1
|
da SilvaTiago AC, Fonseca SMD, Padilha da Silveira E, Santos VC, Campos FMS, Carvalho de Lima D, Obara MK, Ribeiro RM, Rodrigues JCM, Reis MVC, Hamoy MKO, Castro JP, Gomes Leal W, Favacho Lopes DC, Hamoy M. Exposure to Nicotine and Withdrawal in Wistar Rats: An Electrophysiological Study. Nicotine Tob Res 2025; 27:1025-1034. [PMID: 39394893 DOI: 10.1093/ntr/ntae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 09/16/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Throughout the world, smoking is one of the principal causes of preventable death. Nicotine, the primary active component of tobacco, acts as a psychostimulant, and modulates the electrical activity of a number of the areas of the brain involved in addiction. Abstinence from nicotine will also impact the functional state of the brain, which is reflected in symptoms of craving and susceptibility to relapse. In addition, given the increase in the sympathetic tone of the heart and pulse rate promoted by nicotine, its consumption can contribute to tachyarrhythmia. METHODS The present study investigated the electroencephalographic (EEG) and electrocardiographic (ECG) patterns of Wistar rats submitted to acute or chronic exposure to nicotine, followed by withdrawal for 24 or 48 h, and the re-administration (or not) of nicotine, to simulate episodes of relapse. RESULTS The EEG data revealed an increase in all types of brainwaves, with emphasis on high-frequency (alpha, beta, and gamma) brain oscillations following both acute and chronic exposure to nicotine (14 days), whereas in withdrawal, there was a predominancy of delta waves. When exposure to nicotine was reinstated after withdrawal, the observed EEG profile was similar to that found in chronic exposure. The electrocardiogram reads showed that both acute and chronic exposure to nicotine caused abnormalities in the atrioventricular conduction and that, while these changes improve with substance withdrawal, relapse can worsen these parameters. CONCLUSIONS The results of this study indicate that high-frequency brainwaves are correlated with nicotine dependence, while slow brain oscillations are consistent with drug craving, and episodes of nicotine relapse can reproduce brain activity patterns linked to dependence. Finally, exposure to nicotine predisposes the individual to heart rhythm abnormalities, which are attenuated by withdrawal, but may nevertheless be restored rapidly with re-exposure to the substance. IMPLICATIONS This study demonstrated that nicotine increases high-frequency brain oscillations, which is associated with addiction, whereas withdrawal elevates the delta wave power, suggesting craving. Re-exposure to nicotine following withdrawal restores rapidly the EEG profile of chronic dependence. In addition, nicotine has deleterious impacts on cardiac activity, which are linked to fatal arrhythmias. This implies that stopping smoking is beneficial for the amelioration of the alterations in heart rhythm caused by nicotine addiction. This study elucidates the functional states of the brain and heart during both sporadic and chronic nicotine use, and the electrophysiological explanation for substance dependence and drug relapse after craving episodes.
Collapse
Affiliation(s)
- Allan Carlos da SilvaTiago
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Suzane Maia da Fonseca
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Esther Padilha da Silveira
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Vitoria Corrêa Santos
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Fernanda Myllena Sousa Campos
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Danielma Carvalho de Lima
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Mariana Kondo Obara
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Rafaella Marques Ribeiro
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - João Cleiton Martins Rodrigues
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Marcos Vinícius Cardoso Reis
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Maria Klara Otake Hamoy
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Josuelem Portela Castro
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Walace Gomes Leal
- Laboratory of Experimental Neuroprotection and Neurodegeneration, Morphophysiology Unit, Tapajós Campus, Federal University of Western Pará, Santarém, Pará, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Moisés Hamoy
- Laboratory of the Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| |
Collapse
|
2
|
Freitas L, Amaral A, Conceição R, Barbosa G, Hamoy MK, Barbosa A, Paz C, Santos M, Hamoy A, Paz A, Favacho-Lopes D, Mello V, Hamoy M. Potentiation of the depressant effect of alcohol by flunitrazepam in rats: an electrocorticographic, respiratory and electrocardiographic study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7599-7613. [PMID: 38676788 DOI: 10.1007/s00210-024-03111-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024]
Abstract
Alcohol, a widely commercialized psychotropic drug, and the benzodiazepine Flunitrazepam, an anxiolytic widely prescribed for patients with anxiety and insomnia problems, are well known drugs and both act on the central nervous system. The misuse and the association of these two drugs are public health concerns in several countries and could cause momentary, long-lasting and even lethal neurophysiological problems due to the potentiation of their adverse effects in synergy. The present study observed the result of the association of these drugs on electrophysiological responses in the brain, heart, and respiratory rate in Wistar rats. 8 experimental groups were determined: control, one alcohol group (20% at a dose of 1 ml/100 g VO), three Flunitrazepam groups (doses 0.1; 0.2 and 0.3 mg/kg) and three alcohol-Flunitrazepam groups (20% at a dose of 1 ml/100 g VO of alcohol, combined with 0.1; 0.2 and 0.3 mg/kg of Flunitrazepam, respectively). The results showed that there was a more pronounced reduction in alpha and theta wave power in the alcohol-Flunitrazepam groups, a decrease in the power of beta oscillations and greater sedation. There was a progressive decrease in respiratory rate linked to the increase of Flunitrazepam dose in the alcohol-Flunitrazepam associated administration. It was observed alteration in heart rate and Q-T interval in high doses of Flunitrazepam. Therefore, we conclude that the association alcohol-Flunitrazepam presented deepening of depressant synergistic effects according to the increase in the dose of the benzodiazepine, and this could cause alterations in low frequency brain oscillations, breathing, and hemodynamics of the patient.
Collapse
Affiliation(s)
- Luiz Freitas
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil.
| | - Anthony Amaral
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Raína Conceição
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Gabriela Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Maria Klara Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Anara Barbosa
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Clarissa Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Murilo Santos
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Akira Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Allane Paz
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Dielly Favacho-Lopes
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Vanessa Mello
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Biological Science Institute, Federal University of Pará, Belém, Brazil
| |
Collapse
|
3
|
Waris A, Ullah A, Asim M, Ullah R, Rajdoula MR, Bello ST, Alhumaydhi FA. Phytotherapeutic options for the treatment of epilepsy: pharmacology, targets, and mechanism of action. Front Pharmacol 2024; 15:1403232. [PMID: 38855752 PMCID: PMC11160429 DOI: 10.3389/fphar.2024.1403232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Epilepsy is one of the most common, severe, chronic, potentially life-shortening neurological disorders, characterized by a persisting predisposition to generate seizures. It affects more than 60 million individuals globally, which is one of the major burdens in seizure-related mortality, comorbidities, disabilities, and cost. Different treatment options have been used for the management of epilepsy. More than 30 drugs have been approved by the US FDA against epilepsy. However, one-quarter of epileptic individuals still show resistance to the current medications. About 90% of individuals in low and middle-income countries do not have access to the current medication. In these countries, plant extracts have been used to treat various diseases, including epilepsy. These medicinal plants have high therapeutic value and contain valuable phytochemicals with diverse biomedical applications. Epilepsy is a multifactorial disease, and therefore, multitarget approaches such as plant extracts or extracted phytochemicals are needed, which can target multiple pathways. Numerous plant extracts and phytochemicals have been shown to treat epilepsy in various animal models by targeting various receptors, enzymes, and metabolic pathways. These extracts and phytochemicals could be used for the treatment of epilepsy in humans in the future; however, further research is needed to study the exact mechanism of action, toxicity, and dosage to reduce their side effects. In this narrative review, we comprehensively summarized the extracts of various plant species and purified phytochemicals isolated from plants, their targets and mechanism of action, and dosage used in various animal models against epilepsy.
Collapse
Affiliation(s)
- Abdul Waris
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ata Ullah
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Muhammad Asim
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Rafi Ullah
- Department of Botany, Bacha Khan University Charsadda, Charsadda, Pakistan
| | - Md. Rafe Rajdoula
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Stephen Temitayo Bello
- Department of Neurosciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Centre for Regenerative Medicine and Health (CRMH), Hong Kong, Hong Kong SAR, China
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Laurindo LF, Barbalho SM, Araújo AC, Guiguer EL, Mondal A, Bachtel G, Bishayee A. Açaí ( Euterpe oleracea Mart.) in Health and Disease: A Critical Review. Nutrients 2023; 15:989. [PMID: 36839349 PMCID: PMC9965320 DOI: 10.3390/nu15040989] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The açaí palm (Euterpe oleracea Mart.), a species belonging to the Arecaceae family, has been cultivated for thousands of years in tropical Central and South America as a multipurpose dietary plant. The recent introduction of açaí fruit and its nutritional and healing qualities to regions outside its origin has rapidly expanded global demand for açaí berry. The health-promoting and disease-preventing properties of this plant are attributed to numerous bioactive phenolic compounds present in the leaf, pulp, fruit, skin, and seeds. The purpose of this review is to present an up-to-date, comprehensive, and critical evaluation of the health benefits of açaí and its phytochemicals with a special focus on cellular and molecular mechanisms of action. In vitro and in vivo studies showed that açaí possesses antioxidant and anti-inflammatory properties and exerts cardioprotective, gastroprotective, hepatoprotective, neuroprotective, renoprotective, antilipidemic, antidiabetic, and antineoplastic activities. Moreover, clinical trials have suggested that açaí can protect against metabolic stress induced by oxidation, inflammation, vascular abnormalities, and physical exertion. Due to its medicinal properties and the absence of undesirable effects, açaí shows a promising future in health promotion and disease prevention, in addition to a vast economic potential in the food and cosmetic industries.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília, Marília 17519-030, SP, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
| | - Elen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília, Marília 17525-902, SP, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília, Marília 17525-902, SP, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília, Marília 17500-000, SP, Brazil
| | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Gabrielle Bachtel
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
5
|
Muto NA, Hamoy M, da Silva Ferreira CB, Hamoy AO, Lucas DCR, de Mello VJ, Rogez H. Extract of Euterpe oleracea Martius Stone Presents Anticonvulsive Activity via the GABAA Receptor. Front Cell Neurosci 2022; 16:872743. [PMID: 35634465 PMCID: PMC9130464 DOI: 10.3389/fncel.2022.872743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is one of the most common neurological diseases globally, resulting from a disorder in brain activity. This condition can be triggered by birth trauma, traumatic brain injury (TBI), infections of the brain and stroke. More than 70 million people suffer seizures caused by neurological abnormalities. Approximately 80% of all epileptic patients reside in low-income conditions or in developing countries, and over 75% of patients do not receive proper treatment. Our previous study found an anticonvulsant property of an extract of Euterpe oleracea stone (EEOS) that caused myorelaxation, sedation, and cardiac and respiratory depression after intraperitoneal administration. The present study investigated through electroencephalographic (EEG) profiling the anticonvulsant protective properties of EEOS in induced convulsing rats. Male Wistar rats were treated with EEOS (300 mg/kg), diazepam (DZP) (5 mg/kg), pentylenetetrazol (PTZ) (60 mg/kg) and flumazenil (FMZ) (0.1 mg/kg) by intraperitoneal (i.p.). Electrodes implanted on the dura mater provided EEG data in which EEOS suppressed seizure deflagration caused by PTZ. In addition, EEOS presented no significant difference in comparison to DZP, which has the same mechanism of action. After FMZ injection, a GABAA receptor antagonist blocked the anticonvulsive effect in both the DZP and EEOS groups, suggesting that EEOS exerts it action on the GABAA receptor at the benzodiazepine (BDZ) subunit.
Collapse
Affiliation(s)
- Nilton Akio Muto
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | - Chryslen Brenda da Silva Ferreira
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | - Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | | | - Vanessa Jóia de Mello
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences of Federal University of Pará (ICB-UFPA), Belém, Brazil
| | - Hervé Rogez
- Centre for Valorization of Amazonian Bioactive Compounds (CVACBA), Federal University of Pará (UFPA), Belém, Brazil
- *Correspondence: Hervé Rogez,
| |
Collapse
|
6
|
Lima GO, Menezes da Silva AL, Azevedo JEC, Nascimento CP, Vieira LR, Hamoy AO, Oliveira Ferreira L, Bahia VRLO, Muto NA, Lopes DCF, Hamoy M. 100 YEARS OF VITAMIN D: Supraphysiological doses of vitamin D changes brainwave activity patterns in rats. Endocr Connect 2022; 11:EC-21-0457.R2. [PMID: 35148281 PMCID: PMC8942315 DOI: 10.1530/ec-21-0457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/08/2022]
Abstract
Low plasma levels of vitamin D causes bone mineral change that can precipitate osteopenia and osteoporosis and could aggravate autoimmune diseases, hypertension and diabetes. The demand for vitamin D supplementation becomes necessary; however, the consumption of vitamin D is not without risks, which its toxicity could have potentially serious consequences related to hypervitaminosis D, such as hypercalcemia and cerebral alterations. Thus, the present study describes the electroencephalographic changes caused by supraphysiological doses of vitamin D in the brain electrical dynamics and the electrocardiographic changes. After 4 days of treatment with vitamin D at a dose of 25,000 IU/kg, the serum calcium levels found were increased in comparison with the control group. The electrocorticogram analysis found a reduction in wave activity in the delta, theta, alpha and beta frequency bands. For ECG was observed changes with shortened QT follow-up, which could be related to serum calcium concentration. This study presented important evidence about the cerebral and cardiac alterations caused by high doses of vitamin D, indicating valuable parameters in the screening and decision-making process for diagnosing patients with symptoms suggestive of intoxication.
Collapse
Affiliation(s)
- Gabriella Oliveira Lima
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Alex Luiz Menezes da Silva
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Julianne Elba Cunha Azevedo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Chirlene Pinheiro Nascimento
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luana Rodrigues Vieira
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Luan Oliveira Ferreira
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | | | - Nilton Akio Muto
- Amazon Bioactive Compounds Valorization Center, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
- Correspondence should be addressed to D C F Lopes or M Hamoy: or
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, Belém, Pará, Brazil
- Correspondence should be addressed to D C F Lopes or M Hamoy: or
| |
Collapse
|