1
|
Kato Y, Inaba T, Shinke K, Hiramatsu N, Horie T, Sakamoto T, Hata Y, Sugihara E, Takimoto T, Nagai N, Ishigaki Y, Kojima H, Nagano O, Yamamoto N, Saya H. Comprehensive Search for Genes Involved in Thalidomide Teratogenicity Using Early Differentiation Models of Human Induced Pluripotent Stem Cells: Potential Applications in Reproductive and Developmental Toxicity Testing. Cells 2025; 14:215. [PMID: 39937006 PMCID: PMC11817626 DOI: 10.3390/cells14030215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Developmental toxicity testing is essential to identify substances that may harm embryonic development. This study aimed to establish a protocol for evaluating developmental toxicity using human induced pluripotent stem cells (iPSCs) by analyzing cellular activity and gene expression changes. Two ICH S5(R3) positive substances, valproic acid (VPA), which is a substance previously detected as positive by other test methods, and thalidomide (Thalido), were examined during early trichoderm differentiation without fetal bovine serum. RNA-seq analysis identified seven candidate genes, including TP63, associated with altered expression following exposure to VPA or Thalido. These genes were implicated in pathways related to tissue development, cell growth, and molecular interactions. While the assay effectively detected VPA and Thalido, its limitations include testing only soluble substances and focusing on early differentiation stages. Nevertheless, the protocol demonstrates potential for the classification and evaluation of emerging modality drugs based on physical properties such as solubility, polarity, and pH. Integration with AI analysis may enhance its capacity to uncover genetic variations and evaluate previously uncharacterized substances. This study provides a foundation for alternative developmental toxicity testing methods, with further refinements in the culture method expected to improve accuracy and applicability in regulatory toxicology.
Collapse
Affiliation(s)
- Yu Kato
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
- Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Takeshi Inaba
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (T.I.); (K.S.)
| | - Koudai Shinke
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (T.I.); (K.S.)
| | - Noriko Hiramatsu
- Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
- Clinical Laboratory, Fujita Health University Hospital, Toyoake 470-1192, Aichi, Japan
| | - Tetsuhiro Horie
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (T.H.); (T.S.); (Y.I.)
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Takuya Sakamoto
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (T.H.); (T.S.); (Y.I.)
- Department of Pharmacy, Kanazawa Medical University Hospital, Uchinada 920-0293, Ishikawa, Japan
| | - Yuko Hata
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Eiji Sugihara
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
- Open Facility Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
| | - Tetsuya Takimoto
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
| | - Noriaki Nagai
- Faculty of Pharmacy, Kindai University, Higashiosaka 577-8502, Osaka, Japan;
| | - Yasuhito Ishigaki
- Medical Research Institute, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan; (T.H.); (T.S.); (Y.I.)
| | - Hajime Kojima
- Department of Pharmaceutical Engineering, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda 756-0884, Yamaguchi, Japan;
- National Institute of Health Sciences (NIHS), Kawasaki 210-9501, Kanagawa, Japan
| | - Osamu Nagano
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
| | - Naoki Yamamoto
- Center for Society-Academia Collaboration, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan;
- Graduate School of Health Sciences, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (T.I.); (K.S.)
- International Center for Cell and Gene Therapy, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hideyuki Saya
- Oncology Innovation Center, Research Promotion Headquarters, Fujita Health University, Toyoake 470-1192, Aichi, Japan; (Y.K.); (E.S.); (T.T.); (O.N.); (H.S.)
| |
Collapse
|
2
|
Wang R, Tan X, Liu Y, Fan L, Yan Q, Chen C, Wang W, Zhang W, Ren Z, Ning X, Wei S, Ku T, Sang N. Triazole fungicides disrupt embryonic stem cell differentiation: Potential modulatory role of the retinoic acid signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116859. [PMID: 39137466 DOI: 10.1016/j.ecoenv.2024.116859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
The developmental toxicity and human health risks of triazole fungicides (TFs) have attracted worldwide attention due to the ability to enter the human body in a variety of ways. Nevertheless, the specific mechanism by which TFs exert remains incompletely understood. Given that retinoic acid (RA) signaling pathway are closely related to development, this study aimed to screen and identify developmentally disabled chemicals in commonly used TFs and to reveal the potential effects of TFs on developmental retardation through the RA signaling pathway in mouse embryonic stem cells (mESCs). Specifically, six typical TFs (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole) were exposed through the construction of an embryoid bodies (EBs)-based in vitro global differentiation models. Our results clarified that various TFs disturbed lineage commitment during early embryonic development. Crucially, the activation of RA signaling pathway, which alters the expression of key genes and interferes the transport and metabolism of retinol, may be responsible for this effect. Furthermore, molecular docking, molecular dynamics simulations, and experiments using a retinoic acid receptor α inhibitor provide evidence supporting the potential modulatory role of the retinoic acid signaling pathway in developmental injury. The current study offers new insights into the TFs involved in the RA signaling pathway that interfere with the differentiation process of mESCs, which is crucial for understanding the impact of TFs on pregnancy and early development.
Collapse
Affiliation(s)
- Rui Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wanrou Zhang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuting Wei
- NHC Key Laboratory of Pneumoconiosis, Shanxi Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan 030001, China; First Clinical Medical College, Shanxi Medical University Taiyuan, China
| | - Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Acharya B, Dey S, Sahu PK, Behera A, Chowdhury B, Behera S. Perspectives on chick embryo models in developmental and reproductive toxicity screening. Reprod Toxicol 2024; 126:108583. [PMID: 38561097 DOI: 10.1016/j.reprotox.2024.108583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Teratology, the study of congenital anomalies and their causative factors intersects with developmental and reproductive toxicology, employing innovative methodologies. Evaluating the potential impacts of teratogens on fetal development and assessing human risk is an essential prerequisite in preclinical research. The chicken embryo model has emerged as a powerful tool for understanding human embryonic development due to its remarkable resemblance to humans. This model offers a unique platform for investigating the effects of substances on developing embryos, employing techniques such as ex ovo and in ovo assays, chorioallantoic membrane assays, and embryonic culture techniques. The advantages of chicken embryonic models include their accessibility, cost-effectiveness, and biological relevance to vertebrate development, enabling efficient screening of developmental toxicity. However, these models have limitations, such as the absence of a placenta and maternal metabolism, impacting the study of nutrient exchange and hormone regulation. Despite these limitations, understanding and mitigating the challenges posed by the absence of a placenta and maternal metabolism are critical for maximizing the utility of the chick embryo model in developmental toxicity testing. Indeed, the insights gained from utilizing these assays and their constraints can significantly contribute to our understanding of the developmental impacts of various agents. This review underscores the utilization of chicken embryonic models in developmental toxicity testing, highlighting their advantages and disadvantages by addressing the challenges posed by their physiological differences from mammalian systems.
Collapse
Affiliation(s)
- Biswajeet Acharya
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Sandip Dey
- Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Prafulla Kumar Sahu
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Amulyaratna Behera
- School of Pharmacy, Centurion University of Technology and Management, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India.
| | - Bimalendu Chowdhury
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| | - Suchismeeta Behera
- Roland Institute of Pharmaceutical Sciences, Khodasingi, Brahmapur, Odisha, India; State Forensic Laboratory, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Liu Z, Shi C, Wang B, Zhang X, Ding J, Gao P, Yuan X, Liu Z, Zhang H. Cytochrome P450 enzymes in the black-spotted frog ( Pelophylax nigromaculatus): molecular characterization and upregulation of expression by sulfamethoxazole. Front Physiol 2024; 15:1412943. [PMID: 38784115 PMCID: PMC11112259 DOI: 10.3389/fphys.2024.1412943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Cytochrome P450 (CYP) enzymes are crucial for the detoxification of xenobiotics, cellular metabolism, and homeostasis. This study investigated the molecular characterization of CYP enzymes in the black-spotted frog, Pelophylax nigromaculatus, and examined the regulation of CYP expression in response to chronic exposure to the antibiotic sulfamethoxazole (SMX) at various environmental concentrations (0, 1, 10, and 100 μg/L). The full-length cDNA of Pn-CYP26B1 was identified. The sequence included open reading frames of 1,536 bp, encoding proteins comprising 511 amino acids. The signature motif, FxxGxxxCxG, was highly conserved when compared with a number of selected animal species. SMX significantly upregulated the expression of the protein CYP26B1 in frog livers at concentrations of 1 and 10 μg/L. SMX showed an affinity for CYP26B1 of -7.6 kcal/mol, indicating a potential mechanism for SMX detoxification or adaptation of the frog. These findings contributed to our understanding of the environmental impact of antibiotics on amphibian species and underscored the importance of CYP enzymes in maintaining biochemical homeostasis under exposure to xenobiotic stress.
Collapse
Affiliation(s)
- Zhiqun Liu
- Hangzhou Normal University, Hangzhou, China
| | - Chaoli Shi
- Hangzhou Normal University, Hangzhou, China
| | | | | | - Jiafeng Ding
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Panpan Gao
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Xia Yuan
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| | - Zhiquan Liu
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, China
| | - Hangjun Zhang
- Hangzhou Normal University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou, China
| |
Collapse
|