1
|
Qin B, Yu K, Fu Y, Zhou Y, Wu Y, Zhang W, Chen X. Responses in reef-building corals to wildfire emissions: Heterotrophic plasticity and calcification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171271. [PMID: 38428592 DOI: 10.1016/j.scitotenv.2024.171271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/23/2024] [Indexed: 03/03/2024]
Abstract
Extreme wildfire events are on the rise globally, and although substantial wildfire emissions may find their way into the ocean, their impact on coral reefs remains uncertain. In a five-week laboratory experiment, we observed a significant reduction in photosynthesis in coral symbionts (Porites lutea) when exposed to fine particulate matter (PM2.5) from wildfires. At low PM2.5 level (2 mg L-1), the changes in δ13C and δ15N values in the host and symbiotic algae suggest reduced autotrophy and the utilization of wildfire particulates as a source of heterotrophic nutrients. This adaptive strategy, characterized by an increase in heterotrophy, sustained some aspects of coral growth (total biomass, proteins and lipids) under wildfire stress. Nevertheless, at high PM2.5 level (5 mg L-1), both autotrophy and heterotrophy significantly decreased, resulting in an imbalanced coral-algal nutritional relationship. These changes were related to light attenuation in seawater and particulate accumulation on the coral surface during PM2.5 deposition, ultimately rendering the coral growth unsustainable. Further, the calcification rates decreased by 1.5 to 1.85 times under both low and high levels of PM2.5, primarily affected by photosynthetic autotrophy rather than heterotrophy. Our study highlights a constrained heterotrophic plasticity of corals under wildfire stress. This limitation may restrict wildfire emissions as an alternative nutrient source to support coral growth and calcification, especially when oceanic food availability or autotrophy declines, as seen during bleaching induced by the warming ocean.
Collapse
Affiliation(s)
- Bo Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| | - Yichen Fu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yu Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yanliu Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Wenqian Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xiaoyan Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning 530004, China.
| |
Collapse
|
2
|
Neckel A, Osorio-Martinez J, Pinto D, Bodah BW, Adelodun B, Silva LFO. Hazardous elements present in coal nanoparticles in a Caribbean port region in Colombia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156363. [PMID: 35654187 DOI: 10.1016/j.scitotenv.2022.156363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Scientific works examining coal-derived nanoparticles (NPs) containing potentially toxic elements (PTEs) confined in marine suspended sediments (MSSs) in port regions worldwide is an understudied topic, despite the fact that coal NPs have tremendous negative impacts on marine estuaries. The general objective of this study is to analyze the NP levels of coal, including PTEs, contained within MSSs in the general vicinity of the largest Caribbean port in Colombia. The morphology, size, chemical composition, and agglomeration states of NPs within MSSs of the sampled beaches were calculated through modern electron microscopy. The methodology used to detect chemical elements, unfortunately with EDS, it is not possible to precisely specify the chemical elements of low atomic weight (e.g. H, O, F, etc.) Therefore, with the EDS available today, it is only possible to have an idea of the chemical composition of each detected particle. Thus, it was possible to obtain the average frequency of the chemical elements identified in the 23 analyzed sampling points. Through the results, more than one thousand particles were detected in the most abundant phases, thus, the most frequent particles in the results of this manuscript were described. Sample point 8, located closest to the coal export port, had a higher concentration of nano-toxic elements (Al, Fe, Si, K, Mg, K) most concerning for human health in addition to being harmful to marine life. This study suggests that public policies dealing with MSS pollution need to be discussed by public managers to avoid further and sustained environmental degradation. The need to create projects will subsidize legacy liabilities generated by coal in seaports in other regions of the world.
Collapse
Affiliation(s)
- Alcindo Neckel
- Faculdade Meridional, IMED, 304, Passo Fundo, RS 99070-220, Brazil.
| | - Jorge Osorio-Martinez
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia; Chemical Engineering Department, Federal University of Santa Maria UFSM, 1000, Roraima Avenue, 97105-900 Santa Maria, RS, Brazil
| | - Diana Pinto
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Brian W Bodah
- Faculdade Meridional, IMED, 304, Passo Fundo, RS 99070-220, Brazil; Yakima Valley College, Workforce Education & Applied Baccalaureate Programs, South16th Avenue & Nob Hill Boulevard, Yakima, WA 98902, USA; Thaines and Bodah Center for Education and Development, 840 South Meadowlark Lane, Othello, WA 99344, USA
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin 240103, Nigeria; Department of Agricultural Civil Engineering, Kyungpook National University, Daegu 41566, South Korea
| | - Luis F O Silva
- Department of Civil and Environmental Engineering, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia.
| |
Collapse
|
3
|
Mičušík M, Kleinová A, Oros M, Šimon P, Dubaj T, Procházka M, Omastová M. Plastic ingestion by the Wels catfish ( Silurus glanis L.): detailed chemical analysis and degradation state evaluation. Toxicol Rep 2021; 8:1869-1876. [PMID: 34849352 PMCID: PMC8609109 DOI: 10.1016/j.toxrep.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/27/2022] Open
Abstract
Plastic ingestion by various organisms within different trophic levels, including humans, is becoming a serious problem worldwide. Plastic waste samples are often found concentrated in an organism's digestive tract and can be degraded and further translocate to the surrounding tissue or circulatory systems and accumulate in food chains. In the present work, we report a detailed chemical analysis and degradation state evaluation of a relatively large piece of plastic waste found in the gastrointestinal tract of a Wels catfish (Silurus glanis L.) caught in the Bodrog River (Danube River basin), eastern Slovakia. Chemical analysis by surface-sensitive X-ray photoelectron spectroscopy (XPS) was performed to identify the surface composition of the digested plastic piece. Micro-Fourier transform infrared (μFTIR) spectroscopy showed that the plastic waste was oxidized low-density polyethylene (LDPE), with some nylon fibers adhered on the surface. Glyceraldehyde adhered onto LDPE was also detected, which might come from the carbohydrate metabolism of that fish. A morphology study by digital optical microscopy indicated solid inorganic particles attached to the surface of LDPE. A degradation study by differential scanning calorimetry (DSC) showed considerable oxidation of LDPE, leading to fragmentation and disintegration of the plastic waste material.
Collapse
Affiliation(s)
- Matej Mičušík
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Angela Kleinová
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Mikuláš Oros
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovakia
| | - Peter Šimon
- Department of Physical Chemistry, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Tibor Dubaj
- Department of Physical Chemistry, Slovak Technical University, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Michal Procházka
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| | - Mária Omastová
- Polymer Institute, Slovak Academy of Sciences, 845 41 Bratislava, Slovakia
| |
Collapse
|