1
|
Sakai Y, Hattori J, Morikawa Y, Matsumura T, Jimbo S, Suenami K, Takayama T, Nagai A, Michiue T, Ikari A, Matsunaga T. α-Pyrrolidinooctanophenone facilitates activation of human microglial cells via ROS/STAT3-dependent pathway. Forensic Toxicol 2025; 43:142-154. [PMID: 39652148 PMCID: PMC11782452 DOI: 10.1007/s11419-024-00708-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/24/2024] [Indexed: 01/31/2025]
Abstract
PURPOSE Pyrrolidinophenone derivatives (PPs) are amphetamine-like designer drugs containing a pyrrolidine ring, and their adverse effects resemble those of methamphetamine (METH). Microglial activation has been recently suggested as a key event in eliciting the adverse effects against dysfunction of the central nervous system. The aim of this study is to clarify the mechanisms of microglial activation induced by PPs. METHODS We employed the human microglial cell line HMC3 to assess microglial activation induced by PPs and evaluated the capacities for proliferation and interleukin-6 (IL-6) production that are characteristic features of the activation events. RESULTS The WST-1 assay indicated that viability of HMC3 cells was increased by treatment with sublethal concentrations (5-20 µM) of α-pyrrolidinooctanophenone (α-POP), a highly lipophilic PP, whereas it was decreased by treatment with concentrations above 40 µM. Treatment with sublethal α-POP concentrations up-regulated the expression and secretion of IL-6. Additionally, α-POP-induced increase in cell viability was restored by pretreating with N-acetyl-L-cysteine, a reactive oxygen species (ROS) scavenger, and stattic, an inhibitor of signal transducer and activator of transcription 3 (STAT3), respectively, suggesting that activation of the ROS/STAT3 pathway is involved in the α-POP-induced activation of HMC3 cells. The increases in cell viability were also observed in HMC3 cells treated with other α-POP derivatives and METH. CONCLUSIONS These results suggest that enhanced productions of ROS and IL-6 are also involved in microglial activation by drug treatment and that HMC3 cell-based system is available to evaluate accurately the microglial activation induced by abused drugs.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Junta Hattori
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Toshihiro Matsumura
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| | - Shunsuke Jimbo
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Atsushi Nagai
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu, 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
2
|
Arito M, Tsutiya A, Sato M, Omoteyama K, Sato T, Motonaga Y, Suematsu N, Kurokawa MS, Kato T. Role of layilin in regulating mitochondria-mediated apoptosis: a study on B cell lymphoma (BCL)-2 family proteins. BMC Mol Cell Biol 2024; 25:24. [PMID: 39455917 PMCID: PMC11515419 DOI: 10.1186/s12860-024-00521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Malignant gliomas exhibit rapid tumor progression and resistance to treatment, leading to high lethality. One of the causes is the reduced progression of apoptosis in glioma cells. Layilin is a type 1 transmembrane protein with a C-type lectin motif in its extracellular domain. We previously reported that layilin is mainly localized to mitochondria or their close proximity and that layilin is essential for maintaining of the fragmented type of mitochondria. This study investigates the effects of layilin on mitochondria-mediated apoptosis, focusing on B cell lymphoma (BCL)-2 family proteins in a glioma cell line of A172 cells. RESULTS We compared the levels of pro-apoptotic BCL-2 family proteins of BAD, BAK, BAX, and BIM and anti-apoptotic BCL-2 family proteins of BCL-2 and BCL-XL between layilin- knockdown (KD) cells and control cells using western blot. The protein levels of BAD were significantly smaller in layilin-KD cells than in control cells, while those of BCL-2 were significantly larger. We then compared the mitochondrial membrane potential (ΔΨm) under p-trifluoromethoxyphenyl hydrazone (FCCP)-treated conditions using MT-1 staining. In layilin-KD cells, ΔΨm was significantly larger and FCCP-induced ΔΨm reduction was significantly lower than in control cells. Furthermore, we examined the levels of cell membrane-bound Annexin V and DNA-bound propidium idodide (PI) in layilin-KD cells with/without staurosporine (STS) treatment. Layilin-KD significantly decreased levels of cell membrane-bound Annexin V with/without STS treatment. On the other hand, PI levels were not changed by layilin-KD. We also investigated the amounts of the active caspase (CASP)-3, CASP-6, CASP-7, and poly (ADP-ribose) polymerase-1 (PARP1, cleaved form), as well as DNA fragmentation in layilin-KD cells under apoptotic conditions induced by STS, using western blot and the DNA ladder method, respectively. Under STS-treated conditions, the amounts of active CASP-3, CASP-7, and poly (ADP-ribose) PARP1 were significantly smaller in layilin-KD cells than in control cells. Accordingly, DNA fragmentation was significantly suppressed in layilin-KD cells compared to control cells under STS-treated conditions. CONCLUSION This study demonstrates that layilin contributes to ΔΨm reduction to promote apoptosis by up-regulating BAD and down-regulating BCL-2 in glioma cells. Our data elucidates a new function of layilin: regulation of mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Mitsumi Arito
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Atsuhiro Tsutiya
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Masaaki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Kazuki Omoteyama
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Toshiyuki Sato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Yusei Motonaga
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Naoya Suematsu
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Manae S Kurokawa
- Disease Biomarker Analysis and Molecular Regulation, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| | - Tomohiro Kato
- Clinical Proteomics and Molecular Medicine, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
3
|
Sakai Y, Egawa D, Hattori J, Morikawa Y, Suenami K, Takayama T, Nagai A, Michiue T, Ikari A, Matsunaga T. α-Pyrrolidinononanophenone derivatives induce differentiated SH-SY5Y neuroblastoma cell apoptosis via reduction of antioxidant capacity: Involvement of NO depletion and inactivation of Nrf2/HO1 signaling pathway. Neurotoxicology 2024; 100:3-15. [PMID: 38040126 DOI: 10.1016/j.neuro.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
α-Pyrrolidinononanophenone (α-PNP) derivatives are known to be one of the hazardous new psychoactive substances due to the most extended hydrocarbon chains of any pyrrolidinophenones on the illicit drug market. Our previous report showed that 4'-iodo-α-PNP (I-α-PNP) is the most potent cytotoxic compound among α-PNP derivatives and induces apoptosis due to mitochondrial dysfunction and suppression of nitric oxide (NO) production in differentiated human neuronal SH-SY5Y cells. In this study, to clarify the detailed action mechanisms by I-α-PNP, we investigated the mechanism of reactive oxygen species (ROS) -dependent apoptosis by I-α-PNP in differentiated SH-SY5Y with a focus on the antioxidant activities. Treatment with I-α-PNP elicits overproduction of ROS such as H2O2, hydroxyl radical, and 4-hydroxy-2-nonenal, and pretreatment with antioxidant N-acetyl-L-cysteine is attenuated the SH-SY5Y cells apoptosis by I-α-PNP. These results suggested that the overproduction of ROS is related to SH-SY5Y cell apoptosis by I-α-PNP. In addition, I-α-PNP markedly decreased antioxidant capacity in differentiated cells than in undifferentiated cells and inhibited the upregulation of hemeoxygenase 1 (HO1) and glutathione peroxidase 4 (GPX4) expression caused by induction of differentiation. Furthermore, the treatment with I-α-PNP increased the nuclear expression level of BTB Domain And CNC Homolog 1 (Bach1), a transcriptional repressor of Nrf2, only in differentiated cells, suggesting that the marked decrease in antioxidant capacity in differentiated cells was due to suppression of Nrf2/HO1 signaling by Bach1. Additionally, pretreatment with an NO donor suppresses the I-α-PNP-evoked ROS overproduction, HO1 down-regulation, increased nuclear Bach1 expression and reduced antioxidant activity in the differentiated cells. These findings suggest that the ROS-dependent apoptosis by I-α-PNP in differentiated cells is attributed to the inactivation of the Nrf2/HO1 signaling pathway triggered by NO depletion.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan.
| | - Daisuke Egawa
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Junta Hattori
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu 500-8501, Japan
| | - Atsushi Nagai
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Tomomi Michiue
- Department of Legal Medicine, Graduate School of Medicine, Gifu University, Gifu 501-1194, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu 502-8585, Japan
| |
Collapse
|
4
|
Sakai Y, Taguchi M, Morikawa Y, Suenami K, Yanase E, Takayama T, Ikari A, Matsunaga T. Lowering of brain endothelial cell barrier function by exposure to 4'-iodo-α-pyrrolidinononanophenone. Chem Biol Interact 2022; 364:110052. [PMID: 35872046 DOI: 10.1016/j.cbi.2022.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/22/2022] [Accepted: 07/13/2022] [Indexed: 11/03/2022]
Abstract
Overuse of pyrrolidinophenones (PPs) is known to cause damage to vascular and central nervous systems, but little is known about its effect on brain endothelial barrier function. In this study, we found that exposure to 4'-iodo-α-pyrrolidinononanophenone (I-α-PNP), one of the most potently cytotoxic PPs, at sublethal concentrations decreases trans-endothelial electrical resistance and increases paracellular permeability across a monolayer of human brain microvascular endothelial cells. Treatment with I-α-PNP also elevated the production of superoxide anion. Furthermore, the treatment reduced the expression and plasma membrane localization of a tight junction protein claudin-5 (CLDN5), which was almost restored by pretreatment with an antioxidant N-acetyl-l-cysteine. These results indicate that I-α-PNP treatment may down-regulate the plasma membrane-localized CLDN5 by elevating the production of reactive oxygen species (ROS). The treatment with I-α-PNP increased the nuclear translocation of Forkhead box protein O1 (FoxO1), an oxidative stress-responsive transcription factor, and pretreating with a FoxO1 inhibitor ameliorated the decrease in CLDN5 mRNA. In addition, I-α-PNP treatment up-regulated the expression and secretion of matrix metalloproteinase-2 (MMP2) and MMP9, and the addition of an MMP inhibitor reversed the degradation of CLDN5 by I-α-PNP. Moreover, I-α-PNP treatment facilitated the activation of 26S proteasome-based proteolytic activity and pretreatment with an inhibitor of 26S proteasome, but not autophagy, suppressed the CLDN5 degradation by I-α-PNP. Accordingly, it is suggested that the down-regulation of CLDN5 by exposure to I-α-PNP is ascribable to suppression of the gene transcription due to FoxO1 nuclear translocation through ROS production and to acceleration both of the MMPs (MMP2 and MMP9)- and 26S proteasome-based proteolysis.
Collapse
Affiliation(s)
- Yuji Sakai
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan.
| | - Maki Taguchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Yoshifumi Morikawa
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Koichi Suenami
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu, 501-1112, Japan
| | - Tomohiro Takayama
- Forensic Science Laboratory, Gifu Prefectural Police Headquarters, Gifu, 500-8501, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Laboratory of Bioinformatics, Gifu Pharmaceutical University, Gifu, 502-8585, Japan
| |
Collapse
|
5
|
4'-Iodo-α-Pyrrolidinononanophenone Provokes Differentiated SH-SY5Y Cell Apoptosis Through Downregulating Nitric Oxide Production and Bcl-2 Expression. Neurotox Res 2022; 40:1322-1336. [PMID: 35834058 DOI: 10.1007/s12640-022-00546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Abuse of pyrrolidinophenone derivatives (PPs) is known to cause severe damage to the central nervous system due to their high lipophilicity. In this study, we compared sensitivity to toxicity elicited by 4'-iodo-α-pyrrolidinononanophenone (I-α-PNP), one of the most potent cytotoxic derivatives among PPs synthesized previously, between SH-SY5Y cells differentiated by all-trans-retinoic acid (ATRA) and the undifferentiated cells, and found that the differentiated cells are more sensitive to I-α-PNP toxicity than the undifferentiated cells. Treatment with I-α-PNP elicited some apoptotic alterations (Bax expression, loss of mitrochondrial membrane potential, and activation of caspases) in the differentiated cells, whose patterns were similar to those in the undifferentiated cells. I-α-PNP treatment resulted in no significant alteration in Bcl-2 expression in the undifferentiated cells, whereas it considerably downregulated the protein expression in the differentiated cells, suggesting that the high I-α-PNP sensitivity of the differentiated cells is mainly due to downregulation of Bcl-2 expression. I-α-PNP treatment decreased nitric oxide (NO) production and neuronal NOS (nNOS) expression in the differentiated cells, and the patterns of I-α-PNP-evoked alterations in phosphorylation of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) expression were almost the same as that in nNOS expression. Additionally, the addition of an NO donor restored the I-α-PNP-evoked alterations in expressions of Bcl-2, BDNF, and nNOS in the differentiated cells. These findings suggest that the downregulation of Bcl-2 expression by I-α-PNP in differentiated cells is attributed to the acceleration of two negative feedback loops (nNOS/NO/CREB loop and CREB/BDNF loop) triggered by decreased NO production.
Collapse
|