1
|
Higuera-Martínez G, Arciniega-Martínez IM, Jarillo-Luna RA, Cárdenas-Jaramillo LM, Levaro-Loquio D, Velásquez-Torres M, Abarca-Rojano E, Reséndiz-Albor AA, Pacheco-Yépez J. Apocynin, an NADPH Oxidase Enzyme Inhibitor, Prevents Amebic Liver Abscess in Hamster. Biomedicines 2023; 11:2322. [PMID: 37626818 PMCID: PMC10452916 DOI: 10.3390/biomedicines11082322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Amebiasis is an intestinal infection caused by Entamoeba histolytica. Amebic liver abscess (ALA) is the most common extraintestinal complication of amebiasis. In animal models of ALA, neutrophils have been shown to be the first cells to come into contact with Entamoeba histolytica during the initial phase of ALA. One of the multiple mechanisms by which neutrophils exhibit amebicidal activity is through reactive oxygen species (ROS) and the enzyme NADPH oxidase (NOX2), which generates and transports electrons to subsequently reduce molecular oxygen into superoxide anion. Previous reports have shown that ROS release in the susceptible animal species (hamster) is mainly stimulated by the pathogen, in turn provoking such an exacerbated inflammatory reaction that it is unable to be controlled and results in the death of the animal model. Apocynin is a natural inhibitor of NADPH oxidase. No information is available on the role of NOX in the evolution of ALA in the hamster, a susceptible model. Our study showed that administration of a selective NADPH oxidase 2 (NOX2) enzyme inhibitor significantly decreases the percentage of ALA, the size of inflammatory foci, the number of neutrophils, and NOX activity indicated by the reduction in superoxide anion (O2-) production. Moreover, in vitro, the apocynin damages amoebae. Our results showed that apocynin administration induces a decrease in the activity of NOX that could favor a decrease in ALA progression.
Collapse
Affiliation(s)
- Germán Higuera-Martínez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Ivonne Maciel Arciniega-Martínez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Rosa Adriana Jarillo-Luna
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.A.J.-L.); (L.M.C.-J.)
| | - Luz María Cárdenas-Jaramillo
- Coordinación de Ciencias Morfológicas, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (R.A.J.-L.); (L.M.C.-J.)
| | - David Levaro-Loquio
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Maritza Velásquez-Torres
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Edgar Abarca-Rojano
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Aldo Arturo Reséndiz-Albor
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| | - Judith Pacheco-Yépez
- Sección de Estudios de Postgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (G.H.-M.); (I.M.A.-M.); (D.L.-L.); (M.V.-T.); (E.A.-R.); (A.A.R.-A.)
| |
Collapse
|
2
|
Boshtam M, Kouhpayeh S, Amini F, Azizi Y, Najaflu M, Shariati L, Khanahmad H. Anti-inflammatory effects of apocynin: a narrative review of the evidence. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1990136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Maryam Boshtam
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Farahnaz Amini
- Faculty of Medicine and Health Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Yadollah Azizi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Najaflu
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Applied physiology research center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Kovacevic S, Ivanov M, Zivotic M, Brkic P, Miloradovic Z, Jeremic R, Mihailovic-Stanojevic N, Vajic UJ, Karanovic D, Jovovic D, Nesovic Ostojic J. Immunohistochemical Analysis of 4-HNE, NGAL, and HO-1 Tissue Expression after Apocynin Treatment and HBO Preconditioning in Postischemic Acute Kidney Injury Induced in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2021; 10:antiox10081163. [PMID: 34439411 PMCID: PMC8388865 DOI: 10.3390/antiox10081163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Oxidative stress has been considered as a central aggravating factor in the development of postischemic acute kidney injury (AKI). The aim of this study was to perform the immunohistochemical analysis of 4-hydroxynonenal (4-HNE), neutrophil gelatinase-associated lipocalin (NGAL), and heme oxygenase-1 (HO-1) tissue expression after apocynin (APO) treatment and hyperbaric oxygenation (HBO) preconditioning, applied as single or combined protocol, in postischemic acute kidney injury induced in spontaneously hypertensive rats (SHR). Twenty-four hours before AKI induction, HBO preconditioning was carried out by exposing to pure oxygen (2.026 bar) twice a day, for 60 min in two consecutive days. Acute kidney injury was induced by removal of the right kidney while the left renal artery was occluded for 45 min by atraumatic clamp. Apocynin was applied in a dose of 40 mg/kg body weight, intravenously, 5 min before reperfusion. We showed increased 4-HNE renal expression in postischemic AKI compared to Sham-operated (SHAM) group. Apocynin treatment, with or without HBO preconditioning, improved creatinine and phosphate clearances, in postischemic AKI. This improvement in renal function was accompanied with decreased 4-HNE, while HO-1 kidney expression restored close to the control group level. NGAL renal expression was also decreased after apocynin treatment, and HBO preconditioning, with or without APO treatment. Considering our results, we can say that 4-HNE tissue expression can be used as a marker of oxidative stress in postischemic AKI. On the other hand, apocynin treatment and HBO preconditioning reduced oxidative damage, and this protective effect might be expected even in experimental hypertensive condition.
Collapse
Affiliation(s)
- Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Ivanov
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Maja Zivotic
- Institute of Pathology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia;
| | - Predrag Brkic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia; (P.B.); (R.J.)
| | - Zoran Miloradovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Rada Jeremic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia; (P.B.); (R.J.)
| | - Nevena Mihailovic-Stanojevic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Una Jovana Vajic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Danijela Karanovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Djurdjica Jovovic
- Department of Cardiovascular Physiology, Institute for Medical Research, University of Belgrade, 11129 Belgrade, Serbia; (M.I.); (Z.M.); (N.M.-S.); (U.J.V.); (D.K.); (D.J.)
| | - Jelena Nesovic Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia;
- Correspondence: ; Tel./Fax: +381-11-2685-340
| |
Collapse
|
4
|
Feng W, Remedies CE, Obi IE, Aldous SR, Meera SI, Sanders PW, Inscho EW, Guan Z. Restoration of afferent arteriolar autoregulatory behavior in ischemia-reperfusion injury in rat kidneys. Am J Physiol Renal Physiol 2021; 320:F429-F441. [PMID: 33491564 PMCID: PMC7988813 DOI: 10.1152/ajprenal.00500.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Renal autoregulation is critical in maintaining stable renal blood flow (RBF) and glomerular filtration rate (GFR). Renal ischemia-reperfusion (IR)-induced kidney injury is characterized by reduced RBF and GFR. The mechanisms contributing to renal microvascular dysfunction in IR have not been fully determined. We hypothesized that increased reactive oxygen species (ROS) contributed to impaired renal autoregulatory capability in IR rats. Afferent arteriolar autoregulatory behavior was assessed using the blood-perfused juxtamedullary nephron preparation. IR was induced by 60 min of bilateral renal artery occlusion followed by 24 h of reperfusion. Afferent arterioles from sham rats exhibited normal autoregulatory behavior. Stepwise increases in perfusion pressure caused pressure-dependent vasoconstriction to 65 ± 3% of baseline diameter (13.2 ± 0.4 μm) at 170 mmHg. In contrast, pressure-mediated vasoconstriction was markedly attenuated in IR rats. Baseline diameter averaged 11.7 ± 0.5 µm and remained between 90% and 101% of baseline over 65-170 mmHg, indicating impaired autoregulatory function. Acute antioxidant administration (tempol or apocynin) to IR kidneys for 20 min increased baseline diameter and improved autoregulatory capability, such that the pressure-diameter profiles were indistinguishable from those of sham kidneys. Furthermore, the addition of polyethylene glycol superoxide dismutase or polyethylene glycol-catalase to the perfusate blood also restored afferent arteriolar autoregulatory responsiveness in IR rats, indicating the involvement of superoxide and/or hydrogen peroxide. IR elevated mRNA expression of NADPH oxidase subunits and monocyte chemoattractant protein-1 in renal tissue homogenates, and this was prevented by tempol pretreatment. These results suggest that ROS accumulation, likely involving superoxide and/or hydrogen peroxide, impairs renal autoregulation in IR rats in a reversible fashion.NEW & NOTEWORTHY Renal ischemia-reperfusion (IR) leads to renal microvascular dysfunction manifested by impaired afferent arteriolar autoregulatory efficiency. Acute administration of scavengers of reactive oxygen species, polyethylene glycol-superoxide dismutase, or polyethylene glycol-catalase following renal IR restored afferent arteriolar autoregulatory capability in IR rats, indicating that renal IR led to reversible impairment of afferent arteriolar autoregulatory capability. Intervention with antioxidant treatment following IR may improve outcomes in patients by preserving renovascular autoregulatory function and potentially preventing the progression to chronic kidney disease after acute kidney injury.
Collapse
Affiliation(s)
- Wenguang Feng
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Colton E Remedies
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ijeoma E Obi
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Stephen R Aldous
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Samia I Meera
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Paul W Sanders
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
- Department of Veterans Affairs Medical Center, Birmingham, Alabama
| | - Edward W Inscho
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Zhengrong Guan
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
5
|
Kovacevic S, Ivanov M, Miloradovic Z, Brkic P, Vajic UJ, Zivotic M, Mihailovic-Stanojevic N, Jovovic D, Karanovic D, Jeremic R, Nesovic-Ostojic J. Hyperbaric oxygen preconditioning and the role of NADPH oxidase inhibition in postischemic acute kidney injury induced in spontaneously hypertensive rats. PLoS One 2020; 15:e0226974. [PMID: 31914135 PMCID: PMC6948727 DOI: 10.1371/journal.pone.0226974] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Renal ischemia/reperfusion injury is a common cause of acute kidney injury (AKI) and hypertension might contribute to the increased incidence of AKI. The purpose of this study was to investigate the effects of single and combined hyperbaric oxygen (HBO) preconditioning and NADPH oxidase inhibition on oxidative stress, kidney function and structure in spontaneously hypertensive rats (SHR) after renal ischemia reperfusion injury. HBO preconditioning was performed by exposing to pure oxygen (2.026 bar) twice a day for two consecutive days for 60 minutes, and 24h before AKI induction. For AKI induction, the right kidney was removed and ischemia was performed by clamping the left renal artery for 45 minutes. NADPH oxidase inhibition was induced by apocynin (40 mg/kg b.m., intravenously) 5 minutes before reperfusion. AKI significantly increased renal vascular resistance and reduced renal blood flow, which were significantly improved after apocynin treatment. Also, HBO preconditioning, with or without apocynin treatment showed improvement on renal hemodynamics. AKI significantly increased plasma creatinine, urea, phosphate levels and lipid peroxidation in plasma. Remarkable improvement, with decrease in creatinine, urea and phosphate levels was observed in all treated groups. HBO preconditioning, solitary or with apocynin treatment decreased lipid peroxidation in plasma caused by AKI induction. Also, combined with apocynin, it increased catalase activity and solitary, glutathione reductase enzyme activity in erythrocytes. While AKI induction significantly increased plasma KIM– 1 levels, HBO preconditioning, solitary or with apocynin decreased its levels. Considering renal morphology, significant morphological alterations present after AKI induction were significantly improved in all treated groups with reduced tubular dilatation, tubular necrosis in the cortico-medullary zone and PAS positive cast formation. Our results reveal that NADPH oxidase inhibition and hyperbaric oxygen preconditioning, with or without NADPH oxidase inhibition may have beneficial effects, but their protective role should be evaluated in further studies.
Collapse
Affiliation(s)
- Sanjin Kovacevic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
- * E-mail: (SK); (JNO)
| | - Milan Ivanov
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Zoran Miloradovic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Predrag Brkic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Una Jovana Vajic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Maja Zivotic
- Department of Pathology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Nevena Mihailovic-Stanojevic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Djurdjica Jovovic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Danijela Karanovic
- Institute for Medical Research, Department of Cardiovascular Physiology, University of Belgrade, Belgrade, Serbia
| | - Rada Jeremic
- Department of Medical Physiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Jelena Nesovic-Ostojic
- Department of Pathophysiology, Medical Faculty, University of Belgrade, Belgrade, Serbia
- * E-mail: (SK); (JNO)
| |
Collapse
|
6
|
Yan Y, Lv X, Ma J, Hong G, Li S, Shen J, Chen H, Cao K, Chen S, Cheng T, Dong C, Han J, Ma H, Wu M, Wang X, Xing C, Zhu Y, Shen L, Wang Y, Tong F, Wang Z. Simvastatin Alleviates Intestinal Ischemia/Reperfusion Injury by Modulating Omi/HtrA2 Signaling Pathways. Transplant Proc 2019; 51:2798-2807. [PMID: 31351770 DOI: 10.1016/j.transproceed.2019.04.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE The objective of this research was to survey the therapeutic action of simvastatin (Sim) on intestinal ischemia/reperfusion injury (II/RI) by modulating Omi/HtrA2 signaling pathways. METHODS Sprague Dawley rats were pretreated with 40 mg/kg Sim and then subjected to 1 hour of ischemia and 3 hours of reperfusion. The blood and intestinal tissues were collected, pathologic injury was observed, the contents of serum tumor necrosis factor-α and interleukin-6 (IL-6) were estimated, and superoxide dismutase, methane dicarboxylic aldehyde, and cysteinyl aspartate specific proteinase-3 (caspase-3) levels, as well as the expressions of Omi/HtrA2 and caspase-3, were measured in the intestinal tissues. RESULTS Sim preconditioning mitigated the damnification of intestinal tissues by decreasing oxidative stress, inflammatory damage, and apoptosis and downregulating the expression of Omi/HtrA2 compared to the ischemia/reperfusion group, while Sim+Ucf-101 significantly augmented this effect. CONCLUSION These results suggest that Sim may alleviate intestinal ischemia/reperfusion injury by modulating Omi/HtrA2 signaling pathways.
Collapse
Affiliation(s)
- Ying Yan
- Department of Rehabilitation Medicine, Zhejiang Chinese Medical University, The Third Clinical Medicine, Hangzhou, Zhejiang, China
| | - Xiaoni Lv
- Department of Trauma Surgery, Army 952 Hospital of the Chinese People's Liberation Army, Geermu, Qinghai, China
| | - Jun Ma
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Ganji Hong
- Department of Neurology, The First Affiliated Hospital, Xiamen University, Xiamen, China
| | - Shikai Li
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Jiahao Shen
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Haotian Chen
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Kailei Cao
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Senjiang Chen
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Tao Cheng
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Chaojie Dong
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Jiahui Han
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Heng Ma
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Mingkang Wu
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Xin Wang
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Chenkai Xing
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Yutao Zhu
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Lanyu Shen
- Grade 2016, Clinical Medicine, Jiaxing University Medical College, Jiaxing, ZJ, PR China
| | - Yini Wang
- Department of Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China
| | - Fei Tong
- Department of Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, Fujian, China; Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, China.
| | - Zhongchao Wang
- Cardiovascular Medicine, Shanxi Cardiovascular Disease Hospital, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Wu X, Yan T, Wang Z, Wu X, Cao G, Zhang C, Tian X, Wang J. Micro-vesicles derived from human Wharton's Jelly mesenchymal stromal cells mitigate renal ischemia-reperfusion injury in rats after cardiac death renal transplantation. J Cell Biochem 2017; 119:1879-1888. [PMID: 28815768 DOI: 10.1002/jcb.26348] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/11/2017] [Indexed: 01/12/2023]
Abstract
The purpose of the present study was to investigate the possible therapeutic effects of the human Wharton-Jelly mesenchymal stromal cells derived micro-vesicles (hWJMSCs-MVs) on renal ischemia-reperfusion injury (IRI) after cardiac death (CD) renal transplantation in rats. MVs were injected intravenously in rats immediately after renal transplantation. The animals were sacrificed at 24 h, 48 h, 1 and 2 weeks post-transplantation. ELISA was used to determine the von Willebrand Factor (vWF), tumor necrosis factor (TNF)-α, and interleukin (IL)-10 levels in the serum. Tubular cell proliferation and apoptosis were identified by Ki67 immunostaining and TUNEL assay. Renal fibrosis was assessed by Masson's tri-chrome straining and alpha-smooth muscle actin (α-SMA) staining. The infiltration of inflammatory cells was detected by CD68+ staining. The transforming growth factor (TGF)-β, hepatocyte growth factor (HGF), and α-SMA expression in the kidney was measured by Western blot. After renal transplantation, the rats treated with hWJMSCs-MVs improved survival rate and renal function. Moreover, MVs mitigated renal cell apoptosis, enhanced proliferation, and alleviated inflammation at the first 48 h. In the late period, abrogation of renal fibrosis was observed in the MVs group. MVs also could decrease the number of CD68+ macrophages in the kidney. Furthermore, MVs decreased the protein expression levels of α-SMA and TGF-β1 and increased the protein expression level of HGF at any point (24 h, 48 h, 1 or 2 weeks). The administration of MVs immediately after renal transplantation could ameliorate IRI in both the acute and chronic stage.
Collapse
Affiliation(s)
- Xiaoqiang Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhiwei Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuan Wu
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Hu B, Wu Y, Tong F, Liu J, Shen X, Shen R, Xu G. Apocynin Alleviates Renal Ischemia/Reperfusion Injury Through Regulating the Level of Zinc and Metallothionen. Biol Trace Elem Res 2017; 178:71-78. [PMID: 27909865 DOI: 10.1007/s12011-016-0904-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 11/23/2016] [Indexed: 02/07/2023]
Abstract
The purpose of this research was to evaluate the protective effects of apocynin on renal ischemia/reperfusion (I/R) injury (RI/RI) in rats. Rats preconditioned with apocynin were subjected to renal I/R. Zinc levels in serum and renal tissues, blood urea nitrogen (BUN), and serum creatinine (Scr) were detected. We further measured the activity of superoxide dismutase (SOD); the content of malondialdehyde (MDA), IL-4, IL-6, IL-10, and TNF-α; and the expression of metallothionein (MT) in the renal tissues. Results indicated that the levels of MDA, IL-4, IL-6, IL-10, TNF-α, and MT in the kidney tissue and serum BUN and Scr levels in RI/RI group were significantly higher than those in sham-operated group, while the levels of serum Zn and kidney Zn and SOD were reduced in RI/RI group. Apocynin treatment further decreased the levels of MDA, IL-6, TNF-α, and serum BUN and Scr, whereas it significantly increased the levels of Zn, SOD, IL-4, IL-10, and MT in the kidney tissue and serum Zn. These findings suggest that apocynin might play a protective role against RI/RI in rats through regulating zinc level and MT expression involving in oxidative stress.
Collapse
Affiliation(s)
- Bo Hu
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Yuhong Wu
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Fei Tong
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Jie Liu
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Xiaohua Shen
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Ruilin Shen
- Department of Pathology and Nephrology, Jiaxing Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, 314001, Jiaxing, Zhejiang Province, People's Republic of China
| | - Guangtao Xu
- Department of Pathology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, 314001, Jiaxing, Zhejiang Province, People's Republic of China.
| |
Collapse
|
9
|
Tong F, Tang X, Luo L, Li X, Xia W, Lu C, Liu D. Sustained delivery of insulin-loaded block copolymers: Potential implications on renal ischemia/reperfusion injury in diabetes mellitus. Biomed Pharmacother 2017; 91:534-545. [PMID: 28482291 DOI: 10.1016/j.biopha.2017.04.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/23/2017] [Accepted: 04/27/2017] [Indexed: 10/24/2022] Open
Abstract
The purpose of this research was to evaluate the protective effects of insulin-loaded poly(ethylene glycol)-b-poly((2-aminoethyl-l-glutamate)-g-poly(l-lysine)) (PEG-b-P(ELG-g-PLL)) on renal ischemia/reperfusion (I/R) injury in rats with diabetes mellitus. Rats were preconditioned with free insulin or insulin/PEG-b-P(ELG-g-PLL) polyplexes, then subjected to renal I/R. The blood and kidneys were then harvested, Glucose uptake rate, glucose transporter 4 (GULT4) mRNA level, cell membrane GULT4 content and GULT4 expression were measured, the level of serum creatinine and blood urea nitrogen were determined, the activity of superoxide dismutase and inducible nitric oxide synthase, the content of malondialdehyde and nitric oxide, reactive oxygen species (ROS) production and nuclear factor κB (NF-κB) mRNA level, Bcl-2 assaciated x protein (Bax) mRNA and B cell lymphoma/lewkmia-2 (Bcl-2) mRNA level, and the expression of protein 47kDa phagocyte oxidase (p47phox) in renal tissues were measured. Insulin preconditioning improved the recovery of renal function, reduced oxidative stress injury, restored nitroso-redox balance and downregulated the expression of p47phox induced by renal I/R injury, while the application of block copolymer PEG-b-P(ELG-g-PLL) as an insulin nanocarrier significantly enhanced the protective effect of insulin. Block copolymer PEG-b-P(ELG-g-PLL) could be used as a potential nanocarrier for insulin with sustained release and enhanced bioavailability.
Collapse
Affiliation(s)
- Fei Tong
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China; Department of Pathology and Pathophysiology, Provincial Key Discipline of Pharmacology, Jiaxing University Medical College, Jiaxing, Zhejiang Province, PR China
| | - Xiangyuan Tang
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China
| | - Lei Luo
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China
| | - Xin Li
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China
| | - Wenquan Xia
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China
| | - Chao Lu
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China
| | - Daojun Liu
- Department of Pharmaceutical Chemistry, Medical College, Shantou University, 22 Xinling Road, Shantou 515041, PR China.
| |
Collapse
|
10
|
Abdelrahman RS. Protective effect of apocynin against gentamicin-induced nephrotoxicity in rats. Hum Exp Toxicol 2017; 37:27-37. [DOI: 10.1177/0960327116689716] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- RS Abdelrahman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
11
|
Tong F, Tang X, Li X, Xia W, Liu D. The effect of insulin-loaded linear poly(ethylene glycol)-brush-like poly(l-lysine) block copolymer on renal ischemia/reperfusion-induced lung injury through downregulating hypoxia-inducible factor. Int J Nanomedicine 2016; 11:1717-30. [PMID: 27175073 PMCID: PMC4854262 DOI: 10.2147/ijn.s99890] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to observe the therapeutic effect of insulin-loaded linear poly(ethylene glycol)-brush-like poly(l-lysine) block copolymer poly(ethylene glycol)-b-(poly(ethylenediamine l-glutamate)-g-poly(l-lysine)) (PEG-b-(PELG-g-PLL) on renal ischemia/reperfusion-induced lung injury through downregulating hypoxia-inducible factor (HIF) as compared to free insulin. Sprague Dawley rats were pretreated with 30 U/kg insulin or insulin/PEG-b-(PELG-g-PLL) complex, and then subjected to 45 minutes of ischemia and 24 hours of reperfusion. The blood and lungs were collected, the level of serum creatinine and blood urea nitrogen were measured, and the dry/wet lung ratios, the activity of superoxide dismutase and myeloperoxidase, the content of methane dicarboxylic aldehyde and tumor necrosis factor-α, and the expression of HIF-1α and vascular endothelial growth factor (VEGF) were measured in pulmonary tissues. Both insulin and insulin/PEG-b-(PELG-g-PLL) preconditioning improved the recovery of renal function, reduced pulmonary oxidative stress injury, restrained inflammatory damage, and downregulated the expression of HIF-1α and VEGF as compared to ischemia/reperfusion group, while insulin/PEG-b-(PELG-g-PLL) significantly improved this effect.
Collapse
Affiliation(s)
- Fei Tong
- Department of Chemistry, Medical College, Shantou University, Shantou, People's Republic of China
| | - Xiangyuan Tang
- Department of Chemistry, Medical College, Shantou University, Shantou, People's Republic of China
| | - Xin Li
- Department of Chemistry, Medical College, Shantou University, Shantou, People's Republic of China
| | - Wenquan Xia
- Department of Chemistry, Medical College, Shantou University, Shantou, People's Republic of China
| | - Daojun Liu
- Department of Chemistry, Medical College, Shantou University, Shantou, People's Republic of China
| |
Collapse
|
12
|
Wang Y, Tong K. Glycogen synthase kinase-3β inhibitor ameliorates imbalance of connexin 43 in an acute kidney injury model. Toxicol Rep 2015; 2:1391-1395. [PMID: 28962480 PMCID: PMC5598357 DOI: 10.1016/j.toxrep.2015.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/10/2015] [Accepted: 10/11/2015] [Indexed: 01/14/2023] Open
Abstract
This study was designed to evaluate whether glycogen synthase kinase-3β (GSK-3β) inhibitor, 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) induced the the expression of connexin 43 (Cx43) to protect against renal ischemia–reperfusion (I/R) injury (RI/RI) in rats. Rats were subjected to 45 min ischemia followed 2 h reperfusion with TDZD-8 (1 mg/kg) for 5 min prior to reperfusion. The results indicated that TDZD-8 improved the recovery of renal function, reduced oxidative stress and inflammation injury, and upregulated the expression of (Cx43) as compared to I/R group. Therefore, our study demonstrated that TDZD-8 provided a protection to the kidney against I/R injury in rats through inducing the expression of (Cx43).
Collapse
Affiliation(s)
- Yini Wang
- Department of Nursing, Medical College, Shantou University, 26 Xinling Road, Shantou 515041, PR China.,Southwest University of Science and Technology, College of Life Science and Engineering, Mianyang, Sichuan 621010, PR China
| | - Ke Tong
- Department of Nursing, Medical College, Shantou University, 26 Xinling Road, Shantou 515041, PR China.,Southwest University of Science and Technology, College of Life Science and Engineering, Mianyang, Sichuan 621010, PR China
| |
Collapse
|