1
|
Wu HYL, Kaufman ID, Hsu PY. ggRibo: a ggplot-based single-gene viewer for visualizing Ribo-seq and related omics datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635743. [PMID: 39975054 PMCID: PMC11838514 DOI: 10.1101/2025.01.30.635743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Visualizing periodic Ribo-seq data within genes of interest is a powerful approach to studying mRNA translation, but its application is limited by a lack of robust tools. Here, we introduce ggRibo, a user-friendly R package for visualizing individual gene expression, integrating Ribo-seq, RNA-seq, and other genome-wide datasets with flexible scaling options. ggRibo presents the 3-nucleotide periodicity, a hallmark of translating ribosomes, within a gene-structure context, including introns and untranslated regions, enabling the study of novel ORFs, isoform translation, and mechanisms of translational regulation. ggRibo can plot multiple Ribo-seq/RNA-seq datasets from different conditions for comparison. Additionally, it supports the visualization of other omics datasets that could also be presented with single-nucleotide resolution, such as RNA degradome, transcription start sites, and translation initiation sites. Through its intuitive and flexible platform, ggRibo enables parallel comparisons of multi-omic datasets, facilitating a comprehensive understanding of gene expression regulation and promoting hypothesis generation. We demonstrate its utility with examples of upstream ORFs, downstream ORFs, isoform translation, and multi-omic comparison in humans and Arabidopsis. In summary, ggRibo is an advanced single-gene viewer that enhances the interpretation of translatome and related genome-wide datasets, offering a valuable resource for studying gene expression regulation. ggRibo is available on GitHub (https://github.com/hsinyenwu/ggRibo).
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Isaiah D. Kaufman
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| | - Polly Yingshan Hsu
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
2
|
Petri L, Van Humbeeck A, Niu H, Ter Waarbeek C, Edwards A, Chiurazzi MJ, Vittozzi Y, Wenkel S. Exploring the world of small proteins in plant biology and bioengineering. Trends Genet 2025; 41:170-180. [PMID: 39406590 DOI: 10.1016/j.tig.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/23/2024] [Accepted: 09/18/2024] [Indexed: 02/06/2025]
Abstract
Small proteins are ubiquitous in all kingdoms of life. MicroProteins, initially characterized as small proteins with protein interaction domains that enable them to interact with larger multidomain proteins, frequently modulate the function of these proteins. The study of these small proteins has contributed to a greater comprehension of protein regulation. In addition to sequence homology, sequence-divergent small proteins have the potential to function as microProtein mimics, binding to structurally related proteins. Moreover, a multitude of other small proteins encoded by short open reading frames (sORFs) and peptides, derived from diverse sources such as long noncoding RNAs (lncRNAs) and miRNAs, contribute to a variety of biological processes. The potential of small proteins is evident, offering promising avenues for bioengineering that could revolutionize crop performance and reduce reliance on agrochemicals in future agriculture.
Collapse
Affiliation(s)
- Louise Petri
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Anne Van Humbeeck
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, 90736 Umeå, Sweden
| | - Huanying Niu
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, 90736 Umeå, Sweden
| | - Casper Ter Waarbeek
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, 90736 Umeå, Sweden
| | - Ashleigh Edwards
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Maurizio Junior Chiurazzi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Ylenia Vittozzi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Stephan Wenkel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnaeus väg 6, 90736 Umeå, Sweden.
| |
Collapse
|
3
|
Anyatama A, Datta T, Dwivedi S, Trivedi PK. Transcriptional junk: Waste or a key regulator in diverse biological processes? CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102639. [PMID: 39332124 DOI: 10.1016/j.pbi.2024.102639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/29/2024]
Abstract
Plant genomes, through their evolutionary journey, have developed a complex composition that includes not only protein-coding sequences but also a significant amount of non-coding DNA, repetitive sequences, and transposable elements, traditionally labeled as "junk DNA". RNA molecules from these regions, labeled as "transcriptional junk," include non-coding RNAs, alternatively spliced transcripts, untranslated regions (UTRs), and short open reading frames (sORFs). However, recent research shows that this genetic material plays crucial roles in gene regulation, affecting plant growth, development, hormonal balance, and responses to stresses. Additionally, some of these regulatory regions encode small proteins, such as miRNA-encoded peptides (miPEPs) and microProteins (miPs), which interact with DNA or nuclear proteins, leading to chromatin remodeling and modulation of gene expression. This review aims to consolidate our understanding of the diverse roles that these so-called "transcriptional junk" regions play in regulating various physiological processes in plants.
Collapse
Affiliation(s)
- Anwesha Anyatama
- CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India
| | - Tapasya Datta
- CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India
| | - Shambhavi Dwivedi
- CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India
| | - Prabodh Kumar Trivedi
- CSIR- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226 015, India.
| |
Collapse
|
4
|
Vittozzi Y, Krüger T, Majee A, Née G, Wenkel S. ABI5 binding proteins: key players in coordinating plant growth and development. TRENDS IN PLANT SCIENCE 2024; 29:1006-1017. [PMID: 38584080 DOI: 10.1016/j.tplants.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
During the course of terrestrial evolution, plants have developed complex networks that involve the coordination of phytohormone signalling pathways in order to adapt to an ever-changing environment. Transcription factors coordinate these responses by engaging in different protein complexes and exerting both positive and negative effects. ABA INSENSITIVE 5 (ABI5) binding proteins (AFPs), which are closely related to NOVEL INTERACTOR OF JAZ (NINJA)-like proteins, are known for their fundamental role in plants' morphological and physiological growth. Recent studies have shown that AFPs regulate several hormone-signalling pathways, including abscisic acid (ABA) and gibberellic acid (GA). Here, we review the genetic control of AFPs and their crosstalk with plant hormone signalling, and discuss the contributions of AFPs to plants' growth and development.
Collapse
Affiliation(s)
- Ylenia Vittozzi
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; NovoCrops Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
| | - Thorben Krüger
- University of Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany
| | - Adity Majee
- Umeå Plant Science Centre, Umeå University, Linnaeus väg 6, 907 36 Umeå, Sweden
| | - Guillaume Née
- University of Münster, Institut für Biologie und Biotechnologie der Pflanzen, Schlossplatz 4, 48149 Münster, Germany.
| | - Stephan Wenkel
- University of Copenhagen, Department of Plant & Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; NovoCrops Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Umeå Plant Science Centre, Umeå University, Linnaeus väg 6, 907 36 Umeå, Sweden.
| |
Collapse
|
5
|
Dusi V, Pennisi F, Fortini D, Atarés A, Wenkel S, Molesini B, Pandolfini T. Involvement of the tomato BBX16 and BBX17 microProteins in reproductive development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108873. [PMID: 38914037 DOI: 10.1016/j.plaphy.2024.108873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/30/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
BBXs are B-Box zinc finger proteins that can act as transcription factors and regulators of protein complexes. Several BBX proteins play important roles in plant development. Two Arabidopsis thaliana microProteins belonging to the BBX family, named miP1a and miP1b, homotypically interact with and modulate the activity of other BBX proteins, including CONSTANS, which transcriptionally activates the florigen, FLOWERING LOCUS T. Arabidopsis plants overexpressing miP1a and miP1b showed delayed flowering. In tomato, the closest homologs of miP1a and miP1b are the microProteins SlBBX16 and SlBBX17. This study was aimed at investigating whether the constitutive expression of SlBBX16/17 in Arabidopsis and tomato impacted reproductive development. The heterologous expression of the two tomato microProteins in Arabidopsis caused a delay in the flowering transition; however, the effect was weaker than that observed when the native miP1a/b were overexpressed. In tomato, overexpression of SlBBX17 prolonged the flowering period; this effect was accompanied by downregulation of the flowering inhibitors Self Pruning (SP) and SP5G. SlBBX16 and SlBBX17 can hetero-oligomerize with TCMP-2, a cystine-knot peptide involved in flowering pattern regulation and early fruit development in tomato. The increased expression of both microProteins also caused alterations in tomato fruit development: we observed in the case of SlBBX17 a decrease in the number and size of ripe fruits as compared to WT plants, while for SlBBX16, a delay in fruit production up to the breaker stage. These effects were associated with changes in the expression of GA-responsive genes.
Collapse
Affiliation(s)
- Valentina Dusi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Federica Pennisi
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Daniela Fortini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46011, Valencia, Spain
| | - Stephan Wenkel
- Department of Plant Physiology, Plant Science Centre, University of Umeå, Linnaeus väg 6, 907 36, Umeå, Sweden; NovoCrops Center, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Barbara Molesini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy
| | - Tiziana Pandolfini
- Department of Biotechnology, University of Verona, Strada Le Grazie, 15, 37134, Verona, Italy.
| |
Collapse
|
6
|
Abdeeva IA, Panina YS, Maloshenok LG. Synthetic Biology Approaches to Posttranslational Regulation in Plants. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S278-S289. [PMID: 38621756 DOI: 10.1134/s0006297924140165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 04/17/2024]
Abstract
To date synthetic biology approaches involving creation of functional genetic modules are used in a wide range of organisms. In plants, such approaches are used both for research in the field of functional genomics and to increase the yield of agricultural crops. Of particular interest are methods that allow controlling genetic apparatus of the plants at post-translational level, which allow reducing non-targeted effects from interference with the plant genome. This review discusses recent advances in the plant synthetic biology for regulation of the plant metabolism at posttranslational level and highlights their future directions.
Collapse
Affiliation(s)
- Inna A Abdeeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Yulia S Panina
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Liliya G Maloshenok
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia.
- Bach Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| |
Collapse
|
7
|
Sahgal A, Uversky V, Davé V. Microproteins transitioning into a new Phase: Defining the undefined. Methods 2023; 220:38-54. [PMID: 37890707 DOI: 10.1016/j.ymeth.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 10/29/2023] Open
Abstract
Recent advancements in omics technologies have unveiled a hitherto unknown group of short polypeptides called microproteins (miPs). Despite their size, accumulating evidence has demonstrated that miPs exert varied and potent biological functions. They act in paracrine, juxtracrine, and endocrine fashion, maintaining cellular physiology and driving diseases. The present study focuses on biochemical and biophysical analysis and characterization of twenty-four human miPs using distinct computational methods, including RIDAO, AlphaFold2, D2P2, FuzDrop, STRING, and Emboss Pep wheel. miPs often lack well-defined tertiary structures and may harbor intrinsically disordered regions (IDRs) that play pivotal roles in cellular functions. Our analyses define the physicochemical properties of an essential subset of miPs, elucidating their structural characteristics and demonstrating their propensity for driving or participating in liquid-liquid phase separation (LLPS) and intracellular condensate formation. Notably, miPs such as NoBody and pTUNAR revealed a high propensity for LLPS, implicating their potential involvement in forming membrane-less organelles (MLOs) during intracellular LLPS and condensate formation. The results of our study indicate that miPs have functionally profound implications in cellular compartmentalization and signaling processes essential for regulating normal cellular functions. Taken together, our methodological approach explains and highlights the biological importance of these miPs, providing a deeper understanding of the unusual structural landscape and functionality of these newly defined small proteins. Understanding their functions and biological behavior will aid in developing targeted therapies for diseases that involve miPs.
Collapse
Affiliation(s)
- Aayushi Sahgal
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vladimir Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Vrushank Davé
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Biotechnology Graduate Program, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Pathology and Cell Biology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States; Department of Oncologic Sciences, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States.
| |
Collapse
|
8
|
Mohsen JJ, Martel AA, Slavoff SA. Microproteins-Discovery, structure, and function. Proteomics 2023; 23:e2100211. [PMID: 37603371 PMCID: PMC10841188 DOI: 10.1002/pmic.202100211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Advances in proteogenomic technologies have revealed hundreds to thousands of translated small open reading frames (sORFs) that encode microproteins in genomes across evolutionary space. While many microproteins have now been shown to play critical roles in biology and human disease, a majority of recently identified microproteins have little or no experimental evidence regarding their functionality. Computational tools have some limitations for analysis of short, poorly conserved microprotein sequences, so additional approaches are needed to determine the role of each member of this recently discovered polypeptide class. A currently underexplored avenue in the study of microproteins is structure prediction and determination, which delivers a depth of functional information. In this review, we provide a brief overview of microprotein discovery methods, then examine examples of microprotein structures (and, conversely, intrinsic disorder) that have been experimentally determined using crystallography, cryo-electron microscopy, and NMR, which provide insight into their molecular functions and mechanisms. Additionally, we discuss examples of predicted microprotein structures that have provided insight or context regarding their function. Analysis of microprotein structure at the angstrom level, and confirmation of predicted structures, therefore, has potential to identify translated microproteins that are of biological importance and to provide molecular mechanism for their in vivo roles.
Collapse
Affiliation(s)
- Jessica J. Mohsen
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Alina A. Martel
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
| | - Sarah A. Slavoff
- Department of Chemistry, Yale University, New Haven, CT, USA
- Institute of Biomolecular Design and Discovery, Yale University, West Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
9
|
Nicoletti M. The Anti-Inflammatory Activity of Viscum album. PLANTS (BASEL, SWITZERLAND) 2023; 12:1460. [PMID: 37050086 PMCID: PMC10096603 DOI: 10.3390/plants12071460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
The therapeutic story of European mistletoe (Viscum album L.) presents a seesawing profile. In ancient times, this hemiparasitic plant was considered a panacea and even to be endowed with exceptional beneficial properties. In more recent times, despite its multiple uses in traditional medicines, some parts of the plant, in particular the berries, were considered poisonous and dangerous, including concerns of cytotoxicity, which spread serious suspicion on its medicinal utility. However, since the last century, medical interest in mistletoe has come back in force due to its utilization in clinical cancer treatments, based on its selective action on tumor cells. In Central Europe, the hydro-alcoholic extracts of European mistletoe register a relevant and continuous utilization in anthroposophic medicine, which is a holistic system that includes the utilization of phytomedicinal substances. In Switzerland and Germany, most physicians and patients use these products as complementary therapy in oncological treatments. However, despite its increasing use in this field, the results of mistletoe's use are not always convincing, and other aspects have appeared. Nowadays, products that contain mistletoe are utilized in several fields, including diet, phytotherapy, veterinary medicine and homeopathy, but in particular in cancer therapies as coadjuvant factors, in consideration of several positive effects including effects in the improvement of quality-of-life conditions and reinforcement of the immune system. In this review, based on the understanding of the association between cancer and inflammation, we propose a relationship between these recent uses of mistletoe, based on its antioxidant properties, which are supported by phytochemical and pharmacological data. The unicity of mistletoe metabolism, which is a direct consequence of its hemiparasitism, is utilized as a key interpretation element to explain its biological properties and steer its consequent therapeutic uses.
Collapse
Affiliation(s)
- Marcello Nicoletti
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
10
|
Cassidy L, Kaulich PT, Tholey A. Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. iScience 2023; 26:106069. [PMID: 36818287 PMCID: PMC9929600 DOI: 10.1016/j.isci.2023.106069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Microproteins and short open reading frame-encoded peptides (SEPs) can, like all proteins, carry numerous posttranslational modifications. Together with posttranscriptional processes, this leads to a high number of possible distinct protein molecules, the proteoforms, out of a limited number of genes. The identification, quantification, and molecular characterization of proteoforms possess special challenges to established, mainly bottom-up proteomics (BUP) based analytical approaches. While BUP methods are powerful, proteins have to be inferred rather than directly identified, which hampers the detection of proteoforms. An alternative approach is top-down proteomics (TDP) which allows to identify intact proteoforms. This perspective article provides a brief overview of modified microproteins and SEPs, introduces the proteoform terminology, and compares present BUP and TDP workflows highlighting their major advantages and caveats. Necessary future developments in TDP to fully accentuate its potential for proteoform-centric analytics of microproteins and SEPs will be discussed.
Collapse
Affiliation(s)
- Liam Cassidy
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Philipp T. Kaulich
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany,Corresponding author
| |
Collapse
|
11
|
Gautam H, Sharma A, Trivedi PK. Plant microProteins and miPEPs: Small molecules with much bigger roles. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111519. [PMID: 36330966 DOI: 10.1016/j.plantsci.2022.111519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/30/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The plant science community has identified various regulatory components involved in gene expression. With the advancement of approaches and technologies, new layers of gene regulation have been identified, which play essential roles in fine-tuning biological processes. In this area, recently, small peptides emerged as key regulators in gene regulation to control developmental and physiological processes in plants. Various small peptides have also been identified and characterized to elucidate their roles. A class of small peptides, microProteins (miPs), have been shown to contain at least a protein-protein interaction domain with the potential to regulate multi-domain proteins by becoming a part of protein complexes. Recent studies suggest that some pri-miRNAs encode peptides (miPEPs), which are essential components in plant growth and development. This review provides updates about these small peptides, in general, summarizing their potential role in gene regulation and possible mechanism(s) in plants. We also propose that in-depth research on newly identified plant peptides in crops help to provide solutions enabling sustainable agriculture and food production.
Collapse
Affiliation(s)
- Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Sharma
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
12
|
Kushwaha AK, Dwivedi S, Mukherjee A, Lingwan M, Dar MA, Bhagavatula L, Datta S. Plant microProteins: Small but powerful modulators of plant development. iScience 2022; 25:105400. [PMID: 36353725 PMCID: PMC9638782 DOI: 10.1016/j.isci.2022.105400] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MicroProteins (miPs) are small and single-domain containing proteins of less than 20 kDa. This domain allows microProteins to interact with compatible domains of evolutionary-related proteins and fine-tuning the key physiological pathways in several organisms. Since the first report of a microProtein in mice, numerous microProteins have been identified in plants by computational approaches. However, only a few candidates have been functionally characterized, primarily in Arabidopsis. The recent success of synthetic microProteins in modulating physiological activities in crops makes these proteins interesting candidates for crop engineering. Here, we comprehensively summarise the synthesis, mode of action, and functional roles of microProteins in plants. We also discuss different approaches used to identify plant microProteins. Additionally, we discuss novel approaches to design synthetic microProteins that can be used to target proteins regulating plant growth and development. We finally highlight the prospects and challenges of utilizing microProteins in future crop improvement programs. MicroProteins (miPs) are small-sized proteins with a molecular weight of 5–20 kDa MiPs can be detected through multiomics and computational approaches MiPs are crucial regulators of plant growth and development MiPs as condensates, synthetic miPs, and limitations
Collapse
|
13
|
Aviña-Padilla K, Zambada-Moreno O, Herrera-Oropeza GE, Jimenez-Limas MA, Abrahamian P, Hammond RW, Hernández-Rosales M. Insights into the Transcriptional Reprogramming in Tomato Response to PSTVd Variants Using Network Approaches. Int J Mol Sci 2022; 23:5983. [PMID: 35682662 PMCID: PMC9181013 DOI: 10.3390/ijms23115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 01/25/2023] Open
Abstract
Viroids are the smallest pathogens of angiosperms, consisting of non-coding RNAs that cause severe diseases in agronomic crops. Symptoms associated with viroid infection are linked to developmental alterations due to genetic regulation. To understand the global mechanisms of host viroid response, we implemented network approaches to identify master transcription regulators and their differentially expressed targets in tomato infected with mild and severe variants of PSTVd. Our approach integrates root and leaf transcriptomic data, gene regulatory network analysis, and identification of affected biological processes. Our results reveal that specific bHLH, MYB, and ERF transcription factors regulate genes involved in molecular mechanisms underlying critical signaling pathways. Functional enrichment of regulons shows that bHLH-MTRs are linked to metabolism and plant defense, while MYB-MTRs are involved in signaling and hormone-related processes. Strikingly, a member of the bHLH-TF family has a specific potential role as a microprotein involved in the post-translational regulation of hormone signaling events. We found that ERF-MTRs are characteristic of severe symptoms, while ZNF-TF, tf3a-TF, BZIP-TFs, and NAC-TF act as unique MTRs. Altogether, our results lay a foundation for further research on the PSTVd and host genome interaction, providing evidence for identifying potential key genes that influence symptom development in tomato plants.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Centro de Investigación y de Estudios Avanzados del I.P.N Unidad Irapuato, Irapuato 36821, Mexico;
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Octavio Zambada-Moreno
- Centro de Investigación y de Estudios Avanzados del I.P.N Unidad Irapuato, Irapuato 36821, Mexico;
| | - Gabriel Emilio Herrera-Oropeza
- Center for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London WC2R 2LS, UK;
| | - Marco A. Jimenez-Limas
- Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Peter Abrahamian
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | - Rosemarie W. Hammond
- USDA, Agricultural Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705, USA;
| | | |
Collapse
|
14
|
Wu Q, Zhong S, Shi H. MicroProteins: Dynamic and accurate regulation of protein activity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:812-820. [PMID: 35060666 DOI: 10.1111/jipb.13229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Proteins usually assemble oligomers or high-order complexes to increase their efficiency and specificity in biological processes. The dynamic equilibrium of complex formation and disruption imposes reversible regulation of protein function. MicroProteins are small, single-domain proteins that directly bind target protein complexes and disrupt their assembly. Growing evidence shows that microProteins are efficient regulators of protein activity at the post-translational level. In the last few decades, thousands of plant microProteins have been predicted by computational approaches, but only a few have been experimentally validated. Recent studies highlighted the mechanistic working modes of newly-identified microProteins in Arabidopsis and other plant species. Here, we review characterized microProteins, including their biological roles, regulatory targets, and modes of action. In particular, we focus on microProtein-directed allosteric modulation of key components in light signaling pathways, and we summarize the biogenesis and evolutionary trajectory of known microProteins in plants. Understanding the regulatory mechanisms of microProteins is an important step towards potential utilization of microProteins as versatile biotechnological tools in crop bioengineering.
Collapse
Affiliation(s)
- Qingqing Wu
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Shangwei Zhong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Hui Shi
- College of Life Sciences, Capital Normal University, and Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| |
Collapse
|
15
|
Stop CRYing! Inhibition of cryptochrome function by small proteins. Biochem Soc Trans 2022; 50:773-782. [PMID: 35311888 PMCID: PMC9162457 DOI: 10.1042/bst20190062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/02/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022]
Abstract
Plants can detect the presence of light using specialised photoreceptor proteins. These photoreceptors measure the intensity of light, but they can also respond to different spectra of light and thus ‘see' different colours. Cryptochromes, which are also present in animals, are flavin-based photoreceptors that enable plants to detect blue and ultraviolet-A (UV-A) light. In Arabidopsis, there are two cryptochromes, CRYPTOCHROME 1 (CRY1) and CRYPTOCHROME 2 (CRY2) with known sensory roles. They function in various processes such as blue-light mediated inhibition of hypocotyl elongation, photoperiodic promotion of floral initiation, cotyledon expansion, anthocyanin production, and magnetoreception, to name a few. In the dark, the cryptochromes are in an inactive monomeric state and undergo photochemical and conformational change in response to illumination. This results in flavin reduction, oligomerisation, and the formation of the ‘cryptochrome complexome'. Mechanisms of cryptochrome activation and signalling have been extensively studied and found to be conserved across phylogenetic lines. In this review, we will therefore focus on a far lesser-known mechanism of regulation that is unique to plant cryptochromes. This involves inhibition of cryptochrome activity by small proteins that prevent its dimerisation in response to light. The resulting inhibition of function cause profound alterations in economically important traits such as plant growth, flowering, and fruit production. This review will describe the known mechanisms of cryptochrome activation and signalling in the context of their modulation by these endogenous and artificial small inhibitor proteins. Promising new applications for biotechnological and agricultural applications will be discussed.
Collapse
|
16
|
Chiurazzi MJ, Nørrevang AF, García P, Cerdán PD, Palmgren M, Wenkel S. Controlling flowering of Medicago sativa (alfalfa) by inducing dominant mutations. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:205-214. [PMID: 34761872 PMCID: PMC9303315 DOI: 10.1111/jipb.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Breeding plants with polyploid genomes is challenging because functional redundancy hampers the identification of loss-of-function mutants. Medicago sativa is tetraploid and obligate outcrossing, which together with inbreeding depression complicates traditional breeding approaches in obtaining plants with a stable growth habit. Inducing dominant mutations would provide an alternative strategy to introduce domestication traits in plants with high gene redundancy. Here we describe two complementary strategies to induce dominant mutations in the M. sativa genome and how they can be relevant in the control of flowering time. First, we outline a genome-engineering strategy that harnesses the use of microProteins as developmental regulators. MicroProteins are small proteins that appeared during genome evolution from genes encoding larger proteins. Genome-engineering allows us to retrace evolution and create microProtein-coding genes de novo. Second, we provide an inventory of genes regulated by microRNAs that control plant development. Making respective gene transcripts microRNA-resistant by inducing point mutations can uncouple microRNA regulation. Finally, we investigated the recently published genomes of M. sativa and provide an inventory of breeding targets, some of which, when mutated, are likely to result in dominant traits.
Collapse
Affiliation(s)
- Maurizio Junior Chiurazzi
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Anton Frisgaard Nørrevang
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Pedro García
- Fundación Instituto LeloirIIBBA‐CONICETAvenida Patricias Argentinas 435Buenos Aires1405Argentina
| | - Pablo D. Cerdán
- Fundación Instituto LeloirIIBBA‐CONICETAvenida Patricias Argentinas 435Buenos Aires1405Argentina
| | - Michael Palmgren
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| | - Stephan Wenkel
- NovoCrops CenterUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Copenhagen Plant Science CentreUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
- Department of Plant and Environmental SciencesUniversity of CopenhagenThorvaldsensvej 40Frederiksberg C1871Denmark
| |
Collapse
|
17
|
Papadopoulos C, Chevrollier N, Lopes A. Exploring the Peptide Potential of Genomes. Methods Mol Biol 2022; 2405:63-82. [PMID: 35298808 DOI: 10.1007/978-1-0716-1855-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent studies attribute a central role to the noncoding genome in the emergence of novel genes. The widespread transcription of noncoding regions and the pervasive translation of the resulting RNAs offer to the organisms a vast reservoir of novel peptides. Although the majority of these peptides are anticipated as deleterious or neutral, and thereby expected to be degraded right away or short-lived in evolutionary history, some of them can confer an advantage to the organism. The latter can be further subjected to natural selection and be established as novel genes. In any case, characterizing the structural properties of these pervasively translated peptides is crucial to understand (1) their impact on the cell and (2) how some of these peptides, derived from presumed noncoding regions, can give rise to structured and functional de novo proteins. Therefore, we present a protocol that aims to explore the potential of a genome to produce novel peptides. It consists in annotating all the open reading frames (ORFs) of a genome (i.e., coding and noncoding ones) and characterizing the fold potential and other structural properties of their corresponding potential peptides. Here, we apply our protocol to a small genome and show how to apply it to very large genomes. Finally, we present a case study which aims to probe the fold potential of a set of 721 translated ORFs in mouse lncRNAs, identified with ribosome profiling experiments. Interestingly, we show that the distribution of their fold potential is different from that of the nontranslated lncRNAs and more generally from the other noncoding ORFs of the mouse.
Collapse
Affiliation(s)
- Chris Papadopoulos
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, cedex, France
| | - Nicolas Chevrollier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, cedex, France
| | - Anne Lopes
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette, cedex, France.
| |
Collapse
|
18
|
Luu GT, Sanchez LM. Toward improvement of screening through mass spectrometry-based proteomics: ovarian cancer as a case study. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 469:116679. [PMID: 34744497 PMCID: PMC8570641 DOI: 10.1016/j.ijms.2021.116679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ovarian cancer is one of the leading causes of cancer related deaths affecting United States women. Early-stage detection of ovarian cancer has been linked to increased survival, however, current screening methods, such as biomarker testing, have proven to be ineffective in doing so. Therefore, further developments are necessary to be able to achieve positive patient prognosis. Ongoing efforts are being made in biomarker discovery towards clinical applications in screening for early-stage ovarian cancer. In this perspective, we discuss and provide examples for several workflows employing mass spectrometry-based proteomics towards protein biomarker discovery and characterization in the context of ovarian cancer; workflows include protein identification and characterization as well as intact protein profiling. We also discuss the opportunities to merge these workflows for a multiplexed approach for biomarkers. Lastly, we provide our insight as to future developments that may serve to enhance biomarker discovery workflows while also considering translational potential.
Collapse
Affiliation(s)
- Gordon T Luu
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| | - Laura M Sanchez
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High St. Santa Cruz, CA, 95064
| |
Collapse
|
19
|
Kim SI, Lee KH, Kwak JS, Kwon DH, Song JT, Seo HS. Overexpression of Rice Os S1Fa1 Gene Confers Drought Tolerance in Arabidopsis. PLANTS 2021; 10:plants10102181. [PMID: 34685986 PMCID: PMC8541125 DOI: 10.3390/plants10102181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/05/2022]
Abstract
Small peptides and proteins play critical regulatory roles in plant development and environmental stress responses; however, only a few of these molecules have been identified and characterized to date because of their poor annotation and other experimental challenges. Here, we present that rice (Oryza sativa L.) OsS1Fa1, a small 76-amino acid protein, confers drought stress tolerance in Arabidopsis thaliana. OsS1Fa1 was highly expressed in leaf, culm, and root tissues of rice seedlings during vegetative growth and was significantly induced under drought stress. OsS1Fa1 overexpression in Arabidopsis induced the expression of selected drought-responsive genes and enhanced the survival rate of transgenic lines under drought. The proteasome inhibitor MG132 protected the OsS1Fa1 protein from degradation. Together, our data indicate that the small protein OsS1Fa1 is induced by drought and is post-translationally regulated, and the ectopic expression of OsS1Fa1 protects plants from drought stress.
Collapse
Affiliation(s)
- Sung-Il Kim
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.-I.K.); (K.H.L.); (J.S.K.); (D.H.K.)
| | - Kyu Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.-I.K.); (K.H.L.); (J.S.K.); (D.H.K.)
| | - Jun Soo Kwak
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.-I.K.); (K.H.L.); (J.S.K.); (D.H.K.)
| | - Dae Hwan Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.-I.K.); (K.H.L.); (J.S.K.); (D.H.K.)
| | - Jong Tae Song
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea;
| | - Hak Soo Seo
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (S.-I.K.); (K.H.L.); (J.S.K.); (D.H.K.)
- Correspondence: ; Tel.: +82-2-880-4548; Fax: +82-2-873-2056
| |
Collapse
|
20
|
Calderon RH, Strand Å. How retrograde signaling is intertwined with the evolution of photosynthetic eukaryotes. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102093. [PMID: 34390927 DOI: 10.1016/j.pbi.2021.102093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 05/20/2023]
Abstract
Chloroplasts and mitochondria evolved from free-living prokaryotic organisms that entered the eukaryotic cell through endosymbiosis. The gradual conversion from endosymbiont to organelle during the course of evolution was accompanied by the development of a communication system between the host and the endosymbiont, referred to as retrograde signaling or organelle-to-nucleus signaling. In higher plants, plastid-to-nucleus signaling involves multiple signaling pathways necessary to coordinate plastid function and cellular responses to developmental and environmental stimuli. Phylogenetic reconstructions using sequence information from evolutionarily diverse photosynthetic eukaryotes have begun to provide information about how retrograde signaling pathways were adopted and modified in different lineages over time. A tight communication system was likely a major facilitator of plants conquest of the land because it would have enabled the algal ancestors of land plants to better allocate their cellular resources in response to high light and desiccation, the major stressor for streptophyte algae in a terrestrial habitat. In this review, we aim to give an evolutionary perspective on plastid-to-nucleus signaling.
Collapse
Affiliation(s)
- Robert H Calderon
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden
| | - Åsa Strand
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE 901 87 Umeå, Sweden.
| |
Collapse
|
21
|
Ahmad Z. A big role for microProteins in preventing premature floral transition in the shoot meristem. PLANT PHYSIOLOGY 2021; 187:12-13. [PMID: 34618151 PMCID: PMC8418436 DOI: 10.1093/plphys/kiab320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Zaki Ahmad
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
22
|
Rodrigues VL, Dolde U, Sun B, Blaakmeer A, Straub D, Eguen T, Botterweg-Paredes E, Hong S, Graeff M, Li MW, Gendron JM, Wenkel S. A microProtein repressor complex in the shoot meristem controls the transition to flowering. PLANT PHYSIOLOGY 2021; 187:187-202. [PMID: 34015131 PMCID: PMC8418433 DOI: 10.1093/plphys/kiab235] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/01/2021] [Indexed: 05/12/2023]
Abstract
MicroProteins are potent post-translational regulators. In Arabidopsis (Arabidopsis thaliana), the miP1a/b microProteins delay floral transition by forming a complex with CONSTANS (CO) and the co-repressor protein TOPLESS. To better understand the function of the miP1a microProtein in floral repression, we performed a genetic suppressor screen to identify suppressors of miP1a (sum) function. One mutant, sum1, exhibited strong suppression of the miP1a-induced late-flowering phenotype. Mapping of sum1 identified another allele of the gene encoding the histone H3K4 demethylase JUMONJI14 (JMJ14), which is required for miP1a function. Plants carrying mutations in JMJ14 exhibit an early flowering phenotype that is largely dependent on CO activity, supporting an additional role for CO in the repressive complex. We further investigated whether miP1a function involves chromatin modification, performed whole-genome methylome sequencing studies with plants ectopically expressing miP1a, and identified differentially methylated regions (DMRs). Among these DMRs is the promoter of FLOWERING LOCUS T (FT), the prime target of miP1a that is ectopically methylated in a JMJ14-dependent manner. Moreover, when aberrantly expressed at the shoot apex, CO induces early flowering, but only when JMJ14 is mutated. Detailed analysis of the genetic interaction among CO, JMJ14, miP1a/b, and TPL revealed a potential role for CO as a repressor of flowering in the shoot apical meristem (SAM). Altogether, our results suggest that a repressor complex operates in the SAM, likely to maintain it in an undifferentiated state until leaf-derived florigen signals induce SAM conversion into a floral meristem.
Collapse
Affiliation(s)
- Vandasue L. Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Esther Botterweg-Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Shinyoung Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Moritz Graeff
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Man-Wah Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Joshua M. Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT 06511, USA
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- NovoCrops Center, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
- Author for communication:
| |
Collapse
|
23
|
Carbonara K, Andonovski M, Coorssen JR. Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes 2021; 9:38. [PMID: 34564541 PMCID: PMC8482110 DOI: 10.3390/proteomes9030038] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022] Open
Abstract
Proteomes are complex-much more so than genomes or transcriptomes. Thus, simplifying their analysis does not simplify the issue. Proteomes are of proteoforms, not canonical proteins. While having a catalogue of amino acid sequences provides invaluable information, this is the Proteome-lite. To dissect biological mechanisms and identify critical biomarkers/drug targets, we must assess the myriad of proteoforms that arise at any point before, after, and between translation and transcription (e.g., isoforms, splice variants, and post-translational modifications [PTM]), as well as newly defined species. There are numerous analytical methods currently used to address proteome depth and here we critically evaluate these in terms of the current 'state-of-the-field'. We thus discuss both pros and cons of available approaches and where improvements or refinements are needed to quantitatively characterize proteomes. To enable a next-generation approach, we suggest that advances lie in transdisciplinarity via integration of current proteomic methods to yield a unified discipline that capitalizes on the strongest qualities of each. Such a necessary (if not revolutionary) shift cannot be accomplished by a continued primary focus on proteo-genomics/-transcriptomics. We must embrace the complexity. Yes, these are the hard questions, and this will not be easy…but where is the fun in easy?
Collapse
Affiliation(s)
| | | | - Jens R. Coorssen
- Faculties of Applied Health Sciences and Mathematics & Science, Departments of Health Sciences and Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada; (K.C.); (M.A.)
| |
Collapse
|
24
|
Gong P, Tan H, Zhao S, Li H, Liu H, Ma Y, Zhang X, Rong J, Fu X, Lozano-Durán R, Li F, Zhou X. Geminiviruses encode additional small proteins with specific subcellular localizations and virulence function. Nat Commun 2021; 12:4278. [PMID: 34257307 PMCID: PMC8277811 DOI: 10.1038/s41467-021-24617-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Geminiviruses are plant viruses with limited coding capacity. Geminivirus-encoded proteins are traditionally identified by applying a 10-kDa arbitrary threshold; however, it is increasingly clear that small proteins play relevant roles in biological systems, which calls for the reconsideration of this criterion. Here, we show that geminiviral genomes contain additional ORFs. Using tomato yellow leaf curl virus, we demonstrate that some of these small ORFs are expressed during the infection, and that the encoded proteins display specific subcellular localizations. We prove that the largest of these additional ORFs, which we name V3, is required for full viral infection, and that the V3 protein localizes in the Golgi apparatus and functions as an RNA silencing suppressor. These results imply that the repertoire of geminiviral proteins can be expanded, and that getting a comprehensive overview of the molecular plant-geminivirus interactions will require the detailed study of small ORFs so far neglected.
Collapse
Affiliation(s)
- Pan Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Siwen Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hui Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Ma
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xi Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Junjie Rong
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
25
|
Aviña-Padilla K, Ramírez-Rafael JA, Herrera-Oropeza GE, Muley VY, Valdivia DI, Díaz-Valenzuela E, García-García A, Varela-Echavarría A, Hernández-Rosales M. Evolutionary Perspective and Expression Analysis of Intronless Genes Highlight the Conservation of Their Regulatory Role. Front Genet 2021; 12:654256. [PMID: 34306008 PMCID: PMC8302217 DOI: 10.3389/fgene.2021.654256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/01/2021] [Indexed: 11/13/2022] Open
Abstract
The structure of eukaryotic genes is generally a combination of exons interrupted by intragenic non-coding DNA regions (introns) removed by RNA splicing to generate the mature mRNA. A fraction of genes, however, comprise a single coding exon with introns in their untranslated regions or are intronless genes (IGs), lacking introns entirely. The latter code for essential proteins involved in development, growth, and cell proliferation and their expression has been proposed to be highly specialized for neuro-specific functions and linked to cancer, neuropathies, and developmental disorders. The abundant presence of introns in eukaryotic genomes is pivotal for the precise control of gene expression. Notwithstanding, IGs exempting splicing events entail a higher transcriptional fidelity, making them even more valuable for regulatory roles. This work aimed to infer the functional role and evolutionary history of IGs centered on the mouse genome. IGs consist of a subgroup of genes with one exon including coding genes, non-coding genes, and pseudogenes, which conform approximately 6% of a total of 21,527 genes. To understand their prevalence, biological relevance, and evolution, we identified and studied 1,116 IG functional proteins validating their differential expression in transcriptomic data of embryonic mouse telencephalon. Our results showed that overall expression levels of IGs are lower than those of MEGs. However, strongly up-regulated IGs include transcription factors (TFs) such as the class 3 of POU (HMG Box), Neurog1, Olig1, and BHLHe22, BHLHe23, among other essential genes including the β-cluster of protocadherins. Most striking was the finding that IG-encoded BHLH TFs fit the criteria to be classified as microproteins. Finally, predicted protein orthologs in other six genomes confirmed high conservation of IGs associated with regulating neural processes and with chromatin organization and epigenetic regulation in Vertebrata. Moreover, this study highlights that IGs are essential modulators of regulatory processes, such as the Wnt signaling pathway and biological processes as pivotal as sensory organ developing at a transcriptional and post-translational level. Overall, our results suggest that IG proteins have specialized, prevalent, and unique biological roles and that functional divergence between IGs and MEGs is likely to be the result of specific evolutionary constraints.
Collapse
Affiliation(s)
- Katia Aviña-Padilla
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | | | - Gabriel Emilio Herrera-Oropeza
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | | | - Dulce I. Valdivia
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Erik Díaz-Valenzuela
- Centro de Investigacioìn y de Estudios Avanzados del IPN, Unidad Irapuato, Guanajuato, Mexico
| | - Andrés García-García
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | |
Collapse
|
26
|
Bhati KK, Dolde U, Wenkel S. MicroProteins: Expanding functions and novel modes of regulation. MOLECULAR PLANT 2021; 14:705-707. [PMID: 33450370 DOI: 10.1016/j.molp.2021.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Kaushal Kumar Bhati
- Louvain Institute of Biomolecular Sciences, Catholic University of Louvain, Louvain la Neuve 1348, Belgium.
| | - Ulla Dolde
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, 31320 Castanet-Tolosan, France.
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, Department of Plant & Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
27
|
Molesini B, Dusi V, Pennisi F, Di Sansebastiano GP, Zanzoni S, Manara A, Furini A, Martini F, Rotino GL, Pandolfini T. TCMP-2 affects tomato flowering and interacts with BBX16, a homolog of the arabidopsis B-box MiP1b. PLANT DIRECT 2020; 4:e00283. [PMID: 33204936 PMCID: PMC7648202 DOI: 10.1002/pld3.283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/03/2020] [Accepted: 10/06/2020] [Indexed: 05/06/2023]
Abstract
Flowering and fruiting are processes subject to complex control by environmental and endogenous signals. Endogenous signals comprise, besides classical phytohormones, also signaling peptides and miniproteins. Tomato cystine-knot miniproteins (TCMPs), which belong to a Solanaceous-specific group of Cys-rich protein family, have been recently involved in fruit development. TCMP-1 and TCMP-2 display a highly modulated expression pattern during flower and fruit development. A previous study reported that a change in the ratio of the two TCMPs affects the timing of fruit production. In this work, to investigate TCMP-2 mode of action, we searched for its interacting partners. One of the interactors identified by a yeast two hybrid screen, was the B-box domain-containing protein 16 (SlBBX16), whose closest homolog is the Arabidopsis microProtein 1b implicated in flowering time control. We demonstrated the possibility for the two proteins to interact in vivo in tobacco epidermal cells. Arabidopsis plants ectopically overexpressing the TCMP-2 exhibited an increased level of FLOWERING LOCUS T (FT) mRNA and anticipated flowering. Similarly, in previously generated transgenic tomato plants with increased TCMP-2 expression in flower buds, we observed an augmented expression of SINGLE-FLOWER TRUSS gene, the tomato ortholog of FT, whereas the expression of the antiflorigen SELF-PRUNING was unchanged. Consistently, these transgenic plants showed alterations in the flowering pattern, with an accelerated termination of the sympodial units. Overall, our study reveals a novel function for TCMP-2 as regulatory factor that might integrate, thanks to its capacity to interact with SlBBX16, into the signaling pathways that control flowering, and converge toward florigen regulation.
Collapse
Affiliation(s)
| | - Valentina Dusi
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | | | - Serena Zanzoni
- Centro Piattaforme TecnologicheUniversity of VeronaVeronaItaly
| | - Anna Manara
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | - Flavio Martini
- Department of BiotechnologyUniversity of VeronaVeronaItaly
| | | | | |
Collapse
|
28
|
Hong SY, Sun B, Straub D, Blaakmeer A, Mineri L, Koch J, Brinch-Pedersen H, Holme IB, Burow M, Lyngs Jørgensen HJ, Albà MM, Wenkel S. Heterologous microProtein expression identifies LITTLE NINJA, a dominant regulator of jasmonic acid signaling. Proc Natl Acad Sci U S A 2020; 117:26197-26205. [PMID: 33033229 PMCID: PMC7584889 DOI: 10.1073/pnas.2005198117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroProteins are small, often single-domain proteins that are sequence-related to larger, often multidomain proteins. Here, we used a combination of comparative genomics and heterologous synthetic misexpression to isolate functional cereal microProtein regulators. Our approach identified LITTLE NINJA (LNJ), a microProtein that acts as a modulator of jasmonic acid (JA) signaling. Ectopic expression of LNJ in Arabidopsis resulted in stunted plants that resembled the decuple JAZ (jazD) mutant. In fact, comparing the transcriptomes of transgenic LNJ overexpressor plants and jazD revealed a large overlap of deregulated genes, suggesting that ectopic LNJ expression altered JA signaling. Transgenic Brachypodium plants with elevated LNJ expression levels showed deregulation of JA signaling as well and displayed reduced growth and enhanced production of side shoots (tiller). This tillering effect was transferable between grass species, and overexpression of LNJ in barley and rice caused similar traits. We used a clustered regularly interspaced short palindromic repeats (CRISPR) approach and created a LNJ-like protein in Arabidopsis by deleting parts of the coding sentence of the AFP2 gene that encodes a NINJA-domain protein. These afp2-crispr mutants were also stunted in size and resembled jazD Thus, similar genome-engineering approaches can be exploited as a future tool to create LNJ proteins and produce cereals with altered architectures.
Collapse
Affiliation(s)
- Shin-Young Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- NovoCrops Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lorenzo Mineri
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Agricultural and Environmental Sciences, University of Milan, 20133 Milan, Italy
| | - Jonas Koch
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Henrik Brinch-Pedersen
- NovoCrops Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Inger B Holme
- Department of Molecular Biology and Genetics, Research Centre Flakkebjerg, Aarhus University, 4200 Slagelse, Denmark
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- DynaMo Centre of Excellence, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Hans Jørgen Lyngs Jørgensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute, Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08003 Barcelona, Spain
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark;
- Copenhagen Plant Science Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
- NovoCrops Centre, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
29
|
Global Analysis of Cereal microProteins Suggests Diverse Roles in Crop Development and Environmental Adaptation. G3-GENES GENOMES GENETICS 2020; 10:3709-3717. [PMID: 32763954 PMCID: PMC7534434 DOI: 10.1534/g3.120.400794] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MicroProteins are a class of small single-domain proteins that post-translationally regulate larger multidomain proteins from which they evolved or which they relate to. They disrupt the normal function of their targets by forming microProtein-target heterodimers through compatible protein-protein interaction (PPI) domains. Recent studies confirm the significance of microProteins in the fine-tuning of plant developmental processes such as shoot apical meristem maintenance and flowering time regulation. While there are a number of well-characterized microProteins in Arabidopsis thaliana, studies from more complex plant genomes are still missing. We have previously developed miPFinder, a software for identifying microProteins from annotated genomes. Here we present an improved version where we have updated the algorithm to increase its accuracy and speed, and used it to analyze five cereal crop genomes – wheat, rice, barley, maize and sorghum. We found 20,064 potential microProteins from a total of 258,029 proteins in these five organisms, of which approximately 2000 are high-confidence, i.e., likely to function as actual microProteins. Gene ontology analysis of these 2000 microProtein candidates revealed their roles in stress, light and growth responses, hormone signaling and transcriptional regulation. Using a recently developed rice gene co-expression database, we analyzed 347 potential rice microProteins that are also conserved in other cereal crops and found over 50 of these rice microProteins to be co-regulated with their identified interaction partners. Overall, our study reveals a rich source of biotechnologically interesting small proteins that regulate fundamental plant processes such a growth and stress response that could be utilized in crop bioengineering.
Collapse
|
30
|
Allosteric deactivation of PIFs and EIN3 by microproteins in light control of plant development. Proc Natl Acad Sci U S A 2020; 117:18858-18868. [PMID: 32694206 DOI: 10.1073/pnas.2002313117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Buried seedlings undergo dramatic developmental transitions when they emerge from soil into sunlight. As central transcription factors suppressing light responses, PHYTOCHROME-INTERACTING FACTORs (PIFs) and ETHYLENE-INSENSITIVE 3 (EIN3) actively function in darkness and must be promptly repressed upon light to initiate deetiolation. Microproteins are evolutionarily conserved small single-domain proteins that act as posttranslational regulators in eukaryotes. Although hundreds to thousands of microproteins are predicted to exist in plants, their target molecules, biological roles, and mechanisms of action remain largely unknown. Here, we show that two microproteins, miP1a and miP1b (miP1a/b), are robustly stimulated in the dark-to-light transition. miP1a/b are primarily expressed in cotyledons and hypocotyl, exhibiting tissue-specific patterns similar to those of PIFs and EIN3 We demonstrate that PIFs and EIN3 assemble functional oligomers by self-interaction, while miP1a/b directly interact with and disrupt the oligomerization of PIFs and EIN3 by forming nonfunctional protein complexes. As a result, the DNA binding capacity and transcriptional activity of PIFs and EIN3 are predominantly suppressed. These biochemical findings are further supported by genetic evidence. miP1a/b positively regulate photomorphogenic development, and constitutively expressing miP1a/b rescues the delayed apical hook unfolding and cotyledon development of plants overexpressing PIFs and EIN3 Our study reveals that microproteins provide a temporal and negative control of the master transcription factors' oligomerization to achieve timely developmental transitions upon environmental changes.
Collapse
|
31
|
Understanding the proteome encoded by "non-coding RNAs": new insights into human genome. SCIENCE CHINA. LIFE SCIENCES 2020; 63:986-995. [PMID: 32318910 DOI: 10.1007/s11427-019-1677-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/12/2020] [Indexed: 01/19/2023]
Abstract
A great number of non-coding RNAs (ncRNAs) account for the majority of the genome. The translation of these ncRNAs has been noted but seriously underestimated due to both technological and theoretical limitations. Based on the development of ribosome profiling (Ribo-seq), full length translating RNA analysis (RNC-seq) and mass spectrometry technology, more and more ncRNAs are being found to be translated in different organism, and some of them can produce functional peptides. While recently, not only individual new functional proteins, but also a new proteome have been experimentally discovered to be encoded by endogenous lncRNAs and circRNAs. These new proteins are of biological significance, suggesting the connection of the translation of ncRNAs to human physiology and diseases. Therefore, an in-depth and systematic understanding of the coding capabilities of ncRNAs is necessary for basic biology and medicine. In this review, we summarize the advances in the field of discovering this new proteome, i.e. "ncRNA-coded" proteins.
Collapse
|
32
|
Eguen T, Ariza JG, Brambilla V, Sun B, Bhati KK, Fornara F, Wenkel S. Control of flowering in rice through synthetic microProteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:730-736. [PMID: 31478602 DOI: 10.1111/jipb.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Photoperiod-dependent flowering in rice is regulated by HEADING DATE 1 (Hd1), which acts as both an activator and repressor of flowering in a daylength-dependent manner. To investigate the use of microProteins as a tool to modify rice sensitivity to the photoperiod, we designed a synthetic Hd1 microProtein (Hd1miP) capable of interacting with Hd1 protein, and overexpressed it in rice. Transgenic OX-Hd1miP plants flowered significantly earlier than wild type plants when grown in non-inductive long day conditions. Our results show the potential of microProteins to serve as powerful tools for modulating crop traits and unraveling protein function.
Collapse
Affiliation(s)
- Tenai Eguen
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Jorge Gomez Ariza
- Department of Biosciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Vittoria Brambilla
- Department of Biosciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Bin Sun
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Kaushal Kumar Bhati
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Fabio Fornara
- Department of Biosciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
33
|
Man J, Gallagher JP, Bartlett M. Structural evolution drives diversification of the large LRR-RLK gene family. THE NEW PHYTOLOGIST 2020; 226:1492-1505. [PMID: 31990988 PMCID: PMC7318236 DOI: 10.1111/nph.16455] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/19/2020] [Indexed: 05/11/2023]
Abstract
●Cells are continuously exposed to chemical signals that they must discriminate between and respond to appropriately. In embryophytes, the leucine-rich repeat receptor-like kinases (LRR-RLKs) are signal receptors critical in development and defense. LRR-RLKs have diversified to hundreds of genes in many plant genomes. Although intensively studied, a well-resolved LRR-RLK gene tree has remained elusive. ●To resolve the LRR-RLK gene tree, we developed an improved gene discovery method based on iterative hidden Markov model searching and phylogenetic inference. We used this method to infer complete gene trees for each of the LRR-RLK subclades and reconstructed the deepest nodes of the full gene family. ●We discovered that the LRR-RLK gene family is even larger than previously thought, and that protein domain gains and losses are prevalent. These structural modifications, some of which likely predate embryophyte diversification, led to misclassification of some LRR-RLK variants as members of other gene families. Our work corrects this misclassification. ●Our results reveal ongoing structural evolution generating novel LRR-RLK genes. These new genes are raw material for the diversification of signaling in development and defense. Our methods also enable phylogenetic reconstruction in any large gene family.
Collapse
Affiliation(s)
- Jarrett Man
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Joseph P. Gallagher
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| | - Madelaine Bartlett
- Biology DepartmentUniversity of Massachusetts Amherst611 North Pleasant Street, 221 Morrill 3AmherstMA01003USA
| |
Collapse
|
34
|
Hong SY, Botterweg-Paredes E, Doll J, Eguen T, Blaakmeer A, Matton S, Xie Y, Skjøth Lunding B, Zentgraf U, Guan C, Jiao Y, Wenkel S. Multi-level analysis of the interactions between REVOLUTA and MORE AXILLARY BRANCHES 2 in controlling plant development reveals parallel, independent and antagonistic functions. Development 2020; 147:dev.183681. [PMID: 32345745 PMCID: PMC7325436 DOI: 10.1242/dev.183681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 04/19/2020] [Indexed: 12/26/2022]
Abstract
Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play fundamental roles in controlling plant development. The known HD-ZIPIII target genes encode proteins involved in the production and dissipation of the auxin signal, HD-ZIPII transcription factors and components that feedback to regulate HD-ZIPIII expression or protein activity. Here, we have investigated the regulatory hierarchies of the control of MORE AXILLARY BRANCHES2 (MAX2) by the HD-ZIPIII protein REVOLUTA (REV). We found that REV can interact with the promoter of MAX2 In agreement, rev10D gain-of-function mutants had increased levels of MAX2 expression, while rev loss-of-function mutants showed lower levels of MAX2 in some tissues. Like REV, MAX2 plays known roles in the control of plant architecture, photobiology and senescence, which prompted us to initiate a multi-level analysis of growth phenotypes of hd-zipIII, max2 and respective higher order mutants thereof. Our data suggest a complex relationship of synergistic and antagonistic activities between REV and MAX2; these interactions appear to depend on the developmental context and do not all involve the direct regulation of MAX2 by REV.
Collapse
Affiliation(s)
- Shin-Young Hong
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Esther Botterweg-Paredes
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Jasmin Doll
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Tenai Eguen
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Anko Blaakmeer
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sanne Matton
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Yakun Xie
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Bjørg Skjøth Lunding
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ulrike Zentgraf
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Chunmei Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and National Center for Plant Gene Research, Beijing 100101, China
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark .,Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.,Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.,NovoCrops Center, PLEN, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
35
|
Kubatova N, Pyper DJ, Jonker HRA, Saxena K, Remmel L, Richter C, Brantl S, Evguenieva‐Hackenberg E, Hess WR, Klug G, Marchfelder A, Soppa J, Streit W, Mayzel M, Orekhov VY, Fuxreiter M, Schmitz RA, Schwalbe H. Rapid Biophysical Characterization and NMR Spectroscopy Structural Analysis of Small Proteins from Bacteria and Archaea. Chembiochem 2020; 21:1178-1187. [PMID: 31705614 PMCID: PMC7217052 DOI: 10.1002/cbic.201900677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 01/08/2023]
Abstract
Proteins encoded by small open reading frames (sORFs) have a widespread occurrence in diverse microorganisms and can be of high functional importance. However, due to annotation biases and their technically challenging direct detection, these small proteins have been overlooked for a long time and were only recently rediscovered. The currently rapidly growing number of such proteins requires efficient methods to investigate their structure-function relationship. Herein, a method is presented for fast determination of the conformational properties of small proteins. Their small size makes them perfectly amenable for solution-state NMR spectroscopy. NMR spectroscopy can provide detailed information about their conformational states (folded, partially folded, and unstructured). In the context of the priority program on small proteins funded by the German research foundation (SPP2002), 27 small proteins from 9 different bacterial and archaeal organisms have been investigated. It is found that most of these small proteins are unstructured or partially folded. Bioinformatics tools predict that some of these unstructured proteins can potentially fold upon complex formation. A protocol for fast NMR spectroscopy structure elucidation is described for the small proteins that adopt a persistently folded structure by implementation of new NMR technologies, including automated resonance assignment and nonuniform sampling in combination with targeted acquisition.
Collapse
Affiliation(s)
- Nina Kubatova
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Dennis J. Pyper
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Hendrik R. A. Jonker
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Laura Remmel
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| | - Sabine Brantl
- AG BakteriengenetikMatthias-Schleiden-InstitutPhilosophenweg 1207743JenaGermany
| | - Elena Evguenieva‐Hackenberg
- Institute for Microbiology and Molecular BiologyJustus Liebig University GiessenHeinrich-Buff-Ring 2635392GiessenGermany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental BioinformaticsAlbert Ludwigs University FreiburgSchänzlestrasse 179104FreiburgGermany
| | - Gabriele Klug
- Institute for Microbiology and Molecular BiologyJustus Liebig University GiessenHeinrich-Buff-Ring 2635392GiessenGermany
| | | | - Jörg Soppa
- Institute for Molecular BiosciencesJohann Wolfgang Goethe UniversityMax-von-Laue-Strasse 960438Frankfurt am MainGermany
| | - Wolfgang Streit
- Department of Microbiology and BiotechnologyUniversity of HamburgOhnhorststrasse 1822609HamburgGermany
| | - Maxim Mayzel
- Swedish NMR CentreUniversity of GothenburgP. O. Box 46540530GothenburgSweden
| | - Vladislav Y. Orekhov
- Swedish NMR CentreUniversity of GothenburgP. O. Box 46540530GothenburgSweden
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemigården 441296GothenburgSweden
| | - Monika Fuxreiter
- MTA-DE Laboratory of Protein DynamicsDepartment of Biochemistry and Molecular BiologyUniversity of DebrecenNagyerdei krt 984032DebrecenHungary
| | - Ruth A. Schmitz
- Institute for General MicrobiologyChristian Albrechts University KielAm Botanischen Garten 1–924118KielGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe UniversityMax-von-Laue-Strasse 760438Frankfurt/MainGermany
| |
Collapse
|
36
|
Radial or Bilateral? The Molecular Basis of Floral Symmetry. Genes (Basel) 2020; 11:genes11040395. [PMID: 32268578 PMCID: PMC7230197 DOI: 10.3390/genes11040395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants.
Collapse
|
37
|
Bartlett M. Looking back to look forward: protein-protein interactions and the evolution of development. THE NEW PHYTOLOGIST 2020; 225:1127-1133. [PMID: 31494948 DOI: 10.1111/nph.16179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
The evolutionary modification of development was fundamental in generating extant plant diversity. Similarly, the modification of development is a path forward to engineering the plants of the future, provided we know enough about what to modify. Understanding how extant diversity was generated will reveal productive pathways forward for modifying development. Here, I discuss four examples of developmental pathways that have been remodeled by changes to protein-protein interactions. These are cases where changes to developmental pathways have been paralleled by recent changes, selected for or engineered by humans. Extant plant diversity represents a vast treasure trove of molecular solutions to ecological problems. Mining this treasure trove will allow for the intentional modification of plant development for solving future problems.
Collapse
Affiliation(s)
- Madelaine Bartlett
- University of Massachusetts Amherst, 611 North Pleasant Street, 221 Morrill 2, Amherst, MA, 01003, USA
| |
Collapse
|
38
|
Fesenko I, Kirov I, Kniazev A, Khazigaleeva R, Lazarev V, Kharlampieva D, Grafskaia E, Zgoda V, Butenko I, Arapidi G, Mamaeva A, Ivanov V, Govorun V. Distinct types of short open reading frames are translated in plant cells. Genome Res 2019; 29:1464-1477. [PMID: 31387879 PMCID: PMC6724668 DOI: 10.1101/gr.253302.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023]
Abstract
Genomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant Physcomitrella patens (moss). Several distinct classes of sORFs that differ in terms of their position on transcripts and the level of evolutionary conservation are present in the moss genome. Over 5000 sORFs were conserved in at least one of 10 plant species examined. Mass spectrometry analysis of proteomic and peptidomic data sets suggested that tens of sORFs located on distinct parts of mRNAs and long noncoding RNAs (lncRNAs) are translated, including conserved sORFs. Translational analysis of the sORFs and main ORFs at a single locus suggested the existence of genes that code for multiple proteins and peptides with tissue-specific expression. Functional analysis of four lncRNA-encoded peptides showed that sORFs-encoded peptides are involved in regulation of growth and differentiation in moss. Knocking out lncRNA-encoded peptides resulted in a decrease of moss growth. In contrast, the overexpression of these peptides resulted in a diverse range of phenotypic effects. Our results thus open new avenues for discovering novel, biologically active peptides in the plant kingdom.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Ilya Kirov
- Laboratory of marker-assisted and genomic selection of plants, All-Russian Research Institute of Agricultural Biotechnology, 127550 Moscow, Russian Federation
| | - Andrey Kniazev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Regina Khazigaleeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vassili Lazarev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Daria Kharlampieva
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Ekaterina Grafskaia
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation.,Moscow Institute of Physics and Technology (National Research University), 141701 Dolgoprudny, Moscow Region, Russian Federation
| | - Viktor Zgoda
- Laboratory of System Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russian Federation
| | - Ivan Butenko
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Georgy Arapidi
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation.,Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| | - Anna Mamaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vadim Ivanov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russian Federation
| | - Vadim Govorun
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russian Federation
| |
Collapse
|
39
|
Raimundo J, Sobral R, Laranjeira S, Costa MMR. Successive Domain Rearrangements Underlie the Evolution of a Regulatory Module Controlled by a Small Interfering Peptide. Mol Biol Evol 2019; 35:2873-2885. [PMID: 30203071 PMCID: PMC6278869 DOI: 10.1093/molbev/msy178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The establishment of new interactions between transcriptional regulators increases the regulatory diversity that drives phenotypic novelty. To understand how such interactions evolve, we have studied a regulatory module (DDR) composed by three MYB-like proteins: DIVARICATA (DIV), RADIALIS (RAD), and DIV-and-RAD-Interacting Factor (DRIF). The DIV and DRIF proteins form a transcriptional complex that is disrupted in the presence of RAD, a small interfering peptide, due to the formation of RAD–DRIF dimers. This dynamic interaction result in a molecular switch mechanism responsible for the control of distinct developmental processes in plants. Here, we have determined how the DDR regulatory module was established by analyzing the origin and evolution of the DIV, DRIF, and RAD protein families and the evolutionary history of their interactions. We show that duplications of a pre-existing MYB domain originated the DIV and DRIF protein families in the ancestral lineage of green algae, and, later, the RAD family in seed plants. Intraspecies interactions between the MYB domains of DIV and DRIF proteins are detected in green algae, whereas the earliest evidence of an interaction between DRIF and RAD proteins occurs in the gymnosperms, coincident with the establishment of the RAD family. Therefore, the DDR module evolved in a stepwise progression with the DIV–DRIF transcription complex evolving prior to the antagonistic RAD–DRIF interaction that established the molecular switch mechanism. Our results suggest that the successive rearrangement and divergence of a single protein domain can be an effective evolutionary mechanism driving new protein interactions and the establishment of novel regulatory modules.
Collapse
Affiliation(s)
- João Raimundo
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ
| | - Rómulo Sobral
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Sara Laranjeira
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
| | - Maria Manuela R Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal
| |
Collapse
|
40
|
Li HM, Ma XL, Li HG. Intriguing circles: Conflicts and controversies in circular RNA research. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1538. [PMID: 31034768 DOI: 10.1002/wrna.1538] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Circular RNAs (circRNAs) are covalently closed RNA circles without a 5' cap or 3' tail. Since the landmark discovery of ciRS-7/CDR1as functioning as a miR-7 sponge in 2013, circRNAs have become a hot topic in RNA research. CircRNAs have been found to play active roles in cancer, cardiovascular diseases, neurological disorders, and many other diseases. They can function as microRNA (miRNA) sponges, protein scaffolds, and even translation templates. However, as circRNA research expands, many divergent views have emerged. For example, are most circRNAs competent in serving as miRNA sponges? What kinds of circRNAs are most likely to sponge miRNAs? Apart from sponging miRNAs, what could the functions of most circRNAs be? What are the features of circRNAs that are translatable? Many researchers have claimed that circRNAs are abundant, stable, conserved, and specific molecules, which hold great potential in serving as biomarkers. However, circRNA abundance is variable and some circRNAs are abundant while others are not. In addition, their stability and conservation may vary under different circumstances. Furthermore, it is unclear whether circRNA biogenesis is more likely to be regulated by RNA binding proteins or transcription factors. All of these are open questions that remain to be answered by researchers in this field. Discussing and investigating these questions will advance the understanding of this class of novel molecules and may propel inspiring new ideas for future studies. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease RNA Methods > RNA Analyses in Cells RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Hui-Min Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Xiu-Lan Ma
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Hong-Gang Li
- Family Planning Research Institute/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China.,Wuhan Tongji Reproductive Medicine Hospital, Wuhan, 430030, P. R. China
| |
Collapse
|
41
|
Scheidler CM, Kick LM, Schneider S. Ribosomal Peptides and Small Proteins on the Rise. Chembiochem 2019; 20:1479-1486. [PMID: 30648812 DOI: 10.1002/cbic.201800715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 11/05/2022]
Abstract
Genetically encoded and ribosomally synthesised peptides and small proteins act as important regulators in fundamental cellular processes, including gene expression, development, signalling and metabolism. Moreover, they also play a crucial role in eukaryotic and prokaryotic defence against microorganisms. Extremely diverse in size and structure, they are often subject to extensive post-translational modification. Recent technological advances are now allowing the analysis of the whole cellular transcriptome and proteome, revealing the presence of hundreds of long-overlooked alternative and short open reading frames (short ORFs, or sORFs) in mRNA and supposedly noncoding RNAs. However, in many instances the biological roles of their translational products remain to be elucidated. Here we provide an overview on the intriguing structural and functional diversity of ribosomally synthesised peptides and newly discovered peptides and small proteins.
Collapse
Affiliation(s)
- Christopher M Scheidler
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Leonhard M Kick
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| | - Sabine Schneider
- Center for Integrated Protein Science at the Department of Chemistry, Chair of Biochemistry, Technical University of Munich, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
42
|
Abstract
INTRODUCTION Small open reading frames (sORFs) with potential protein-coding capacity have been disclosed in various transcripts, including long noncoding RNAs (LncRNAs), mRNAs (5'-upstream, coding domain, and 3'-downstream), circular RNAs, pri-miRNAs, and ribosomal RNAs (rRNAs). Recent characterization of several sORF-encoded peptides (SEPs or micropeptides) revealed their important roles in many fundamental biological processes in a broad range of species from yeast to human. The success in the mining of micropeptides attributes to the advanced bioinformatics and high-throughput sequencing techniques. Areas covered: sORFs and SEPs were overlooked for their tiny size and the difficulty of identification by bioinformatics analyses. With more and more sORFs and SEPs have been identified, this field has attracted more attention. This review covers recent advances in the strategies for the detection and identification of sORFs and SEPs. Expert commentary: The advantages and drawbacks of the strategies for detection and identification of sORFs and SEPs are discussed, as well as the techniques that are used to decipher the roles of micropeptides in organisms are described.
Collapse
Affiliation(s)
- Xinqiang Yin
- a The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province , China Pharmaceutical University , Nanjing , China.,b The Basic Medical School , North Sichuan Medical College , Nanchong , China
| | - Yuanyuan Jing
- c Department of Preventive Medicine , North Sichuan Medical College , Nanchong , China
| | - Hanmei Xu
- a The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province , China Pharmaceutical University , Nanjing , China.,d State Key Laboratory of Natural Medicines, Ministry of Education , China Pharmaceutical University , Nanjing , China
| |
Collapse
|
43
|
Valoroso MC, Sobral R, Saccone G, Salvemini M, Costa MMR, Aceto S. Evolutionary Conservation of the Orchid MYB Transcription Factors DIV, RAD, and DRIF. FRONTIERS IN PLANT SCIENCE 2019; 10:1359. [PMID: 31736999 PMCID: PMC6838138 DOI: 10.3389/fpls.2019.01359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 05/02/2023]
Abstract
The MYB transcription factors DIVARICATA (DIV), DIV-and-RAD-Interacting-Factor (DRIF), and the small interfering peptide RADIALIS (RAD) can interact, forming a regulatory module that controls different plant developmental processes. In the snapdragon Antirrhinum majus, this module, together with the TCP transcription factor CYCLOIDEA (CYC), is responsible for the establishment of floral dorsoventral asymmetry. The spatial gene expression pattern of the OitDIV, OitDRIF, and OitRAD homologs of Orchis italica, an orchid with zygomorphic flowers, has suggested a possible conserved role of these genes in bilateral symmetry of the orchid flower. Here, we have identified four DRIF genes of orchids and have reconstructed their genomic organization and evolution. In addition, we found snapdragon transcriptional cis-regulatory elements of DIV and RAD loci generally conserved within the corresponding orchid orthologues. We have tested the biochemical interactions among OitDIV, OitDRIF1, and OitRAD of O. italica, showing that OitDRIF1 can interact both with OitDIV and OitRAD, whereas OitDIV and OitRAD do not directly interact, as in A. majus. The analysis of the quantitative expression profile of these MYB genes revealed that in zygomorphic orchid flowers, the DIV, DRIF1, and RAD transcripts are present at higher levels in the lip than in lateral inner tepals, whereas in peloric orchid flowers they show similar expression levels. These results indicate that MYB transcription factors could have a role in shaping zygomorphy of the orchid flower, potentially enriching the underlying orchid developmental code.
Collapse
Affiliation(s)
| | - Rómulo Sobral
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Manuela Ribeiro Costa
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Serena Aceto,
| |
Collapse
|
44
|
Dhamija S, Menon MB. Non-coding transcript variants of protein-coding genes - what are they good for? RNA Biol 2018; 15:1025-1031. [PMID: 30146915 DOI: 10.1080/15476286.2018.1511675] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The total number of protein-coding genes in the human genome is not significantly higher than those in much simpler eukaryotes, despite a general increase in genome size proportionate to the organismal complexity. The large non-coding transcriptome and extensive differential splicing, are increasingly being accepted as the factors contributing to the complex mammalian physiology and architecture. Recent studies reveal additional layers of functional complexity: some long non-coding RNAs have been re-defined as micropeptide or microprotein encoding transcripts, and in turn some protein-coding RNAs are bifunctional and display also non-coding functions. Moreover, several protein-coding genes express long non-coding RNA splice-forms and generate circular RNAs in addition to their canonical mRNA transcripts, revoking the strict definition of a gene as coding or non-coding. In this mini review, we discuss the current understanding of these hybrid genes and their possible roles and relevance.
Collapse
Affiliation(s)
- Sonam Dhamija
- a Division of Cancer Research, Department of Thoracic Surgery , Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg , Freiburg , Germany.,b Division of RNA Biology & Cancer , German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Manoj B Menon
- c Institute of Cell Biochemistry , Hannover Medical School , Hannover , Germany
| |
Collapse
|
45
|
Bhati KK, Blaakmeer A, Paredes EB, Dolde U, Eguen T, Hong SY, Rodrigues V, Straub D, Sun B, Wenkel S. Approaches to identify and characterize microProteins and their potential uses in biotechnology. Cell Mol Life Sci 2018; 75:2529-2536. [PMID: 29670998 PMCID: PMC6003976 DOI: 10.1007/s00018-018-2818-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/05/2018] [Accepted: 04/13/2018] [Indexed: 01/29/2023]
Abstract
MicroProteins are small proteins that contain a single protein domain and are related to larger, often multi-domain proteins. At the molecular level, microProteins act by interfering with the formation of higher order protein complexes. In the past years, several microProteins have been identified in plants and animals that strongly influence biological processes. Due to their ability to act as dominant regulators in a targeted manner, microProteins have a high potential for biotechnological use. In this review, we present different ways in which microProteins are generated and we elaborate on techniques used to identify and characterize them. Finally, we give an outlook on possible applications in biotechnology.
Collapse
Affiliation(s)
- Kaushal Kumar Bhati
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Anko Blaakmeer
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Esther Botterweg Paredes
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Ulla Dolde
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Tenai Eguen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Shin-Young Hong
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Vandasue Rodrigues
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Bin Sun
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
- Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
46
|
Straub D, Wenkel S. Cross-Species Genome-Wide Identification of Evolutionary Conserved MicroProteins. Genome Biol Evol 2017; 9:777-789. [PMID: 28338802 PMCID: PMC5381583 DOI: 10.1093/gbe/evx041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
MicroProteins are small single-domain proteins that act by engaging their targets into different, sometimes nonproductive protein complexes. In order to identify novel microProteins in any sequenced genome of interest, we have developed miPFinder, a program that identifies and classifies potential microProteins. In the past years, several microProteins have been discovered in plants where they are mainly involved in the regulation of development by fine-tuning transcription factor activities. The miPFinder algorithm identifies all up to date known plant microProteins and extends the microProtein concept beyond transcription factors to other protein families. Here, we reveal potential microProtein candidates in several plant and animal reference genomes. A large number of these microProteins are species-specific while others evolved early and are evolutionary highly conserved. Most known microProtein genes originated from large ancestral genes by gene duplication, mutation and subsequent degradation. Gene ontology analysis shows that putative microProtein ancestors are often located in the nucleus, and involved in DNA binding and formation of protein complexes. Additionally, microProtein candidates act in plant transcriptional regulation, signal transduction and anatomical structure development. MiPFinder is freely available to find microProteins in any genome and will aid in the identification of novel microProteins in plants and animals.
Collapse
Affiliation(s)
- Daniel Straub
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg C, Denmark
| | - Stephan Wenkel
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.,Copenhagen Plant Science Centre, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
47
|
Reciprocal cross-regulation of VND and SND multigene TF families for wood formation in Populus trichocarpa. Proc Natl Acad Sci U S A 2017; 114:E9722-E9729. [PMID: 29078399 DOI: 10.1073/pnas.1714422114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Secondary cell wall (SCW) biosynthesis is the biological process that generates wood, an important renewable feedstock for materials and energy. NAC domain transcription factors, particularly Vascular-Related NAC-Domain (VND) and Secondary Wall-Associated NAC Domain (SND) proteins, are known to regulate SCW differentiation. The regulation of VND and SND is important to maintain homeostasis for plants to avoid abnormal growth and development. We previously identified a splice variant, PtrSND1-A2IR , derived from PtrSND1-A2 as a dominant-negative regulator, which suppresses the transactivation of all PtrSND1 family members. PtrSND1-A2IR also suppresses the self-activation of the PtrSND1 family members except for its cognate transcription factor, PtrSND1-A2, suggesting the existence of an unknown factor needed to regulate PtrSND1-A2 Here, a splice variant, PtrVND6-C1IR , derived from PtrVND6-C1 was discovered that suppresses the protein functions of all PtrVND6 family members. PtrVND6-C1IR also suppresses the expression of all PtrSND1 members, including PtrSND1-A2, demonstrating that PtrVND6-C1IR is the previously unidentified regulator of PtrSND1-A2 We also found that PtrVND6-C1IR cannot suppress the expression of its cognate transcription factor, PtrVND6-C1PtrVND6-C1 is suppressed by PtrSND1-A2IR Both PtrVND6-C1IR and PtrSND1-A2IR cannot suppress their cognate transcription factors but can suppress all members of the other family. The results indicate that the splice variants from the PtrVND6 and PtrSND1 family may exert reciprocal cross-regulation for complete transcriptional regulation of these two families in wood formation. This reciprocal cross-regulation between families suggests a general mechanism among NAC domain proteins and likely other transcription factors, where intron-retained splice variants provide an additional level of regulation.
Collapse
|
48
|
Mishra BS, Jamsheer K M, Singh D, Sharma M, Laxmi A. Genome-Wide Identification and Expression, Protein-Protein Interaction and Evolutionary Analysis of the Seed Plant-Specific BIG GRAIN and BIG GRAIN LIKE Gene Family. FRONTIERS IN PLANT SCIENCE 2017; 8:1812. [PMID: 29118774 PMCID: PMC5660992 DOI: 10.3389/fpls.2017.01812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 05/10/2023]
Abstract
BIG GRAIN1 (BG1) is an auxin-regulated gene which functions in auxin pathway and positively regulates biomass, grain size and yield in rice. However, the evolutionary origin and divergence of these genes are still unknown. In this study, we found that BG genes are probably originated in seed plants. We also identified that seed plants evolved a class of BIG GRAIN LIKE (BGL) genes which share conserved middle and C-terminal motifs with BG. The BG genes were present in all monocot and eudicot species analyzed; however, the BGL genes were absent in few monocot lineages. Both BG and BGL were found to be serine-rich proteins; however, differences in expansion and rates of retention after whole genome duplication events were observed. Promoters of BG and BGL genes were found to be enriched with auxin-responsive elements and the Arabidopsis thaliana BG and BGL genes were found to be auxin-regulated. The auxin-induced expression of AthBG2 was found to be dependent on the conserved ARF17/19 module. Protein-protein interaction analysis identified that AthBG2 interact with regulators of splicing, transcription and chromatin remodeling. Taken together, this study provides interesting insights about BG and BGL genes and incentivizes future work in this gene family which has the potential to be used for crop manipulation.
Collapse
|
49
|
Graeff M, Straub D, Eguen T, Dolde U, Rodrigues V, Brandt R, Wenkel S. MicroProtein-Mediated Recruitment of CONSTANS into a TOPLESS Trimeric Complex Represses Flowering in Arabidopsis. PLoS Genet 2016; 12:e1005959. [PMID: 27015278 PMCID: PMC4807768 DOI: 10.1371/journal.pgen.1005959] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 03/04/2016] [Indexed: 11/19/2022] Open
Abstract
MicroProteins are short, single domain proteins that act by sequestering larger, multi-domain proteins into non-functional complexes. MicroProteins have been identified in plants and animals, where they are mostly involved in the regulation of developmental processes. Here we show that two Arabidopsis thaliana microProteins, miP1a and miP1b, physically interact with CONSTANS (CO) a potent regulator of flowering time. The miP1a/b-type microProteins evolved in dicotyledonous plants and have an additional carboxy-terminal PF(V/L)FL motif. This motif enables miP1a/b microProteins to interact with TOPLESS/TOPLESS-RELATED (TPL/TPR) proteins. Interaction of CO with miP1a/b/TPL causes late flowering due to a failure in the induction of FLOWERING LOCUS T (FT) expression under inductive long day conditions. Both miP1a and miP1b are expressed in vascular tissue, where CO and FT are active. Genetically, miP1a/b act upstream of CO thus our findings unravel a novel layer of flowering time regulation via microProtein-inhibition.
Collapse
Affiliation(s)
- Moritz Graeff
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Straub
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tenai Eguen
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ulla Dolde
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vandasue Rodrigues
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ronny Brandt
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Stephan Wenkel
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- Copenhagen Plant Science Centre, University of Copenhagen, Copenhagen, Denmark
- Department for Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
50
|
Christie N, Tobias PA, Naidoo S, Külheim C. The Eucalyptus grandis NBS-LRR Gene Family: Physical Clustering and Expression Hotspots. FRONTIERS IN PLANT SCIENCE 2016; 6:1238. [PMID: 26793216 PMCID: PMC4709456 DOI: 10.3389/fpls.2015.01238] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/20/2015] [Indexed: 05/03/2023]
Abstract
Eucalyptus grandis is a commercially important hardwood species and is known to be susceptible to a number of pests and pathogens. Determining mechanisms of defense is therefore a research priority. The published genome for E. grandis has aided the identification of one important class of resistance (R) genes that incorporate nucleotide binding sites and leucine-rich repeat domains (NBS-LRR). Using an iterative search process we identified NBS-LRR gene models within the E. grandis genome. We characterized the gene models and identified their genomic arrangement. The gene expression patterns were examined in E. grandis clones, challenged with a fungal pathogen (Chrysoporthe austroafricana) and insect pest (Leptocybe invasa). One thousand two hundred and fifteen putative NBS-LRR coding sequences were located which aligned into two large classes, Toll or interleukin-1 receptor (TIR) and coiled-coil (CC) based on NB-ARC domains. NBS-LRR gene-rich regions were identified with 76% organized in clusters of three or more genes. A further 272 putative incomplete resistance genes were also identified. We determined that E. grandis has a higher ratio of TIR to CC classed genes compared to other woody plant species as well as a smaller percentage of single NBS-LRR genes. Transcriptome profiles indicated expression hotspots, within physical clusters, including expression of many incomplete genes. The clustering of putative NBS-LRR genes correlates with differential expression responses in resistant and susceptible plants indicating functional relevance for the physical arrangement of this gene family. This analysis of the repertoire and expression of E. grandis putative NBS-LRR genes provides an important resource for the identification of novel and functional R-genes; a key objective for strategies to enhance resilience.
Collapse
Affiliation(s)
- Nanette Christie
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Peri A. Tobias
- Department of Plant and Food Sciences, Faculty of Agriculture and Environment, University of SydneyNSW, Australia
| | - Sanushka Naidoo
- Department of Genetics, Forestry and Agricultural Biotechnology Institute, Genomics Research Institute, University of PretoriaPretoria, South Africa
| | - Carsten Külheim
- Research School of Biology, College of Medicine, Biology and Environment, Australian National UniversityCanberra, ACT, Australia
| |
Collapse
|