1
|
Tang Y, Li G, Zhang T, Ren H, Yang X, Yang L, Guo D, Shen Y. Digital channel-enabled distributed force decoding via small datasets for hand-centric interactions. SCIENCE ADVANCES 2025; 11:eadt2641. [PMID: 39841827 PMCID: PMC11753382 DOI: 10.1126/sciadv.adt2641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/18/2024] [Indexed: 01/24/2025]
Abstract
Tactile interfaces are essential for enhancing human-machine interactions, yet achieving large-scale, precise distributed force sensing remains challenging due to signal coupling and inefficient data processing. Inspired by the spiral structure of Aloe polyphylla and the processing principles of neuronal systems, this study presents a digital channel-enabled distributed force decoding strategy, resulting in a phygital tactile sensing system named PhyTac. This innovative system effectively prevents marker overlap and accurately identifies multipoint stimuli up to 368 regions from coupled signals. By integrating physics into model training, we reduce the dataset size to just 45 kilobytes, surpassing conventional methods that typically exceed 1 gigabyte. Results demonstrate PhyTac's impressive fidelity of 97.7% across a sensing range of 0.5 to 25 newtons, enabling diverse applications in medical evaluation, sports training, virtual reality, and robotics. This research not only enhances our understanding of hand-centric actions but also highlights the convergence of physical and digital realms, paving the way for advancements in AI-based sensor technologies.
Collapse
Affiliation(s)
- Yifeng Tang
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Gen Li
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Tieshan Zhang
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Hao Ren
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiong Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Liu Yang
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Dong Guo
- The Robot and Automation Center and the Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yajing Shen
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, 999077, China
- Center for Smart Manufacturing, Hong Kong University of Science and Technology, Hong Kong, 999077, China
| |
Collapse
|
2
|
Paley D, Sutaria S, Pinsky D, Roberts D, Robbins C. Is human height based on a Lucas sequence relationship between the foot height, tibial length, femur length and upper body length? J Anat 2024; 244:861-872. [PMID: 38284144 PMCID: PMC11021610 DOI: 10.1111/joa.14002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/06/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024] Open
Abstract
This is a retrospective chart and radiographic review of 145 patients who underwent full-body EOS imaging; 109 males and 36 females. The mean ages of the female and male subsets are 28.8 (SD = 11.6) years and 29.5 (SD = 11.8) years, respectively. The sum of the foot height (Ft) and the tibial length (T) for each subject was compared to their femur length (Fe). Subsequently, the sum of the tibial (T) and femoral lengths (Fe) were compared to their respective upper body lengths (UB), as measured from the tops of the femoral heads. A linear regression test was performed to determine whether a Lucas sequence-based relationship exists between Ft + T and Fe, and between T + Fe and UB. The regression for the relationship between Ft + T and Fe for the entire cohort (R = 0.82, R2 = 0.70), the female subset (R = 0.94, R2 = 0.88) and the male subset (R = 0.75, R2 = 0.57), all demonstrated a strong positive correlation between Ft + T and Fe and showed that Ft + T is a likely predictor of Fe. The regression test for the entire cohort demonstrated a moderately positive correlation between T + Fe and UB (R = 0.41, R2 = 0.17, F(1, 145) = 29.42, p = 2.4E-07). A stronger correlation was found for the relationship between T + Fe and UB (R = 0.57, R2 = 0.32, F(1, 35) = 16.64, p = 2.5E-05) for the female subset relative to the male subset (R = 0.20, R2 = 0.038, F(1, 35) = 4.37, p = 0.04). There appears to be a Lucas sequence relationship between the lengths of the foot height, tibial length, femoral length and upper body length, which together make up standing height. This mathematical proportion relationship is stronger in females than males.
Collapse
Affiliation(s)
- Dror Paley
- Paley Orthopedic & Spine Institute - Surgical, West Palm Beach, Florida, USA
| | - Sahra Sutaria
- Paley Orthopedic & Spine Institute - Surgical, West Palm Beach, Florida, USA
| | - Daelan Pinsky
- Paley Orthopedic & Spine Institute - Surgical, West Palm Beach, Florida, USA
| | - Darin Roberts
- Paley Orthopedic & Spine Institute - Surgical, West Palm Beach, Florida, USA
| | - Craig Robbins
- Paley Orthopedic & Spine Institute - Surgical, West Palm Beach, Florida, USA
| |
Collapse
|
3
|
Zhang T, Elomaa P. Development and evolution of the Asteraceae capitulum. THE NEW PHYTOLOGIST 2024; 242:33-48. [PMID: 38361269 DOI: 10.1111/nph.19590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/28/2024] [Indexed: 02/17/2024]
Abstract
Asteraceae represent one of the largest and most diverse families of plants. The evolutionary success of this family has largely been contributed to their unique inflorescences, capitula that mimic solitary flowers but are typically aggregates of multiple florets. Here, we summarize the recent molecular and genetic level studies that have promoted our understanding of the development and evolution of capitula. We focus on new results on patterning of the enlarged meristem resulting in the iconic phyllotactic arrangement of florets in Fibonacci numbers of spirals. We also summarize the current understanding of the genetic networks regulating the characteristic reproductive traits in the family such as floral dimorphism and differentiation of highly specialized floral organs. So far, developmental studies in Asteraceae are still limited to a very narrow selection of model species. Along with the recent advancements in genomics and phylogenomics, Asteraceae and its relatives provide an outstanding model clade for extended evo-devo studies to exploit the morphological diversity and the underlying molecular networks and to translate this knowledge to the breeding of the key crops in the family.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| |
Collapse
|
4
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
5
|
Wang Y, Jiao Y. Cell signaling in the shoot apical meristem. PLANT PHYSIOLOGY 2023; 193:70-82. [PMID: 37224874 DOI: 10.1093/plphys/kiad309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.
Collapse
Affiliation(s)
- Ying Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
6
|
Turner HA, Humpage M, Kerp H, Hetherington AJ. Leaves and sporangia developed in rare non-Fibonacci spirals in early leafy plants. Science 2023; 380:1188-1192. [PMID: 37319203 DOI: 10.1126/science.adg4014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
Lateral plant organs, including leaves and reproductive structures, are arranged on stems in distinct patterns termed phyllotaxis. Most extant plants exhibit phyllotactic patterns that are mathematically described by the Fibonacci series. However, it remains unclear what lateral organ arrangements were present in early leafy plants. To investigate this, we quantified phyllotaxis in fossils of the Early Devonian lycopod Asteroxylon mackiei. We report diverse phyllotaxis in leaves, including whorls and spirals. Spirals were all n:(n+1) non-Fibonacci types. We also show that leaves and reproductive structures occurred in the same phyllotactic series, indicating developmental similarities between the organs. Our findings shed light on the long-standing debate about leaf origins and demonstrate the antiquity of non-Fibonacci spirals in plants.
Collapse
Affiliation(s)
- Holly-Anne Turner
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Matthew Humpage
- Northern Rogue Studios, 18 Hunsdon Road, Iffley, Oxford OX4 4JE, UK
| | - Hans Kerp
- Research Group for Palaeobotany, Institute for Geology and Palaeontology, University Münster, Heisenbergstrasse 2, 48149 Münster, Germany
| | - Alexander J Hetherington
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
7
|
Organ Patterning at the Shoot Apical Meristem (SAM): The Potential Role of the Vascular System. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Auxin, which is transported in the outermost cell layer, is one of the major players involved in plant organ initiation and positioning at the shoot apical meristem (SAM). However, recent studies have recognized the role of putative internal signals as an important factor collaborating with the well-described superficial pathway of organogenesis regulation. Different internal signals have been proposed; however, their nature and transport route have not been precisely determined. Therefore, in this mini-review, we aimed to summarize the current knowledge regarding the auxin-dependent regulation of organ positioning at the SAM and to discuss the vascular system as a potential route for internal signals. In addition, as regular organ patterning is a universal phenomenon, we focus on the role of the vasculature in this process in the major lineages of land plants, i.e., bryophytes, lycophytes, ferns, gymnosperms, and angiosperms.
Collapse
|
8
|
Yu SX, Jiang YT, Lin WH. Ovule initiation: the essential step controlling offspring number in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:1469-1486. [PMID: 35713236 DOI: 10.1111/jipb.13314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Seed is the offspring of angiosperms. Plants produce large numbers of seeds to ensure effective reproduction and survival in varying environments. Ovule is a fundamentally important organ and is the precursor of the seed. In Arabidopsis and other plants characterized by multi-ovulate ovaries, ovule initiation determines the maximal ovule number, thus greatly affecting seed number per fruit and seed yield. Investigating the regulatory mechanism of ovule initiation has both scientific and economic significance. However, the genetic and molecular basis underlying ovule initiation remains unclear due to technological limitations. Very recently, rules governing the multiple ovules initiation from one placenta have been identified, the individual functions and crosstalk of phytohormones in regulating ovule initiation have been further characterized, and new regulators of ovule boundary are reported, therefore expanding the understanding of this field. In this review, we present an overview of current knowledge in ovule initiation and summarize the significance of ovule initiation in regulating the number of plant offspring, as well as raise insights for the future study in this field that provide potential routes for the improvement of crop yield.
Collapse
Affiliation(s)
- Shi-Xia Yu
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Tong Jiang
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wen-Hui Lin
- The Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Collaborative Innovation Center of Agri-Seeds/Joint Center for Single Cell Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|