1
|
Chen S, Zheng P, Zheng L, Yao Q, Meng Z, Lin L, Chen X, Liu R. BERT-DomainAFP: Antifreeze protein recognition and classification model based on BERT and structural domain annotation. iScience 2025; 28:112077. [PMID: 40241758 PMCID: PMC12002629 DOI: 10.1016/j.isci.2025.112077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/03/2025] [Accepted: 02/17/2025] [Indexed: 04/18/2025] Open
Abstract
Antifreeze proteins (AFPs) are crucial for organisms to adapt to low temperatures, with applications in medicine, food storage, aquaculture, and agriculture. Accurate AFP identification is challenging due to structural and sequence diversity. To improve prediction and classification, we propose BERT-DomainAFP, a deep learning model trained on the AntiFreezeDomains dataset created with a novel annotation strategy. The model uses pre-trained ProteinBERT and incorporates oversampling and undersampling techniques to handle unbalanced data, ensuring high predictive ability. BERT-DomainAFP achieves 98.48% accuracy, the highest among existing models, and can classify different AFP types based on structural domain features. This model outperforms current tools, offering a promising solution for AFP recognition and classification in research and applications.
Collapse
Affiliation(s)
- Shengzhen Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ping Zheng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lele Zheng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qinglong Yao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ziyu Meng
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Longshan Lin
- Laboratory of Marine Biodiversity Research, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruoyu Liu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Majewska E, Twarda-Clapa A, Jędrzejczak-Krzepkowska M, Kamińska-Dwórznicka A, Zakłos-Szyda M, Białkowska AM. Antifreeze proteins produced by Antarctic yeast from the genus Glaciozyma as cryoprotectants in food storage. PLoS One 2025; 20:e0318459. [PMID: 40048460 PMCID: PMC11884722 DOI: 10.1371/journal.pone.0318459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
Synthesis of antifreeze proteins (AFPs) is one of the adaptations of psychrophilic yeast to live in cold environments. AFPs demonstrate thermal hysteresis (TH) activity and inhibit the recrystallization of ice (IRI) during periodic temperature fluctuations. In this study, the Antarctic yeast strain 186, identified as Glaciozyma martinii, was found to synthesize an extracellular, glycosylated ~27 kDa ice-binding protein (GmAFP) exhibiting IRI activity. It is the first evidence of AFP secretion by the psychrophilic yeast Glaciozyma martinii. To scale up protein production, a synthetic gene from a closely related cold-adapted species, Glaciozyma antarctica, was expressed in Pichia pastoris GS115 strain. The recombinant 26.57 kD protein (GaAFP) displayed IRI activity and a cryoprotective effect in food storage. The addition of GaAFP to the stored frozen vegetables and fruits (carrot, kohlrabi, and blueberry) markedly reduced the drip loss during the thawing process and positively affected their structure, with an effect similar to glycerol. Moreover, GaAFP increased the cell survival of Saccharomyces cerevisiae after freezing. The insights from this study provided proof that AFPs from natural sources may serve as competent biodegradable, eco-friendly, non-cytotoxic and biocompatible substitutes for traditional cryoprotectants in enhancing the quality of frozen foods.
Collapse
Affiliation(s)
- Edyta Majewska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Aleksandra Twarda-Clapa
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Marzena Jędrzejczak-Krzepkowska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Anna Kamińska-Dwórznicka
- Faculty of Food Sciences, Department of Food Engineering and Process Management, Warsaw University of Life Sciences, Warsaw, Poland
| | - Małgorzata Zakłos-Szyda
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| | - Aneta Monika Białkowska
- Faculty of Biotechnology and Food Sciences, Institute of Molecular and Industrial Biotechnology, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
3
|
Kim E, Kwon GS, Choi S, Kim SY, Heo KY, Kim YS, Kim CY, Kim S, Jeong JC, Hwang J, Lee JH, Lee JH, Moh SH. Potential role of ice-binding protein in mitochondria-lipid and ATP mechanisms during freezing of plant callus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108866. [PMID: 39002307 DOI: 10.1016/j.plaphy.2024.108866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/15/2024]
Abstract
Plant calli, a perpetually undifferentiated cell culture, have defects in maintaining their genetic fidelity during prolonged tissue culture. Cryopreservation using ice-binding proteins (IBP) is a potential solution. Despite a few studies on cryopreservation using IBPs in plant calli, detailed insights into the intracellular metabolism during freezing, thawing, and re-induction remain sparse. This study investigated and employed IBP from polar yeast Leucosporidium sp. (LeIBP) in the cryopreservation process across diverse taxa, including gymnosperms, monocots, dicots, and woody plants. Molecular-level analyses encompassing reactive oxygen species levels, mitochondrial function, and ATP and lipophilic compounds content were conducted. The results across nine plant species revealed the effects of LeIBP on callus competency post-thawing, along with enhanced survival rates, reactive oxygen species reduction, and restored metabolic activities to the level of those of fresh calli. Moreover, species-specific survival optimization with LeIBP treatments and morphological assessments revealed intriguing extracellular matrix structural changes post-cryopreservation, suggesting a morphological strategy for maintaining the original cellular states and paracrine signaling. This study pioneered the comprehensive application of LeIBP in plant callus cryopreservation, alleviating cellular stress and enhancing competence. Therefore, our findings provide new insights into the identification of optimal LeIBP concentrations, confirmation of genetic conformity post-thawing, and the intracellular metabolic mechanisms of cryopreservation advancements in plant research, thereby addressing the challenges associated with long-term preservation and reducing labor-intensive cultivation processes. This study urges a shift towards molecular-level assessments in cryopreservation protocols for plant calli, advocating a deeper understanding of callus re-induction mechanisms and genetic fidelity post-thawing.
Collapse
Affiliation(s)
- Euihyun Kim
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Gi-Sok Kwon
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Sunmee Choi
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Soo-Yun Kim
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Kyeong Yeon Heo
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Young Soon Kim
- Korea Research Institute of Bioscience and Biotechnology, South Korea
| | - Cha Young Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Soyoung Kim
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea; Department of Plant Biotechnology, College of Agriculture and Life Science, Chonnam National University, Gwangju, 61186, South Korea
| | - Jae Cheol Jeong
- Biological Resource Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), Jeongeup, 56212, South Korea
| | - Jisub Hwang
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, 26, Songdomirae-ro, Yeonsu-gu, Incheon, 21990, South Korea; Department of Polar Sciences, University of Science and Technology, Incheon, 21990, South Korea
| | - Jeong Hun Lee
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea
| | - Sang Hyun Moh
- Plant cell Research Institute of BIO-FD&C Co. Ltd., Incheon, 21990, South Korea.
| |
Collapse
|
4
|
Lopes JC, Kinasz CT, Luiz AMC, Kreusch MG, Duarte RTD. Frost fighters: unveiling the potential of microbial antifreeze proteins in biotech innovation. J Appl Microbiol 2024; 135:lxae140. [PMID: 38877650 DOI: 10.1093/jambio/lxae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/16/2024]
Abstract
Polar environments pose extreme challenges for life due to low temperatures, limited water, high radiation, and frozen landscapes. Despite these harsh conditions, numerous macro and microorganisms have developed adaptive strategies to reduce the detrimental effects of extreme cold. A primary survival tactic involves avoiding or tolerating intra and extracellular freezing. Many organisms achieve this by maintaining a supercooled state by producing small organic compounds like sugars, glycerol, and amino acids, or through increasing solute concentration. Another approach is the synthesis of ice-binding proteins, specifically antifreeze proteins (AFPs), which hinder ice crystal growth below the melting point. This adaptation is crucial for preventing intracellular ice formation, which could be lethal, and ensuring the presence of liquid water around cells. AFPs have independently evolved in different species, exhibiting distinct thermal hysteresis and ice structuring properties. Beyond their ecological role, AFPs have garnered significant attention in biotechnology for potential applications in the food, agriculture, and pharmaceutical industries. This review aims to offer a thorough insight into the activity and impacts of AFPs on water, examining their significance in cold-adapted organisms, and exploring the diversity of microbial AFPs. Using a meta-analysis from cultivation-based and cultivation-independent data, we evaluate the correlation between AFP-producing microorganisms and cold environments. We also explore small and large-scale biotechnological applications of AFPs, providing a perspective for future research.
Collapse
Affiliation(s)
- Joana Camila Lopes
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Camila Tomazini Kinasz
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima,, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Alanna Maylle Cararo Luiz
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima,, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Marianne Gabi Kreusch
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| | - Rubens Tadeu Delgado Duarte
- Laboratory of Molecular Ecology and Extremophiles, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, s/n Trindade, Florianópolis, SC 88040-900, Brazil
- Postgraduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima,, s/n Trindade, Florianópolis, SC 88040-900, Brazil
| |
Collapse
|
5
|
Yang K, Liu D, Feng L, Xu L, Jiang Y, Shen X, Ali A, Lu J, Guo L. Preparation of Peptoid Antifreeze Agents and Their Structure-Property Relationship. Polymers (Basel) 2024; 16:990. [PMID: 38611248 PMCID: PMC11013998 DOI: 10.3390/polym16070990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/02/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The development of nontoxic and efficient antifreeze agents for organ cryopreservation is crucial. However, the research remains highly challenging. In this study, we designed and synthesized a series of peptoid oligomers using the solid-phase submonomer synthesis method by mimicking the amphiphilic structures of antifreeze proteins (AFPs). The obtained peptoid oligomers showed excellent antifreeze properties, reducing the ice crystal growth rate and inhibiting ice recrystallization. The effects of the hydrophobicity and sequence of the peptoid side chains were also studied to reveal the structure-property relationship. The prepared peptoid oligomers were detected as non-cytotoxic and considered to be useful in the biological field. We hope that the peptoid oligomers presented in this study can provide effective strategies for the design of biological cryoprotectants for organ preservation in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianwei Lu
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
6
|
Submilligram Level of Beetle Antifreeze Proteins Minimize Cold-Induced Cell Swelling and Promote Cell Survival. Biomolecules 2022; 12:biom12111584. [PMID: 36358934 PMCID: PMC9687565 DOI: 10.3390/biom12111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 12/04/2022] Open
Abstract
Hypothermic (cold) preservation is a limiting factor for successful cell and tissue transplantation where cell swelling (edema) usually develops, impairing cell function. University of Wisconsin (UW) solution, a standard cold preservation solution, contains effective components to suppress hypothermia-induced cell swelling. Antifreeze proteins (AFPs) found in many cold-adapted organisms can prevent cold injury of the organisms. Here, the effects of a beetle AFP from Dendroides canadensis (DAFP-1) on pancreatic β-cells preservation were first investigated. As low as 500 µg/mL, DAFP-1 significantly minimized INS-1 cell swelling and subsequent cell death during 4 °C preservation in UW solution for up to three days. However, such significant cytoprotection was not observed by an AFP from Tenebrio molitor (TmAFP), a structural homologue to DAFP-1 but lacking arginine, at the same levels. The cytoprotective effect of DAFP-1 was further validated with the primary β-cells in the isolated rat pancreatic islets in UW solution. The submilligram level supplement of DAFP-1 to UW solution significantly increased the islet mass recovery after three days of cold preservation followed by rewarming. The protective effects of DAFP-1 in UW solution were discussed at a molecular level. The results indicate the potential of DAFP-1 to enhance cell survival during extended cold preservation.
Collapse
|
7
|
Tirado-Kulieva VA, Miranda-Zamora WR, Hernández-Martínez E, Pantoja-Tirado LR, Bazán-Tantaleán DL, Camacho-Orbegoso EW. Effect of antifreeze proteins on the freeze-thaw cycle of foods: fundamentals, mechanisms of action, current challenges and recommendations for future work. Heliyon 2022; 8:e10973. [PMID: 36262292 PMCID: PMC9573917 DOI: 10.1016/j.heliyon.2022.e10973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/13/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Freezing is widely used in food preservation, but if not carried out properly, ice crystals can multiply (nucleation) or grow (recrystallization) rapidly. This also affects thawing, causing structural damage and affecting overall quality. The objective of this review is to comprehensively study the cryoprotective effect of antifreeze proteins (AFPs), highlighting their role in the freeze-thaw process of food. The properties of AFPs are based on their thermal hysteresis capacity (THC), on the modification of crystal morphology and on the inhibition of ice recrystallization. The mechanism of action of AFPs is based on the adsorption-inhibition theory, but the specific role of hydrogen and hydrophobic bonds/residues and structural characteristics is also detailed. Because of the properties of AFPs, they have been successfully used to preserve the quality of a wide variety of refrigerated and frozen foods. Among the limitations of the use of AFPs, the high cost of production stands out, but currently there are solutions such as the use the production of recombinant proteins, cloning and chemical synthesis. Although in vitro, in vivo and human studies have shown that AFPs are non-toxic, their safety remains a matter of debate. Further studies are recommended to expand knowledge about AFPs, to reduce costs in their large-scale production, to understand their interaction with other food compounds and their possible effects on the consumer.
Collapse
Affiliation(s)
| | | | | | - Lucia Ruth Pantoja-Tirado
- Carrera Profesional de Ingeniería en Industrias Alimentarias, Universidad Nacional Autónoma de Tayacaja Daniel Hernández Morillo, Peru
| | | | | |
Collapse
|