1
|
Gore A, Efrati R, Atanelov S, Glick P, Cohen M, Gutman H, Gez R, Horwitz V. Use of a transgenic mouse model for in vivo monitoring of corneal pathologies following Sulfur Mustard Exposure. Ocul Surf 2025; 37:247-259. [PMID: 40287061 DOI: 10.1016/j.jtos.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/06/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
PURPOSE The dynamic course of sulfur mustard (SM)-induced ocular insult involves an acute phase, which may progress to a chronic phase or a quiescent period, followed by late pathology. Visualizing pathological corneal changes in vivo could enhance understanding of this process and aid treatment development. METHODS SM burn was induced in the right eyes of three transgenic mouse strains-expressing RFP under the VE-Cadherin promoter (blood vessels and hematopoietic cells), GFP under the keratin 15 promoter (limbal stem cells), and YFP under the Thy-1 promoter (mid-stromal nerve fibers, MSNFs)-by vapor exposure. Cell infiltration, neovascularization (NV), innervation loss, and stem cell (SC) depletion were monitored in vivo by stereomicroscopy for up to 8 weeks. Corneal whole-mounts were used to assess 360° structures, infiltrating cells, and subbasal nerve plexus (SNP) loss. Histology included H&E, Masson-Trichrome, and periodic acid-Schiff staining. RESULTS A 35-s exposure caused minor ocular insult with moderate SNP changes, corneal cell infiltration, and reversible SC loss, mostly resolving by 4 weeks. A 120-s exposure caused severe insult with NV, extensive MSNF and SNP loss, marked CD45+ and Iba1+ infiltration, and irreversible SC depletion. NV, stromal inflammation, edema, epithelial changes, and goblet cells were seen in histology and correlated with fluorescence imaging. CONCLUSIONS This study demonstrates the utility of transgenic mice as powerful models for studying SM-induced ocular injury and for developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ariel Gore
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel.
| | - Rahav Efrati
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Shelly Atanelov
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Pnina Glick
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Maayan Cohen
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Hila Gutman
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Relli Gez
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| | - Vered Horwitz
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona, 74100, Israel
| |
Collapse
|
2
|
Okoyeocha EOM, Tewari-Singh N. Chloropicrin induced ocular injury: Biomarkers, potential mechanisms, and treatments. Toxicol Lett 2024; 396:70-80. [PMID: 38677567 DOI: 10.1016/j.toxlet.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
Ocular tissue, especially the cornea, is overly sensitive to chemical exposures. The availability and adoption of chemical threat agent chloropicrin (CP) is growing in the United States as a pesticide and fumigant; thereby increasing the risk of its use in warfare, terrorist attacks and non-intentional exposure. Exposure to CP results in immediate ocular, respiratory, and dermal injury; however, we lack knowledge on its mechanism of toxicity as well as of its breakdown products like chlorine and phosgene, and effective therapies are elusive. Herein, we have reviewed the recent findings on exposure route, toxicity and likely mechanisms of CP induced ocular toxicity based on other vesicating chemical warfare agents that cause ocular injury. We have focused on the implication of their toxicity and mechanistic outcomes in the ocular tissue, especially the cornea, which could be useful in the development of broad-spectrum effective therapeutic options. We have discussed on the potential countermeasures, overall hallmarks and challenges involved in studying ocular injuries from chemical threat agent exposures. Finally, we reviewed useful available technologies and methods that can assist in the identification of effective medical countermeasures for chemical threat agents related ocular injuries.
Collapse
Affiliation(s)
- Ebenezar O M Okoyeocha
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Neera Tewari-Singh
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
3
|
Mishra N, Kant R, Kandhari K, Tewari-Singh N, Anantharam P, Croutch CR, Pantcheva MB, Petrash JM, Araj H, Agarwal C, Agarwal R. Establishing a Dexamethasone Treatment Regimen To Alleviate Sulfur Mustard-Induced Corneal Injuries in a Rabbit Model. J Pharmacol Exp Ther 2024; 388:469-483. [PMID: 37316330 PMCID: PMC10801779 DOI: 10.1124/jpet.123.001680] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Sulfur mustard (SM) is an ominous chemical warfare agent. Eyes are extremely susceptible to SM toxicity; injuries include inflammation, fibrosis, neovascularization (NV), and vision impairment/blindness, depending on the exposure dosage. Effective countermeasures against ocular SM toxicity remain elusive and are warranted during conflicts/terrorist activities and accidental exposures. We previously determined that dexamethasone (DEX) effectively counters corneal nitrogen mustard toxicity and that the 2-hour postexposure therapeutic window is most beneficial. Here, the efficacy of two DEX dosing frequencies [i.e., every 8 or 12 hours (initiated, as previously established, 2 hours after exposure)] until 28 days after SM exposure was assessed. Furthermore, sustained effects of DEX treatments were observed up to day 56 after SM exposure. Corneal clinical assessments (thickness, opacity, ulceration, and NV) were performed at the day 14, 28, 42, and 56 post-SM exposure time points. Histopathological assessments of corneal injuries (corneal thickness, epithelial degradation, epithelial-stromal separation, inflammatory cell, and blood vessel counts) using H&E staining and molecular assessments (COX-2, MMP-9, VEGF, and SPARC expressions) were performed at days 28, 42, and 56 after SM exposure. Statistical significance was assessed using two-way ANOVA, with Holm-Sidak post hoc pairwise multiple comparisons; significance was established if P < 0.05 (data represented as the mean ± S.E.M.). DEX administration every 8 hours was more potent than every 12 hours in reversing ocular SM injury, with the most pronounced effects observed at days 28 and 42 after SM exposure. These comprehensive results are novel and provide a comprehensive DEX treatment regimen (therapeutic-window and dosing-frequency) for counteracting SM-induced corneal injuries. SIGNIFICANCE STATEMENT: The study aims to establish a dexamethasone (DEX) treatment regimen by comparing the efficacy of DEX administration at 12 versus 8 hours initiated 2 hours after exposure. DEX administration every 8 hours was more effective in reversing sulfur mustard (SM)-induced corneal injuries. SM injury reversal during DEX administration (initial 28 days after exposure) and sustained [further 28 days after cessation of DEX administration (i.e., up to 56 days after exposure)] effects were assessed using clinical, pathophysiological, and molecular biomarkers.
Collapse
Affiliation(s)
- Neha Mishra
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Neera Tewari-Singh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Poojya Anantharam
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Claire R Croutch
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Mina B Pantcheva
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - J Mark Petrash
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Houmam Araj
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (N.M., R.K., K.K., N.T.-S., C.A., R.A.) and Department of Ophthalmology, School of Medicine (M.B.P., J.M.P.), University of Colorado-Anschutz Medical Campus, Aurora, Colorado; MRIGlobal, Kansas City, Missouri (P.A., C.R.C.); and Department of Health and Human Services, National Institutes of Health National Eye Institute, Bethesda, Maryland (H.A.)
| |
Collapse
|