1
|
Crawford MS, Ulu A, Ramirez BM, Santos AN, Chatterjee P, Canale V, Manz S, Lei H, Soriano SM, Nordgren TM, McCole DF. Respiratory Exposure to Agriculture Dust Extract Alters Gut Commensal Species and Key Metabolites in Mice. J Appl Toxicol 2025. [PMID: 40344252 DOI: 10.1002/jat.4808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025]
Abstract
Exposure to agricultural dust containing antimicrobial-resistant pathogens poses significant health risks for workers in animal agriculture production. Beyond causing severe airway inflammation, pollutants are linked to intestinal diseases. Swine farm dust is rich in ultrafine particles, gram-positive and gram-negative bacteria, and bacterial components such as lipopolysaccharides (LPS; endotoxins). In our previous study, we demonstrated that intranasal exposure of male and female C57BL/6J mice to 12.5% hog dust extract (HDE, containing 22.1-91.1 EU/mL) for 3 weeks resulted in elevated total cell and neutrophil counts in bronchoalveolar lavage fluid and increased intestinal permeability compared to saline controls. Now, we report that 16S and metagenomic analyses of Week 3 stool samples from HDE-treated mice indicate a reduced abundance of the beneficial species Akkermansia muciniphila and Clostridium sp. ASF356 and Lachnospiraceae bacterium. Bacterial alpha diversity showed increased species evenness in fecal samples from HDE-treated mice (Pielou's evenness, p = 0.047, n = 5-6/group). Metabolomic analysis also indicated significant reductions in key metabolites involved in energy metabolism, including riboflavin (p = 0.027, n = 11) and nicotinic acid (p = 0.049, n = 11), as well as essential amino acids, such as inosine (p = 0.043, n = 11) and leucine (p = 0.018, n = 11). While HDE exposure does not robustly alter overall microbial abundance or community structure, it leads to specific reductions in beneficial bacterial species and critical metabolites necessary for maintaining intestinal homeostasis by supporting energy metabolism, gut barrier function, microbiota balance, and immune regulation. The results of this study underscore the potential risks for gut health posed by inhalation of agricultural dust.
Collapse
Affiliation(s)
- Meli'sa S Crawford
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
- School of Environmental and Biological Sciences, Department of Animal Sciences, Rutgers-New Brunswick, New Brunswick, New Jersey, USA
| | - Arzu Ulu
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Briana M Ramirez
- Department of Biochemistry and Molecular Biology, University of California, Riverside, California, USA
| | - Alina N Santos
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Pritha Chatterjee
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Vinicius Canale
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Salomon Manz
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Hillmin Lei
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| | - Sarah Mae Soriano
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
- Bishop Gorman High School, Las Vegas, Nevada, USA
| | - Tara M Nordgren
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Declan F McCole
- School of Medicine, Division of Biomedical Sciences, University of California, Riverside, California, USA
| |
Collapse
|
2
|
Pramanik S, Sil AK. Cigarette smoke extract induces foam cell formation by impairing machinery involved in lipid droplet degradation. Pflugers Arch 2024; 476:59-74. [PMID: 37910205 DOI: 10.1007/s00424-023-02870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The formation of foam cells, lipid-loaded macrophages, is the hallmark event of atherosclerosis. Since cigarette smoking is a risk factor for developing atherosclerosis, the current study investigated the effects of cigarette smoke extract (CSE) on different events like expressions of genes involved in lipid influx and efflux, lipophagy, etc., that play vital roles in foam cell formation. The accumulation of lipids after CSE treatment U937 macrophage cells was examined by staining lipids with specific dyes: Oil red O and BODIPY493/503. Results showed an accumulation of lipids in CSE-treated cells, confirming foam cell formation by CSE treatment. To decipher the mechanism, the levels of CD36, an ox-LDL receptor, and ABCA1, an exporter of lipids, were examined in CSE-treated and -untreated U937 cells by real-time PCR and immunofluorescence analysis. Consistent with lipid accumulation, an increased level of CD36 and a reduction in ABCA1 were observed in CSE-treated cells. Moreover, CSE treatment caused inhibition of lipophagy-mediated lipid degradation by blocking lipid droplets (LDs)-lysosome fusion and increasing the lysosomal pH. CSE also impaired mitochondrial lipid oxidation. Thus, the present study demonstrates that CSE treatment affects lipid homeostasis by altering its influx and efflux, lysosomal degradation, and mitochondrial utilization, leading to the formation of lipid-loaded foam cells. Moreover, the current study also showed that the leucine supplement caused a significant reduction of CSE-induced foam cell formation in vitro. Thus, the current study provides insight into CS-induced atherosclerosis and an agent to combat the disease.
Collapse
Affiliation(s)
- Soudipta Pramanik
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Ballygunge, Kolkata, West Bengal, India, PIN-700019.
| |
Collapse
|
3
|
Examining the effects of cigarette smoke on mouse lens through a multi OMIC approach. Sci Rep 2021; 11:18801. [PMID: 34552108 PMCID: PMC8458305 DOI: 10.1038/s41598-021-95013-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/14/2021] [Indexed: 11/22/2022] Open
Abstract
Here, we report a multi OMIC (transcriptome, proteome, and metabolome) approach to investigate molecular changes in lens fiber cells (FC) of mice exposed to cigarette smoke (CS). Pregnant mice were placed in a whole-body smoke chamber and a few days later pups were born, which were exposed to CS for 5 hours/day, 5 days/week for a total of 3½ months. We examined the mice exposed to CS for CS-related cataractogenesis after completion of the CS exposure but no cataracts were observed. Lenses of CS-exposed and age-matched, untreated control mice were extracted and lens FC were subjected to multi OMIC profiling. We identified 348 genes, 130 proteins, and 14 metabolites exhibiting significant (p < 0.05) differential levels in lens FC of mice exposed to CS, corresponding to 3.6%, 4.3%, and 5.0% of the total genes, protein, and metabolites, respectively identified in this study. Our multi OMIC approach confirmed that only a small fraction of the transcriptome, the proteome, and the metabolome was perturbed in the lens FC of mice exposed to CS, which suggests that exposure of CS had a minimal effect on the mouse lens. It is worth noting that while our results confirm that CS exposure does not have a substantial impact on the molecular landscape of the mouse lens FC, we cannot rule out that CS exposure for longer durations and/or in combination with other morbidities or environmental factors would have a more robust effect and/or result in cataractogenesis.
Collapse
|
4
|
Maiti A, Saha N, Shukla A, Sarkar S, Sil AK. Cigarette smoke affects ESCRT-mediated vacuolar activity in Saccharomyces cerevisiae. Toxicol Lett 2020; 338:97-104. [PMID: 33309995 DOI: 10.1016/j.toxlet.2020.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/28/2020] [Accepted: 12/06/2020] [Indexed: 10/22/2022]
Abstract
Cigarette smoking is a risk factor for developing chronic obstructive pulmonary disease and protein aggresome formation is considered to be a hallmark event for the disease. Since dysfunction of lysosome-mediated protein degradation leads to enhanced accumulation of misfolded proteins and subsequent aggresome formation, we examined the effect of cigarette smoke extract (CSE) on ESCRT-mediated sorting in S. cerevisiae as this process is necessary for the functioning of the vacuole, the lysosomal equivalent in yeast. An operational ESCRT pathway is essential for ion homeostasis and our observation that exposure to CSE caused increased sensitivity to LiCl indicated CSE-induced impairment of ESCRT function. To confirm the inhibition of ESCRT function, the targeting of carboxypeptidase S (CPS), which reaches the vacuole lumen via the ESCRT pathway, was examined. Treatment with CSE resulted in the mislocalization of GFP-tagged CPS to the vacuolar membrane, instead of the vacuolar lumen, confirming defective functioning of the ESCRT machinery in CSE-treated cells. Further analysis revealed that CSE-treatment inhibited the recruitment of the ESCRT-0 component, Vps27, to the endosome surface, which is a key event is for the functioning of the ESCRT pathway. This lack of endosomal recruitment of Vps27 most likely results from a depletion of the endosomally-enriched lipid, phosphatidylinositol 3-phosphate (PI3-P), which is the target of Vps27. This is supported by our observation that the presence of excess leucine, a known activator of the lipid kinase responsible for the generation of PI3-P, Vps34, in the medium can rescue the CSE-induced ESCRT misfunctioning. Thus, the current study provides an insight into CSE-induced aggresome formation as it documents that CSE treatment compromises vacuolar degradation due to an impairment of the ESCRT pathway, which likely stems from the inhibition of Vps34. It also indicates that leucine has the potential to attenuate the CSE-induced accumulation of misfolded proteins.
Collapse
Affiliation(s)
- Arnab Maiti
- Department of Microbiology, University of Calcutta, 35 B.C Road, Kolkata, 700019, India.
| | - Nabanita Saha
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme, VII M, Kolkata, 700054, India.
| | - Aditya Shukla
- Department of Microbiology, University of Calcutta, 35 B.C Road, Kolkata, 700019, India.
| | - Srimonti Sarkar
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme, VII M, Kolkata, 700054, India.
| | - Alok Kumar Sil
- Department of Microbiology, University of Calcutta, 35 B.C Road, Kolkata, 700019, India.
| |
Collapse
|