1
|
Chen Q, Kao X, Gao Y, Chen J, Dong Z, Chen C. Increase in NO causes osteoarthritis and chondrocyte apoptosis and chondrocyte ERK plays a protective role in the process. Mol Biol Rep 2021; 48:7303-7312. [PMID: 34626310 DOI: 10.1007/s11033-021-06731-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/29/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Nitric oxide (NO) and reactive oxygen species (ROS) play an important role in the pathology of human osteoarthritis (OA). Ankylosing spondylitis (AS) and atypical OA have similar clinical manifestations and often require differential diagnosis. The mechanism is however not totally clear yet. This study aims to investigate the effects of excessive NO-ROS in OA patients and the effects of extracellular signal-regulated kinases (ERK) pathway in NO-induced apoptosis of chondrocytes during OA progress. METHODS AND RESULTS Serum samples from OA or AS as pathological control patients and healthy controls were collected for NO and related chemical measurements. The rabbit articular chondrocytes were cultured in vitro, and NO was applied by Sodium Nitroprusside (SNP) in culture medium to mimic OA condition in patients. The level of SNP-evoked chondrocyte apoptosis with or without PD98059 (ERK-specific inhibitor) was evaluated by TUNEL assay, Annexin V flow cytometry and Western blotting. The activity and mRNA expression of caspase-3 in chondrocytes were measured by assay kits and RT-PCR. The levels of NO and malondialdehyde (MDA) in serum were significantly higher in OA patients, while only MDA was significantly higher in AS patients. However, the level of superoxide dismutase (SOD) was lower in both OA and AS patients. SNP induced chondrocyte apoptosis was enhanced by PD98059 with increased protein expression and functional activity of caspase-3. CONCLUSIONS The increase in nitric oxide occurs specifically in OA patients. ERK pathway may play a protective role on the NO-induced chondrocyte apoptosis, and inhibition of ERK pathway enhances the NO-induced apoptosis.
Collapse
Affiliation(s)
- Qun Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China.
| | - Xibin Kao
- Institute for Hygiene of Ordnance Industry, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Yan Gao
- Institute of Health Supervision, Beilin District, Xi'an, 710003, Shaanxi, People's Republic of China
| | - Jinghong Chen
- Institute of Endemic Diseases, Key Laboratory of Trace Elements and Endemic Diseases, National Health Commission of the People's Republic of China, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Zhaoheng Dong
- Shandong Shenghua Electronic New Materials Co., Ltd, Yantai, Shandong, China
| | - Chen Chen
- Endocrinology, Faculty of Medicine, School of Biomedical Sciences,, University of Queensland, Brisbane, Australia
| |
Collapse
|
2
|
Ogi K, Liu S, Ramezanpour M, Cooksley C, Javadiyan S, Fujieda S, Wormald PJ, Vreugde S, Psaltis AJ. Trimellitic anhydride facilitates transepithelial permeability disrupting tight junctions in sinonasal epithelial cells. Toxicol Lett 2021; 353:27-33. [PMID: 34627954 DOI: 10.1016/j.toxlet.2021.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/27/2022]
Abstract
Trimellitic anhydride (TMA) is a chemical agent classified as a low molecular weight (LMW) agent causing occupational rhinitis (OR) or asthma. Although TMA is recognized as a respiratory sensitizer, the direct and non-immunologic effects of TMA remain unclear. Air- liquid interface (ALI) cultured human nasal epithelial cells (HNECs) derived from control subjects were treated with TMA, followed by measurement of the transepithelial electrical resistance (TEER), paracellular permeability of fluorescein isothiocyanate (FITC)-dextran and immunofluorescence of tight junction proteins claudin-1 and zonula occludens-1 (ZO-1). The cytotoxicity of TMA was evaluated by lactate dehydrogenase (LDH) assay. TMA at concentrations of 2 and 4 mg/mL significantly reduced the TEER within 10 min (p = 0.0177 on 2 mg/mL; p < 0.0001 on 4 mg/mL). The paracellular permeability of FITC-dextran was significantly increased upon challenge with 4 mg/mL TMA for 3 h (p = 0.0088) and 6 h (p = 0.0004). TMA treatment induced a reduction in the fluorescence intensity of claudin-1 and ZO-1 in a dose-dependent manner. LDH assay revealed 4 mg/mL TMA induced cytotoxicity only after 6 h incubation, while 1 or 2 mg/mL TMA caused no cytotoxicity. Our results suggest that TMA has a potential to penetrate the epithelial barrier by disrupting claudin-1 and ZO-1, indicating an important role for sensitization and OR development.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia; Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sha Liu
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Clare Cooksley
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Shari Javadiyan
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology-Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia
| | - Alkis James Psaltis
- Department of Surgery-Otolaryngology, Head and Neck Surgery, University of Adelaide, Adelaide, South Australia, Australia; Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, The Queen Elizabeth Hospital, Woodville South, South Australia, Australia.
| |
Collapse
|
3
|
Ogi K, Takabayashi T, Tomita K, Sakashita M, Morikawa T, Ninomiya T, Okamoto M, Narita N, Fujieda S. ORMDL3 overexpression facilitates FcεRI-mediated transcription of proinflammatory cytokines and thapsigargin-mediated PERK phosphorylation in RBL-2H3 cells. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:1394-1405. [PMID: 34288557 PMCID: PMC8589398 DOI: 10.1002/iid3.489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022]
Abstract
Introduction The chromosomal region 17q21 harbors the human orosomucoid‐like 3 (ORMDL3) gene and has been linked to asthma and other inflammatory diseases. ORMDL3 is involved in the unfolded protein response (UPR), lipid metabolism, and inflammatory reactions. We investigated the effects of ORMDL3 overexpression in RBL‐2H3 cells to determine the contribution of ORMDL3 to inflammatory disease development. Methods We generated ORMDL3 stably overexpressing RBL‐2H3 cells to assess degranulation, transcriptional upregulation of interleukin‐4 (IL‐4), tumor necrosis factor‐α (TNF‐α), monocyte chemoattractant protein‐1 (MCP‐1), and mitogen‐activated protein kinase (MAPK) phosphorylation via FcεRI. In addition, we examined the effects of ORMDL3 overexpression on thapsigargin (TG)‐mediated proinflammatory cytokine transcription and UPR by monitoring MAPK, protein kinase‐like endoplasmic reticulum kinase (PERK), and inositol‐requiring enzyme 1 (IRE1) phosphorylation. Results Overexpression of ORMDL3 enhanced IL‐4, TNF‐α, and MCP‐1 expression after FcεRI cross‐linking, whereas the sphingosine‐1‐phosphate (S1P) agonist FTY720 suppressed this enhancement. There was no significant difference in degranulation and MAPK phosphorylation via FcεRI‐mediated activation between vector‐transfected and ORMDL3‐overexpressing cells. ORMDL3 overexpression accelerated TG‐mediated PERK phosphorylation, while MAPK phosphorylation and proinflammatory cytokine expression showed no significant changes in ORMDL3‐overexpressing cells. Conclusions Our findings suggest that ORMDL3 plays an important role in regulating proinflammatory cytokine expression via the S1P pathway and selectively affects the UPR pathway in mast cells.
Collapse
Affiliation(s)
- Kazuhiro Ogi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kaori Tomita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Taiyo Morikawa
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Ninomiya
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Masayuki Okamoto
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Norihiko Narita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
4
|
Yoshida K, Takabayashi T, Imoto Y, Sakashita M, Kato Y, Narita N, Fujieda S. Increased Thrombin-Activatable Fibrinolysis Inhibitor in Response to Sublingual Immunotherapy for Allergic Rhinitis. Laryngoscope 2021; 131:2413-2420. [PMID: 33844301 DOI: 10.1002/lary.29563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES/HYPOTHESIS The objective of this study was to determine the role of thrombin-activatable fibrinolysis inhibitor (TAFI) as a candidate biomarker for therapeutic efficacy of sublingual immunotherapy (SLIT) and to identify the role of TAFI in the pathogenesis of allergic rhinitis (AR). STUDY DESIGN Retrospective cohort study and laboratory study. METHODS Serum was collected from patients with allergies to Japanese cedar pollen before, during, and after treatment with SLIT. We measured the levels of immunoreactive TAFI, C3a, and C5a in serum by enzyme-linked immunosorbent assay (ELISA) and assessed their relative impact on a combined symptom-medication score. We also examined the impact of TAFI on mast cells and fibroblasts in experiments performed in vitro. RESULTS Serum levels of TAFI increased significantly in response to SLIT. By contrast, serum C3a levels decreased significantly over time; we observed a significant negative correlation between serum levels of TAFI versus C3a and symptom-medication score. Mast cell degranulation was inhibited in response to TAFI, as it was the expression of both CCL11 and CCL5 in cultured fibroblasts. CONCLUSIONS High serum levels of TAFI may be induced by SLIT. TAFI may play a critical protective role in pathogenesis of AR by inactivating C3a and by inhibiting mast cell degranulation and chemokines expression in fibroblasts. LEVEL OF EVIDENCE 4 Laryngoscope, 2021.
Collapse
Affiliation(s)
- Kanako Yoshida
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Tetsuji Takabayashi
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Yoshimasa Imoto
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Masafumi Sakashita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Yukinori Kato
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Norihiko Narita
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| | - Shigeharu Fujieda
- Division of Otorhinolaryngology Head and Neck Surgery, Department of Sensory and Locomotor Medicine, University of Fukui, Yoshida, Fukui, Japan
| |
Collapse
|
5
|
Lorz LR, Kim D, Kim MY, Cho JY. Panax ginseng-derived fraction BIOGF1K reduces atopic dermatitis responses via suppression of mitogen-activated protein kinase signaling pathway. J Ginseng Res 2019; 44:453-460. [PMID: 32372867 PMCID: PMC7195595 DOI: 10.1016/j.jgr.2019.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/12/2019] [Accepted: 02/18/2019] [Indexed: 11/25/2022] Open
Abstract
Background BIOGF1K, a fraction of Panax ginseng, has desirable antimelanogenic, anti-inflammatory, and antiphotoaging properties that could be useful for treating skin conditions. Because its potential positive effects on allergic reactions in skin have not yet been described in detail, this study's main objective was to determine its efficacy in the treatment of atopic dermatitis (AD). Methods High-performance liquid chromatography was used to verify the compounds in BIOGF1K, and we used the (3-4-5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide method to determine its cytotoxicity in RBL-2H3 and HMC-1 cell lines. RBL-2H3 cells were induced using both anti–DNP-IgE/DNP-BSA and calcium ionophore (A2187) treatments, whereas HMC-1 cells were induced using A2187 alone. To measure mast cell degranulation, we performed histamine (enzyme-linked immunosorbent assay) and β-hexosaminidase assays. To quantify interleukin (IL)-4, IL-5, and IL-13 levels in RBL-2H3 cells, we performed quantitative polymerase chain reaction (PCR); to quantify expression levels of IL-4 and IL-13 in HMC-1 cells, we used semiquantitative reverse transcription polymerase chain reaction (RT-PCR). Finally, we detected the total and phosphorylated forms of extracellular signal-regulated kinase, p-38, and c-Jun N-terminal kinase proteins by immunoblotting. Results BIOGF1K decreased the AD response by reducing both histamine and β-hexosaminidase release as well as reducing the secretion levels of IL-4, IL-5, and IL-13 in RBL-2H3 cells and IL-4 and IL-13 in HMC-1 cells. In addition, BIOGF1K decreased MAPK pathway activation in RBL-2H3 and HMC-1 cells. Conclusions BIOGF1K attenuated the AD response, hence supporting its use as a promising and natural approach for treating AD.
Collapse
Affiliation(s)
- Laura Rojas Lorz
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Republic of Korea
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|