1
|
Darriaut R, Roose-Amsaleg C, Vanhove M, Monard C. Microbiome engineering to palliate microbial dysbiosis occurring in agroecosystems. Microbiol Res 2025; 297:128178. [PMID: 40220558 DOI: 10.1016/j.micres.2025.128178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/28/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Plant health and productivity are closely tied to the fluctuations of soil microbiomes, which regulate biogeochemical processes and plant-soil interactions. However, environmental and anthropogenic stressors, including climate change, intensive agricultural practices, and industrial activities, disrupt these microbial communities. This microbial imbalance reduces soil fertility, plant health, and biodiversity, threatening agroecosystem sustainability. This review explores the mechanisms driving microbial dysbiosis in soil and plant environments. Plants under stress release chemical signals through root exudates, dynamically recruiting beneficial microbes to counteract microbial imbalances. Moreover, this review evaluates traditional methods to alleviate these stress-induced microbial alterations, such as microbial inoculants and organic soil amendments, alongside innovative strategies like phage therapy, CRISPR, and small RNA-based technologies. Despite these advancements, the practical implementation of microbiome interventions faces significant challenges. These include regulatory hurdles, economic constraints, and the need for long-term field studies to validate efficacy and ensure environmental safety.
Collapse
Affiliation(s)
- Romain Darriaut
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France.
| | - Céline Roose-Amsaleg
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| | - Mathieu Vanhove
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| | - Cécile Monard
- Univ Rennes, CNRS, ECOBIO (Ecosystèmes, biodiversité, évolution) - UMR 6553, Rennes F-35000, France
| |
Collapse
|
2
|
Zeng R, Shi Y, Guo L, Fu D, Li M, Zhang X, Li Z, Zhuang J, Yang X, Zuo J, Gong Z, Tian F, Yang S. A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize. Cell 2025; 188:1315-1329.e13. [PMID: 39842436 DOI: 10.1016/j.cell.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/03/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025]
Abstract
Low temperature severely limits the growth, yield, and geographical distribution of maize (Zea mays L.). How maize adapts to cold climates remains largely unclear. Here, we identify a basic helix-loop-helix (bHLH) transcription factor, COLD-RESPONSIVE OPERATION LOCUS 1 (COOL1), as a crucial regulator of maize cold tolerance through genome-wide association studies. Natural variations in the COOL1 promoter affect the binding affinity of ELONGATED HYPOCOTYL5 (HY5), a transcriptional factor repressing COOL1 transcription. COOL1, in turn, negatively regulates downstream cold-responsive genes, thereby modulating cold tolerance. Moreover, calcium-dependent protein kinase CPK17 translocates to the nucleus and stabilizes COOL1 in response to cold stress. Intriguingly, the cold-tolerant allele of COOL1 is predominantly distributed in northern high latitudes with cold climates. This study defines a previously unknown pathway by which the COOL1-centered module regulates cold tolerance for high latitudinal adaptation in maize.
Collapse
Affiliation(s)
- Rong Zeng
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Li Guo
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Diyi Fu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Minze Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhuoyang Li
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junhong Zhuang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jianru Zuo
- State Key Laboratory of Plant Genomics and National Plant Gene Research Center, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Zhang N, Tang L, Li S, Liu L, Gao M, Wang S, Chen D, Zhao Y, Zheng R, Soleymaniniya A, Zhang L, Wang W, Yang X, Ren Y, Sun C, Wilhelm M, Wang D, Li M, Chen F. Integration of multi-omics data accelerates molecular analysis of common wheat traits. Nat Commun 2025; 16:2200. [PMID: 40038279 DOI: 10.1038/s41467-025-57550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Integration of multi-omics data can provide information on biomolecules from different layers to illustrate the complex biology systematically. Here, we build a multi-omics atlas containing 132,570 transcripts, 44,473 proteins, 19,970 phosphoproteins, and 12,427 acetylproteins across wheat vegetative and reproductive phases. Using this atlas, we elucidate transcriptional regulation network, contributions of post-translational modification (PTM) and transcript level to protein abundance, and biased homoeolog expression and PTM in wheat. The genes/proteins related to wheat development and disease resistance are systematically analyzed, thus identifying phosphorylation and/or acetylation modifications for the seed proteins controlling wheat grain quality and the disease resistance-related genes. Lastly, a unique protein module TaHDA9-TaP5CS1, specifying de-acetylation of TaP5CS1 by TaHDA9, is discovered, which regulates wheat resistance to Fusarium crown rot via increasing proline content. Our atlas holds great promise for fast-tracking molecular biology and breeding studies in wheat and related crops.
Collapse
Affiliation(s)
- Ning Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Li Tang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Songgang Li
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lu Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengjuan Gao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sisheng Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Daiying Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yichao Zhao
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Ruiqing Zheng
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Armin Soleymaniniya
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, 84104, Germany
| | - Lingran Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenkang Wang
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China
| | - Xia Yang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yan Ren
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Congwei Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mathias Wilhelm
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, 84104, Germany
| | - Daowen Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha, 410083, China.
| | - Feng Chen
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping /Agronomy College, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
5
|
Xu K, Ke XR, Zhang WT, Wu XY, Song ZJ, Jiao MJ, Gao XJ, Zhou L, Ji HY, Wang F, Wu XL. Biodegradation of imidacloprid and diuron by Simplicillium sp. QHSH-33. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106177. [PMID: 39672632 DOI: 10.1016/j.pestbp.2024.106177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 12/15/2024]
Abstract
Imidacloprid (IMI) and diuron (DIU) are widely used pesticides in agricultural production. However, their excessive use and high residues have caused harm to the ecological environment and human health. Microbial remediation as an efficient and low-toxic method has become a research hotspot for controlling environmental pollutants. A fungus QHSH-33, identified as Simplicillium sp., has the ability to degrade neonicotinoids IMI and phenylurea DIU. When QHSH-33 and pesticide were co-cultured in liquid medium for 7 days, the degradation rates of IMI and DIU by QHSH-33 in simulated field soil microenvironment were 50.19 % and 70.57 %, respectively. Through HPLC-MS analysis, it was found that the degradation of IMI mainly involved nitro reduction, hydroxylation and other reactions. Three degradation pathways and eight degradation products were identified, among which two metabolites were obtained by microbial transformation of IMI for the first time. The degradation of DIU mainly involved demethylation and dehalogenation reactions, and two degradation pathways and four degradation products were identified, one of which was a new degradation product of DIU. Toxicity assessment demonstrated that most of the degradation products might be considerably less harmful than IMI and DIU. Whole genome sequencing of QHSH-33 revealed a genome size of 33.2 Mbp with 11,707 genes. The genome of QHSH-33 was annotated by KEGG to reveal 128 genes related to exogenous degradation and metabolism. After local blast with reported IMI and DIU degrading enzymes, seven IMI-degrading related genes and seven DIU-degrading related genes were identified in the QHSH-33 genome. The results of this study will help to expand our knowledge on the microbial decomposition metabolism of IMI and DIU, and provide new insights into the degradation mechanism of IMI and DIU in soil and pure culture system, laying a foundation for QHSH-33 strain applied to the removal, biotransformation or detoxification of IMI and DIU.
Collapse
Affiliation(s)
- Ke Xu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Xin-Ran Ke
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wan-Ting Zhang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Xin-Yuan Wu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Zhi-Jun Song
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Mei-Juan Jiao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Xiao-Juan Gao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Li Zhou
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China
| | - Hong-Yan Ji
- Department of Pharmaceutics, General Hospital of Ningxia Medical University, Yinchuan 750004, PR China.
| | - Fang Wang
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750004, PR China.
| | - Xiu-Li Wu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China.
| |
Collapse
|
6
|
Feng Z, Liang Q, Yao Q, Bai Y, Zhu H. The role of the rhizobiome recruited by root exudates in plant disease resistance: current status and future directions. ENVIRONMENTAL MICROBIOME 2024; 19:91. [PMID: 39550594 PMCID: PMC11569615 DOI: 10.1186/s40793-024-00638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Root exudates serve as a bridge connecting plant roots and rhizosphere microbes, playing a key role in influencing the assembly and function of the rhizobiome. Recent studies have fully elucidated the role of root exudates in recruiting rhizosphere microbes to enhance plant performance, particularly in terms of plant resistance to soil-borne pathogens; however, it should be noted that the composition and amount of root exudates are primarily quantitative traits regulated by a large number of genes in plants. As a result, there are knowledge gaps in understanding the contribution of the rhizobiome to soil-borne plant disease resistance and the ternary link of plant genes, root exudates, and disease resistance-associated microbes. Advancements in technologies such as quantitative trait loci (QTL) mapping and genome-wide association studies (GWAS) offer opportunities for the identification of genes associated with quantitative traits. In the present review, we summarize recent studies on the interactions of plant and rhizosphere microbes through root exudates to enhance soil-borne plant disease resistance and also highlight methods for quantifying the contribution of the rhizobiome to plant disease resistance and identifying the genes responsible for recruiting disease resistance-associated microbes through root exudates.
Collapse
Affiliation(s)
- Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qiuhong Liang
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Plant Protection, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Yao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangdong Engineering Research Center for Litchi, College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yang Bai
- Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| |
Collapse
|
7
|
Maulenbay A, Rsaliyev A. Fungal Disease Tolerance with a Focus on Wheat: A Review. J Fungi (Basel) 2024; 10:482. [PMID: 39057367 PMCID: PMC11277790 DOI: 10.3390/jof10070482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
In this paper, an extensive review of the literature is provided examining the significance of tolerance to fungal diseases in wheat amidst the escalating global demand for wheat and threats from environmental shifts and pathogen movements. The current comprehensive reliance on agrochemicals for disease management poses risks to food safety and the environment, exacerbated by the emergence of fungicide resistance. While resistance traits in wheat can offer some protection, these traits do not guarantee the complete absence of losses during periods of vigorous or moderate disease development. Furthermore, the introduction of individual resistance genes into wheat monoculture exerts selection pressure on pathogen populations. These disadvantages can be addressed or at least mitigated with the cultivation of tolerant varieties of wheat. Research in this area has shown that certain wheat varieties, susceptible to severe infectious diseases, are still capable of achieving high yields. Through the analysis of the existing literature, this paper explores the manifestations and quantification of tolerance in wheat, discussing its implications for integrated disease management and breeding strategies. Additionally, this paper addresses the ecological and evolutionary aspects of tolerance in the pathogen-plant host system, emphasizing its potential to enhance wheat productivity and sustainability.
Collapse
Affiliation(s)
- Akerke Maulenbay
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| | - Aralbek Rsaliyev
- Research Institute for Biological Safety Problems, Gvardeisky 080409, Kazakhstan
| |
Collapse
|
8
|
DeLoose M, Cho H, Bouain N, Choi I, Prom-U-Thai C, Shahzad Z, Zheng L, Rouached H. PDR9 allelic variation and MYB63 modulate nutrient-dependent coumarin homeostasis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1716-1727. [PMID: 38361338 DOI: 10.1111/tpj.16678] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/17/2024]
Abstract
Plant roots release phytochemicals into the soil environment to influence nutrient availability and uptake. Arabidopsis thaliana roots release phenylpropanoid coumarins in response to iron (Fe) deficiency, likely to enhance Fe uptake and improve plant health. This response requires sufficient phosphorus (P) in the root environment. Nonetheless, the regulatory interplay influencing coumarin production under varying availabilities of Fe and P is not known. Through genome-wide association studies, we have pinpointed the influence of the ABC transporter G family member, PDR9, on coumarin accumulation and trafficking (homeostasis) under combined Fe and P deficiency. We show that genetic variation in the promoter of PDR9 regulates its expression in a manner associated with coumarin production. Furthermore, we find that MYB63 transcription factor controls dedicated coumarin production by regulating both COUMARIN SYNTHASE (COSY) and FERULOYL-CoA 6'-HYDROXYLASE 1 (F6'H1) expression while orchestrating secretion through PDR9 genes under Fe and P combined deficiency. This integrated approach illuminates the intricate connections between nutrient signaling pathways in coumarin response mechanisms.
Collapse
Affiliation(s)
- Megan DeLoose
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Huikyong Cho
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Nadia Bouain
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, 48823, USA
| | - Ilyeong Choi
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| | | | - Zaigham Shahzad
- Department of Life Sciences, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Luqing Zheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Hatem Rouached
- The Plant Resilience Institute, Michigan State University, East Lansing, Michigan, 48824, USA
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
9
|
Jing Z, Liu N, Zhang Z, Hou X. Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:469. [PMID: 38498439 PMCID: PMC10893109 DOI: 10.3390/plants13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
In the context of climate change, the frequency and intensity of extreme weather events are increasing, environmental pollution and global warming are exacerbated by anthropogenic activities, and plants will experience a more complex and variable environment of stress combinations. Research on plant responses to stress combinations is crucial for the development and utilization of climate-adaptive plants. Recently, the concept of stress combinations has been expanded from simple to multifactorial stress combinations (MFSCs). Researchers have realized the complexity and necessity of stress combination research and have extensively employed composite gradient methods, multi-omics techniques, and interdisciplinary approaches to integrate laboratory and field experiments. Researchers have studied the response mechanisms of plant reactive oxygen species (ROS), phytohormones, transcription factors (TFs), and other response mechanisms under stress combinations and reached some generalized conclusions. In this article, we focus on the research progress and methodological dynamics of plant responses to stress combinations and propose key scientific questions that are crucial to address, in the context of plant responses to stress assemblages, conserving biodiversity, and ensuring food security. We can enhance the search for universal pathways, identify targets for stress combinations, explore adaptive genetic responses, and leverage high-technology research. This is in pursuit of cultivating plants with greater tolerance to stress combinations and enabling their adaptation to and mitigation of the impacts of climate change.
Collapse
Affiliation(s)
- Zeyao Jing
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Na Liu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Zongxian Zhang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Xiangyang Hou
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| |
Collapse
|
10
|
Lanzavecchia G, Frascarelli G, Rocchetti L, Bellucci E, Bitocchi E, Di Vittori V, Sillo F, Ferraris I, Carta G, Delledonne M, Nanni L, Papa R. Genotype Combinations Drive Variability in the Microbiome Configuration of the Rhizosphere of Maize/Bean Intercropping System. Int J Mol Sci 2024; 25:1288. [PMID: 38279288 PMCID: PMC10815965 DOI: 10.3390/ijms25021288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
In an intercropping system, the interplay between cereals and legumes, which is strongly driven by the complementarity of below-ground structures and their interactions with the soil microbiome, raises a fundamental query: Can different genotypes alter the configuration of the rhizosphere microbial communities? To address this issue, we conducted a field study, probing the effects of intercropping and diverse maize (Zea mays L.) and bean (Phaseolus vulgaris L., Phaseolus coccineus L.) genotype combinations. Through amplicon sequencing of bacterial 16S rRNA genes from rhizosphere samples, our results unveil that the intercropping condition alters the rhizosphere bacterial communities, but that the degree of this impact is substantially affected by specific genotype combinations. Overall, intercropping allows the recruitment of exclusive bacterial species and enhances community complexity. Nevertheless, combinations of maize and bean genotypes determine two distinct groups characterized by higher or lower bacterial community diversity and complexity, which are influenced by the specific bean line associated. Moreover, intercropped maize lines exhibit varying propensities in recruiting bacterial members with more responsive lines showing preferential interactions with specific microorganisms. Our study conclusively shows that genotype has an impact on the rhizosphere microbiome and that a careful selection of genotype combinations for both species involved is essential to achieve compatibility optimization in intercropping.
Collapse
Affiliation(s)
- Giovanna Lanzavecchia
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Lorenzo Rocchetti
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant, Strada delle Cacce 73, 10135 Torino, Italy;
| | - Irene Ferraris
- Department of Biotechnologies, Strada le Grazie 15, 37134 Verona, Italy; (I.F.); (G.C.); (M.D.)
| | - Giada Carta
- Department of Biotechnologies, Strada le Grazie 15, 37134 Verona, Italy; (I.F.); (G.C.); (M.D.)
| | - Massimo Delledonne
- Department of Biotechnologies, Strada le Grazie 15, 37134 Verona, Italy; (I.F.); (G.C.); (M.D.)
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131 Ancona, Italy; (G.L.); (G.F.); (L.R.); (E.B.); (E.B.); (V.D.V.)
| |
Collapse
|