna, Toxicology Research Group, 27 Doświadczalna Str., 43-200 Pszczyna, Poland
| |
Collapse
|
2
|
Xu T, Yin J, Dai X, Liu T, Shi H, Zhang Y, Wang S, Yue G, Zhang Y, Zhao D, Gao S, Prentki M, Wang L, Zhang D. Cnidii Fructus: A traditional Chinese medicine herb and source of antiosteoporotic drugs. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155375. [PMID: 38507853 DOI: 10.1016/j.phymed.2024.155375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Osteoporosis (OP) is a prevalent chronic metabolic bone disease for which limited countermeasures are available. Cnidii Fructus (CF), primarily derived from Cnidium monnieri (L.) Cusson., has been tested in clinical trials of traditional Chinese medicine for the management of OP. Accumulating preclinical studies indicate that CF may be used against OP. MATERIALS AND METHODS Comprehensive documentation and analysis were conducted to retrieve CF studies related to its main phytochemical components as well as its pharmacokinetics, safety and pharmacological properties. We also retrieved information on the mode of action of CF and, in particular, preclinical and clinical studies related to bone remodeling. This search was performed from the inception of databases up to the end of 2022 and included PubMed, China National Knowledge Infrastructure, the National Science and Technology Library, the China Science and Technology Journal Database, Weipu, Wanfang, the Web of Science and the China National Patent Database. RESULTS CF contains a wide range of natural active compounds, including osthole, bergapten, imperatorin and xanthotoxin, which may underlie its beneficial effects on improving bone metabolism and quality. CF action appears to be mediated via multiple processes, including the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL)/receptor activator of nuclear factor-κB (RANK), Wnt/β-catenin and bone morphogenetic protein (BMP)/Smad signaling pathways. CONCLUSION CF and its ingredients may provide novel compounds for developing anti-OP drugs.
Collapse
Affiliation(s)
- Tianshu Xu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Jiyuan Yin
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Xuan Dai
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Tianyuan Liu
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Hanfen Shi
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yueyi Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Shan Wang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Gaiyue Yue
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Yanfei Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 102488, PR China
| | - Dandan Zhao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Sihua Gao
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China
| | - Marc Prentki
- Departments of Nutrition, Biochemistry and Molecular Medicine, Montreal Diabetes Research Center, CRCHUM and Université de Montréal, Montreal, QC, H1W 4A4, Canada
| | - Lili Wang
- Department of TCM Pharmacology, Chinese Material Medica School, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Dongwei Zhang
- Diabetes Research Center, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, PR China.
| |
Collapse
|
3
|
Wu A, Lu J, Zhong G, Lu L, Qu Y, Zhang C. Xanthotoxin (8-methoxypsoralen): A review of its chemistry, pharmacology, pharmacokinetics, and toxicity. Phytother Res 2022; 36:3805-3832. [PMID: 35913174 DOI: 10.1002/ptr.7577] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Xanthotoxin (XAT) is a natural furanocoumarins, a bioactive psoralen isolated from the fruit of the Rutaceae plant Pepper, which has received increasing attention in recent years due to its wide source and low cost. By collecting and compiling literature on XAT, the results show that XAT exhibits significant activity in the treatment of various diseases, including neuroprotection, skin repair, osteoprotection, organ protection, anticancer, antiinflammatory, antioxidative stress and antibacterial. In this paper, we review the pharmacological activity and potential molecular mechanisms of XAT for the treatment of related diseases. The data suggest that XAT can mechanistically induce ROS production and promote apoptosis through mitochondrial or endoplasmic reticulum pathways, regulate NF-κB, MAPK, JAK/STAT, Nrf2/HO-1, MAPK, AKT/mTOR, and ERK1/2 signaling pathways to exert pharmacological effects. In addition, the pharmacokinetics properties and toxicity of XAT are discussed in this paper, further elucidating the relationship between structure and efficacy. It is worth noting that data from clinical studies of XAT are still scarce, limiting the use of XAT in the clinic, and in the future, more in-depth studies are needed to determine the clinical efficacy of XAT.
Collapse
Affiliation(s)
- Anxin Wu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Lu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Guofeng Zhong
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ling Lu
- Chengdu University of Technology, Chengdu, PR China
| | - Yan Qu
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Chen Zhang
- College Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.,State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
4
|
Ohtake H, Tokuyoshi Y, Iyama Y, Nukaga T, Nishida H, Ohtake T, Hirota M, Yamada K, Seto Y, Sato H, Kouzuki H, Onoue S. Reactive oxygen species (ROS) assay-based photosafety screening for complex ingredients: Modification of the ROS assay protocol. J Toxicol Sci 2022; 47:483-492. [DOI: 10.2131/jts.47.483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroto Ohtake
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yasuharu Tokuyoshi
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yosuke Iyama
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | | | | | | | | | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | - Yoshiki Seto
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| | | | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Iyama Y, Sato H, Seto Y, Onoue S. Strategic photosafety screening system consisting of in chemico photoreactivity and in vitro skin exposure for quinolone derivatives. Eur J Pharm Sci 2020; 146:105257. [PMID: 32035110 DOI: 10.1016/j.ejps.2020.105257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 11/19/2022]
Abstract
The main objective of this study was to verify the applicable domain of a proposed photosafety screening system, consisting of a reactive oxygen species (ROS) assay and in vitro skin permeation test, for dermally-applied chemicals. Quinolones (QNLs) were selected as test compounds, including enoxacin, flumequine, moxifloxacin, nalidixic acid, orbifloxacin, and oxolinic acid. The ROS assay and in vitro skin permeation test were employed to evaluate photoreactivity and skin deposition of QNLs, respectively. All QNLs exhibited significant ROS generation on exposure to simulated sunlight; in particular, enoxacin was indicative of potent photoreactivity compared with the other 5 QNLs. Steady-state concentration values of flumequine and nalidixic acid were calculated to be 5.0 and 8.2 μg/mL, respectively, and higher than those of the other QNLs. Based on the photoreactivity and skin exposure of QNLs, the phototoxic risk was ranked, and the predicted phototoxic risk by the proposed system was mostly in agreement with observed in vivo phototoxicity, suggesting the applicability of the proposed strategy to photosafety assessment of QNLs. The proposed screening would be efficacious to predict phototoxic risk of dermally-applied chemicals.
Collapse
Affiliation(s)
- Yosuke Iyama
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Yoshiki Seto
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
| |
Collapse
|
6
|
Yang ZY, He JH, Lu AP, Hou TJ, Cao DS. Application of Negative Design To Design a More Desirable Virtual Screening Library. J Med Chem 2020; 63:4411-4429. [DOI: 10.1021/acs.jmedchem.9b01476] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Zi-Yi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China
| | - Jun-Hong He
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China
| | - Ai-Ping Lu
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P. R. China
| | - Ting-Jun Hou
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, P. R. China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, P. R. China
- Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, SAR, P. R. China
| |
Collapse
|