1
|
Gao J, Jin HJ, Wei X, Ding XL, Li ZQ, Wang K, Xia XH. Closed Bipolar Nanoelectrode Array for Ultra-Sensitive Detection of Alkaline Phosphatase and Two-Dimensional Imaging of Epidermal Growth Factor Receptors. ACS Sens 2024; 9:3754-3762. [PMID: 38970501 DOI: 10.1021/acssensors.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
The combination of closed bipolar electrodes (cBPE) with electrochemiluminescence (ECL) imaging has demonstrated remarkable capabilities in the field of bioanalysis. Here, we established a cBPE-ECL platform for ultrasensitive detection of alkaline phosphatase (ALP) and two-dimensional imaging of epidermal growth factor receptor (EGFR). This cBPE-ECL system consists of a high-density gold nanowire array in anodic aluminum oxide (AAO) membrane as the cBPE coupled with ECL of highly luminescent cadmium selenide quantum dots (CdSe QDs) luminophores to achieve cathodic electro-optical conversion. When an enzyme-catalyzed amplification effect of ALP with 4-aminophenyl phosphate monosodium salt hydrate (p-APP) as the substrate and 4-aminophenol (p-AP) as the electroactive probe is introduced, a significant improvement of sensing sensitivity with a detection limit as low as 0.5 fM for ALP on the cBPE-ECL platform can be obtained. In addition, the cBPE-ECL sensing system can also be used to detect cancer cells with an impressive detection limit of 50 cells/mL by labeling ALP onto the EGFR protein on A431 human epidermal cancer cell membranes. Thus, two-dimensional (2D) imaging of the EGFR proteins on the cell surface can be achieved, demonstrating that the established cBPE-ECL sensing system is of high resolution for spatiotemporal cell imaging.
Collapse
Affiliation(s)
- Jiao Gao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua-Jiang Jin
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xuan Wei
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xin-Lei Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhong-Qiu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kang Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Wang J, Ying Y, Zhang Y, Ding H, Li Y, Zhang J, Jiang D. Observation of anodic electrochemiluminescence from silicon quantum dots for the detection of hydrogen peroxide. Analyst 2024; 149:3518-3521. [PMID: 38869425 DOI: 10.1039/d4an00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Silicon quantum dots (QDs) with stable positively charged intermediates are prepared using chemical etching to generate strong anodic electrochemiluminescence (ECL) under a positive potential. Their surfaces could be passivated in the presence of strong oxidants, leading to enhanced ECL and offering the ability to carry out analysis for hydrogen peroxide.
Collapse
Affiliation(s)
- Jing Wang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yunfan Ying
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yuyao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Yu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Jingjing Zhang
- School of Chemistry and Life Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| |
Collapse
|
3
|
Sun R, Xiong S, Zhang W, Huang Y, Zheng J, Shao J, Chi Y. Highly Active Coreactant-Capped and Water-Stable 3D@2D Core-Shell Perovskite Quantum Dots as a Novel and Strong Self-Enhanced Electrochemiluminescence Probe. Anal Chem 2024; 96:5711-5718. [PMID: 38551104 DOI: 10.1021/acs.analchem.4c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Self-enhanced electrochemiluminescence (ECL) probes have attracted more and more attention in analytical chemistry for their significant simplification of the ECL sensing operation while improving the ECL sensing sensitivity. However, the development and applications of self-enhanced ECL probes are still in their infancy and mainly suffer from the requirement of a complicated synthesis strategy and relatively low self-enhanced ECL activity. In this work, we took advantage of the recently emerged perovskite quantum dots (PQDs) with high optical quantum yields and easy surface engineering to develop a new type of PQD-based self-enhanced ECL system. The long alkyl chain (C18) diethanolamine (i.e., N-octadecyldiethanolamine (ODA)) with high ECL coreactant activity was selected as a capping ligand to synthesize an ODA-capped PQD self-enhanced ECL probe. The preparation of the coreactant-capped PQDs is as simple as for the ordinary oleylamine (OAm)-capped PQDs, and the obtained ODA-capped PQDs exhibit very strong self-enhanced ECL activity, 82.5 times higher than that of traditional OAm-capped PQDs. Furthermore, the prepared ODA-PQDs have a unique nanostructure (ODA-CsPbBr3@CsPb2Br5), with the highly emissive 3D CsPbBr3 PQD as the core and the water-stable 2D CsPb2Br5 as the shell, which allows ODA-PQDs to be very stable in aqueous media. It is envisioned that the prepared ODA-3D@2D PQDs with the easy preparation method, strong self-enhanced ECL, and excellent water stability have promising applications in ECL sensing.
Collapse
Affiliation(s)
- Ruifen Sun
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shuyun Xiong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Weiwei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yun Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jingcheng Zheng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiwei Shao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yuwu Chi
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Li S, Qin Z, Fu J, Gao Q. Nanobiosensing Based on Electro-Optically Modulated Technology. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2400. [PMID: 37686908 PMCID: PMC10489767 DOI: 10.3390/nano13172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023]
Abstract
At the nanoscale, metals exhibit special electrochemical and optical properties, which play an important role in nanobiosensing. In particular, surface plasmon resonance (SPR) based on precious metal nanoparticles, as a kind of tag-free biosensor technology, has brought high sensitivity, high reliability, and convenient operation to sensor detection. By applying an electrochemical excitation signal to the nanoplasma device, modulating its surface electron density, and realizing electrochemical coupling SPR, it can effectively complete the joint transmission of electrical and optical signals, increase the resonance shift of the spectrum, and further improve the sensitivity of the designed biosensor. In addition, smartphones are playing an increasingly important role in portable mobile sensor detection systems. These systems typically connect sensing devices to smartphones to perceive different types of information, from optical signals to electrochemical signals, providing ideas for the portability and low-cost design of these sensing systems. Among them, electrochemiluminescence (ECL), as a special electrochemically coupled optical technology, has good application prospects in mobile sensing detection due to its strong anti-interference ability, which is not affected by background light. In this review, the SPR is introduced using nanoparticles, and its response process is analyzed theoretically. Then, the mechanism and sensing application of electrochemistry coupled with SPR and ECL are emphatically introduced. Finally, it extends to the relevant research on electrochemically coupled optical sensing on mobile detection platforms.
Collapse
Affiliation(s)
- Shuang Li
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China; (Z.Q.); (J.F.); (Q.G.)
| | | | | | | |
Collapse
|
5
|
Wei Y, Qi H, Zhang C. Recent advances and challenges in developing electrochemiluminescence biosensors for health analysis. Chem Commun (Camb) 2023; 59:3507-3522. [PMID: 36820650 DOI: 10.1039/d2cc06930j] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
This Feature Article simply introduces principles and mechanisms of electrochemiluminescence (ECL) biosensors for the determination of biomarkers and highlights recent advances of ECL biosensors on key aspects including new ECL reagents and materials, new biological recognition elements, and emerging construction biointerfacial strategies with illustrative examples and a critical eye on pitfalls and discusses challenges and perspectives of ECL biosensors for health analysis.
Collapse
Affiliation(s)
- Yuxi Wei
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
6
|
Wu W, Li J. Recent Progress on Nanozymes in Electrochemical Sensing. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
7
|
Zhang X, Deng Y, Qiu H, Yi S, Huang S, Chen L, Hu S. Target-cycling synchronized rolling circle amplification strategy for biosensing Helicobacter pylori DNA. LUMINESCENCE 2023; 38:334-340. [PMID: 36754596 DOI: 10.1002/bio.4457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
Helicobacter pylori is closely linked to many gastric diseases such as gastric ulcers and duodenal ulcers. Therefore, biosensing H. pylori has attracted wide attention from both scientists and clinicians. Here, we proposed an electrochemiluminescence (ECL)-based platform that could sensitively detect H. pylori DNA. In this platform, a novel target-cycling synchronized rolling circle amplification was used for signal amplification. Silver nanoclusters (Ag NCs) were synthesized on the circle DNA products, embedding them with the ability to catalyze the electrochemical reduction of K2 S2 O8 , in turn resulting in rapid consumption of the ECL co-reactant near the working electrode, and leading to a decrease in the ECL emission intensity. In addition to its excellent stability and selectivity, the proposed strategy had a low detection limit of 10 pM, an indication that it can be beneficially applied to test biosamples. Furthermore, a biosensing chip was designed to improve the throughput and shed new light on large-scale clinical biosensing applications.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuan Deng
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Hongzhao Qiu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Sirui Yi
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Sijia Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lanlan Chen
- College of Chemistry, Key Laboratory of Analysis and Detecting Technology, Food Safety MOE, Fuzhou University, Fuzhou, Fujian, China
| | - Shanwen Hu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
8
|
Liu H, Mo T, Zhou Y, Gong H, Zhao D. Electron-rich silicon quantum dots-based charge transfer probe for highly selective chemiluminescence detection of Fe2+ in PM2.5. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Feng Y, Wang N, Ju H. Electrochemiluminescence biosensing and bioimaging with nanomaterials as emitters. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1329-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Nano-hybrid luminophores of Ti3C2TX quantum dots-gold nanoparticles based on in situ generation for sensitive electrochemiluminescence biosensing. Anal Bioanal Chem 2022; 414:6753-6760. [DOI: 10.1007/s00216-022-04235-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/10/2022] [Accepted: 07/15/2022] [Indexed: 12/29/2022]
|
11
|
Wang Z, Guo H, Luo Z, Duan Y, Feng Y. Low-Triggering-Potential Electrochemiluminescence from a Luminol Analogue Functionalized Semiconducting Polymer Dots for Imaging Detection of Blood Glucose. Anal Chem 2022; 94:5615-5623. [PMID: 35352933 DOI: 10.1021/acs.analchem.1c05377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In recent years, semiconducting polymer dots (Pdots) as environmentally friendly and high-brightness electrochemiluminescence (ECL) nanoemitters have attracted intense attention in ECL biosensing and imaging. However, most of the available Pdots have a high ECL excitation potential in the aqueous phase (>1.0 V vs Ag/AgCl), which causes poor selectivity in actual sample detection. Therefore, it is particularly important to construct a simple and universal strategy to lower the trigger potential of Pdots. This work has realized the ECL emission of Pdots at low-trigger-potential based on the electrochemiluminescence resonance energy transfer (ERET) strategy. By covalently coupling the Pdots with a luminol analogue, N-(4-aminobutyl)-N-ethylisoluminol (ABEI), the ABEI-Pdots showed an anodic ECL emission with a low onset potential of +0.34 V and a peak potential at +0.45 V (vs Ag/AgCl), which was the lowest trigger potential reported so far. We further explored this low-triggering-potential ECL for imaging detection of glucose in buffer and serum. By imaging the ABEI-Pdots-modified screen-printed electrodes (SPCE) at +0.45 V for 16 s, the ECL imaging method could quantify the glucose concentration in buffer from 10 to 200 μM with detection limits of 3.3 μM, while exhibiting excellent selectivity. When applied to real serum, the results of our method were highly consistent with a commercial blood glucose meter, with the relative errors ranging from 3.2 to 13%. This work provided a universal strategy for constructing low potential Pdots and demonstrated its application potential in complex biological sample analysis.
Collapse
Affiliation(s)
- Zhuanzhuan Wang
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Haijing Guo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Yaqiang Feng
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| |
Collapse
|
12
|
Zhao Y, Bouffier L, Xu G, Loget G, Sojic N. Electrochemiluminescence with semiconductor (nano)materials. Chem Sci 2022; 13:2528-2550. [PMID: 35356679 PMCID: PMC8890139 DOI: 10.1039/d1sc06987j] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Electrochemiluminescence (ECL) is the light production triggered by reactions at the electrode surface. Its intrinsic features based on a dual electrochemical/photophysical nature have made it an attractive and powerful method across diverse fields in applied and fundamental research. Herein, we review the combination of ECL with semiconductor (SC) materials presenting various typical dimensions and structures, which has opened new uses of ECL and offered exciting opportunities for (bio)sensing and imaging. In particular, we highlight this particularly rich domain at the interface between photoelectrochemistry, SC material chemistry and analytical chemistry. After an introduction to the ECL and SC fundamentals, we gather the recent advances with representative examples of new strategies to generate ECL in original configurations. Indeed, bulk SC can be used as electrode materials with unusual ECL properties or light-addressable systems. At the nanoscale, the SC nanocrystals or quantum dots (QDs) constitute excellent bright ECL nano-emitters with tuneable emission wavelengths and remarkable stability. Finally, the challenges and future prospects are discussed for the design of new detection strategies in (bio)analytical chemistry, light-addressable systems, imaging or infrared devices.
Collapse
Affiliation(s)
- Yiran Zhao
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
| | - Laurent Bouffier
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 Pessac 33607 France
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Gabriel Loget
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR6226 Rennes F-35000 France
| | - Neso Sojic
- University of Bordeaux, Bordeaux INP, ISM, UMR CNRS 5255 Pessac 33607 France
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun P. R. China
- Department of Chemistry, South Ural State University Chelyabinsk 454080 Russian Federation
| |
Collapse
|
13
|
Au modified spindle-shaped cerium phosphate as an efficient co-reaction accelerator to amplify electrochemiluminescence signal of carbon quantum dots for ultrasensitive analysis of aflatoxin B1. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139912] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Ye Y, Li S, Ping A, Wan X, Li J. Electrodeposition immobilized molybdenum disulfide quantum dots and their electrochemiluminescence application in the detection of melamine residues in milk powder. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2196-2203. [PMID: 33899838 DOI: 10.1039/d1ay00364j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this paper, one-step hydrothermal and electrodeposition methods were used to prepare a MoS2 quantum dot (QD) solid-phase electrochemiluminescent (ECL) electrode for the detection of melamine residues in milk powder. With the assistance of chitosan, MoS2 QDs fixed by the one-step electrodeposition method show better ECL performance than those by traditional deposition methods due to better dispersibility and stability. Based on the quenching of the MoS2 QDs ECL signal by melamine, quantitative detection of melamine in the sample was performed. The structure and morphology of a MoS2-CHIT/indium tin oxide (ITO) solid-phase ECL electrode were characterized by TEM and XPS, and melamine was detected by the ECL method using a three-electrode system. The proposed sensor exhibited good linearity in the range of 1.00 × 10-11 to 1.00 × 10-7 mol L-1 (ΔI = 12 100.62 + 1009.93 lg c (mol L-1), R2 = 0.997), and the method shows the advantages of simplicity and sensitivity compared to traditional detection methods. The interference of common ions in milk powder on the modified electrode was within 5%, and the recovery rate of real sample detection was within 97-98%. As a result, the proposed method is suitable for detecting melamine residues in milk powder.
Collapse
Affiliation(s)
- Yousheng Ye
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - Shasha Li
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - An Ping
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - Xinjun Wan
- College of Chemistry and Material Engineering, Chaohu University, Chaohu 238000, P. R. China
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
15
|
Díez-Buitrago B, Saa L, Briz N, Pavlov V. Development of portable CdS QDs screen-printed carbon electrode platform for electrochemiluminescence measurements and bioanalytical applications. Talanta 2021; 225:122029. [PMID: 33592758 DOI: 10.1016/j.talanta.2020.122029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022]
Abstract
In this work, a portable and disposable screen-printed electrode-based platform for CdS QDs electrochemiluminescence (ECL) detection is presented. CdS QDs were synthesized in aqueous media and placed on top of carbon electrodes by drop casting. The CdS QDs spherical assemblies consisted of nanoparticles about 4 nm diameters and served as ECL sensitizers to enzymatic assays. The nanoparticles were characterized by optical techniques, TEM and XPS. Besides, the electrode modification process was optimized and further studied by SEM and confocal microscopy. The ECL emission from CdS QDs was triggered with H2O2 as cofactor and enzymatic assays were employed to modulate the CdS QDs ECL signal by blocking the surface or generating H2O2 in situ. Thiol-bearing compounds such as thiocholine generated through the hydrolysis of acetylthiocholine by acetylcholinesterase (AChE) interacted with the surface of CdS QDs thus blocking the ECL. The biosensor showed a linear range up to 5 mU mL-1 and a detection limit of 0.73 mU mL-1 for AChE. Moreover, the inhibition mechanism of the enzyme was studied by using 1,5-bis-(4-allyldimethylammonium-phenyl)pentan-3-one dibromide with a detection limit of 79.22 nM. Furthermore, the natural production of H2O2 from the oxidation of methanol by the action of alcohol oxidase was utilized to carry out the ECL process. This enzymatic assay presented a linear range up to 0.5 mg L-1 and a detection limit of 61.46 μg L-1 for methanol. The reported methodology shows potential applications for the development of sensitive and easy to hand biosensors and was applied to the determination of AChE and methanol in real samples.
Collapse
Affiliation(s)
- Beatriz Díez-Buitrago
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain; Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009, Donostia-San Sebastián, Spain
| | - Laura Saa
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain
| | - Nerea Briz
- Tecnalia, Basque Research and Technology Alliance (BRTA), Paseo Mikeletegi 2, 20009, Donostia-San Sebastián, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014, Donostia San Sebastián, Spain.
| |
Collapse
|
16
|
Wang R, Yue N, Fan A. Nanomaterial-enhanced chemiluminescence reactions and their applications. Analyst 2020; 145:7488-7510. [PMID: 33030463 DOI: 10.1039/d0an01300e] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemiluminescence (CL) analysis is a trace analytical method that possesses advantages including high sensitivity, wide linear range, easy operation, and simple instruments. With the development of nanotechnology, many nanomaterial (NM)-enhanced CL systems have been established in recent years and applied for the CL detection of metal ions, anions, small molecules, tumor markers, sequence-specific DNA, and RNA. This review summarizes the research progress of the nanomaterial-enhanced CL systems the past five years. These CL reactions include luminol, peroxyoxalate, lucigenin, ultraweak CL reactions, and so on. The CL mechanisms of the nanomaterial-enhanced CL systems are discussed in the first section. Nanomaterials take part in the CL reactions as the catalyst, CL emitter, energy acceptor, and reductant. Their applications are summarized in the second section. Finally, the challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Ruyuan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | | | | |
Collapse
|
17
|
Liang Z, Zhang Q, Nie Y, Zhang X, Ma Q. Polarized-Electrochemiluminescence Biosensor Based on Surface Plasmon Coupling Strategy and Fluorine-Doped BN Quantum Dots. Anal Chem 2020; 92:9223-9229. [DOI: 10.1021/acs.analchem.0c01558] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zihui Liang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qian Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xin Zhang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
18
|
Han Q, Wang C, Li Z, Wu J, Liu PK, Mo F, Fu Y. Multifunctional Zinc Oxide Promotes Electrochemiluminescence of Porphyrin Aggregates for Ultrasensitive Detection of Copper Ion. Anal Chem 2020; 92:3324-3331. [DOI: 10.1021/acs.analchem.9b05262] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Han
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Laboratory of Environment Change and Ecological Construction of Hebei Province, College of Resources and Environment Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Cun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China
| | - Zhuozhe Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jingling Wu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ping kun Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fangjing Mo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
19
|
Yang S, Chu M, Du J, Li Y, Gai T, Tan X, Xia B, Wang S. Graphene quantum dot electrochemiluminescence increase by bio-generated H 2O 2 and its application in direct biosensing. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191404. [PMID: 32218958 PMCID: PMC7029901 DOI: 10.1098/rsos.191404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/19/2019] [Indexed: 05/20/2023]
Abstract
In this study, a novel signal-increase electrochemiluminescence (ECL) biosensor has been developed for the detection of glucose based on graphene quantum dot/glucose oxidase (GQD/GOx) on Ti foil. The proposed GQD with excellent ECL ability is synthesized through a green one-step strategy by the electrochemical reduction of graphene oxide quantum dot. Upon the addition of glucose, GOx can catalytically oxidize glucose and the direct electron transfer between the redox centre of GOx and the modified electrode also has been realized, which results in the bio-generated H2O2 for ECL signal increase in GQD and realizes the direct ECL detection of glucose. The signal-increase ECL biosensor enables glucose detection with high sensitivity reaching 5 × 10-6 mol l-1 in a wide linear range from 5 × 10-6 to 1.5 × 10-3 mol l-1. Additionally, the fabrication process of such GQD-based ECL biosensor is also suitable to other biologically produced H2O2 system, suggesting the possible applications in the sensitive detection of other biologically important targets (e.g. small molecules, protein, DNA and so on).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Binyuan Xia
- Authors for correspondence: Binyuan Xia e-mail:
| | - Shaofei Wang
- Authors for correspondence: Shaofei Wang e-mail:
| |
Collapse
|
20
|
Abstract
This Feature simply introduces the history and mechanism of classical electrogenerated chemiluminescence (ECL) systems for the detection of biomolecules, highlights new advances and emerging fields of the ECL biosensing with recent illustrative examples, and presents the challenges and perspectives of ECL biosensing.
Collapse
Affiliation(s)
- Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering , Shaanxi Normal University , Xi'an 710062 , P.R. China
| |
Collapse
|
21
|
High Sensitivity Detection of Copper Ions in Oysters Based on the Fluorescence Property of Cadmium Selenide Quantum Dots. CHEMOSENSORS 2019. [DOI: 10.3390/chemosensors7040047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium selenide (CdSe) quantum dots (QDs) were synthesized by water phase synthesis method using 3-mercaptopropionic acid (3-MPA) as a stabilizer, and they were applied to the detection of copper ions (Cu2+). The results showed that CdSe QDs have excellent selectivity and sensitivity toward Cu2+. The fluorescence intensity of CdSe QDs decreased with the increase of Cu2+ concentration. The linear range was from 30 nM to 3 μM, and the detection limit was 30 nM. Furthermore, CdSe QDs were used for detecting the concentration of Cu2+ in oysters. The content of Cu2+ was 40.91 mg/kg, which was close to the one measured via flame atomic absorption spectrometry (FAAS), and the relative error was 1.81%. Therefore, CdSe QDs have a wide application prospect in the rapid detection of copper ions in food.
Collapse
|
22
|
Shi Z, Li G, Hu Y. Progress on the application of electrochemiluminescence biosensor based on nanomaterials. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Nanoparticle-based electrochemiluminescence cytosensors for single cell level detection. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Zhang Y, Zhang R, Yang X, Qi H, Zhang C. Recent advances in electrogenerated chemiluminescence biosensing methods for pharmaceuticals. J Pharm Anal 2018; 9:9-19. [PMID: 30740252 PMCID: PMC6355466 DOI: 10.1016/j.jpha.2018.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 12/20/2022] Open
Abstract
Electrogenerated chemiluminescence (electrochemiluminescence, ECL) generates species at electrode surfaces, which undergoes electron-transfer reactions and forms excited states to emit light. It has become a very powerful analytical technique and has been widely used in such as clinical testing, biowarfare agent detection, and pharmaceutical analysis. This review focuses on the current trends of molecular recognition-based biosensing methods for pharmaceutical analysis since 2010. It introduces a background of ECL and presents the recent ECL developments in ECL immunoassay (ECLIA), immunosensors, enzyme-based biosensors, aptamer-based biosensors, and molecularly imprinted polymers (MIP)-based sensors. At last, the future perspective for these analytical methods is briefly discussed.
Collapse
Affiliation(s)
- Yu Zhang
- Medpace Bioanalytical Laboratories, 5365 Medpace Way, Cincinnati, OH 45227, USA
| | - Rui Zhang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, IN 47405, USA
| | - Xiaolin Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Honglan Qi
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Chengxiao Zhang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
25
|
Wang DM, Lin KL, Huang CZ. Carbon dots-involved chemiluminescence: Recent advances and developments. LUMINESCENCE 2018; 34:4-22. [DOI: 10.1002/bio.3570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Dong Mei Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Ke Li Lin
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering; Southwest University; Chongqing P. R. China
- Chongqing Key Laboratory of Biomedical Analysis, Chongqing Science and Technology Commission, College of Pharmaceutical Sciences; Southwest University; Chongqing P. R. China
| |
Collapse
|
26
|
Hu X, Zhang H, Chen S, Yuan R, You J. A signal-on electrochemiluminescence sensor for clenbuterol detection based on zinc-based metal-organic framework–reduced graphene oxide–CdTe quantum dot hybrids. Anal Bioanal Chem 2018; 410:7881-7890. [DOI: 10.1007/s00216-018-1404-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/15/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
|
27
|
Yang B, Fu C, Li J, Xu G. Frontiers in highly sensitive molecularly imprinted electrochemical sensors: Challenges and strategies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
28
|
Wang N, Feng Y, Wang Y, Ju H, Yan F. Electrochemiluminescent Imaging for Multi-immunoassay Sensitized by Dual DNA Amplification of Polymer Dot Signal. Anal Chem 2018; 90:7708-7714. [DOI: 10.1021/acs.analchem.8b01610] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yaqiang Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yawei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Feng Yan
- Department of Clinical Laboratory, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting Road, Nanjing 210009, P. R. China
| |
Collapse
|
29
|
Wang Y, Shan D, Wu G, Wang H, Ru F, Zhang X, Li L, Qian Y, Lu X. A novel “dual-potential” ratiometric electrochemiluminescence DNA sensor based on enhancing and quenching effect by G-quadruplex / hemin and Au-Luminol bifunctional nanoparticles. Biosens Bioelectron 2018; 106:64-70. [DOI: 10.1016/j.bios.2018.01.052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/26/2022]
|
30
|
Yang X, Yu YQ, Peng LZ, Lei YM, Chai YQ, Yuan R, Zhuo Y. Strong Electrochemiluminescence from MOF Accelerator Enriched Quantum Dots for Enhanced Sensing of Trace cTnI. Anal Chem 2018; 90:3995-4002. [PMID: 29457712 DOI: 10.1021/acs.analchem.7b05137] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The development of a sensitive and practical electrochemiluminescence (ECL) bioassay relies on the use of ECL signal tags whose signal intensity is high and stable. In this work, strong ECL emission was achieved from metal organic framework (MOF) accelerator enriched quantum dots (CdTe), which were applied as an efficient ECL signal tag for trace biomarker detection. It is particularly noteworthy that a novel mechanism to drastically enhance the ECL intensity of CdTe is established because isoreticular metal organic framework-3 (IRMOF-3) with 2-amino terephthalic acid (2-NH2-BDC) as the organic ligand not only allows for loading a large amount of CdTe via the encapsulating effect and internal/external decoration but also functions as a novel coreactant accelerator for promoting the conversion of coreactant S2O82- into the sulfate radical anion (SO4•-), further boosting the ECL emission of CdTe. On the basis of the simple sandwich immunoreaction approach, cardiac troponin-I antigen (cTnI), a kind of biomarker related with myocardial infarction, was chosen as a detection model using an IRMOF-3-enriched CdTe labeled antibody as the signal probe. This immunosensor demonstrated desirable assay performance for cTnI with a wide response range from 1.1 fg mL-1 to 11 ng mL-1 and a very low detection limit (0.46 fg mL-1). This suggested that the IRMOF-3-enriched CdTe nanocomposite strategy can integrate the coreactant accelerator and luminophore to significantly enhance the ECL intensity and stability, providing a direction for promising ECL tag preparation with broad applications.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Yan-Qing Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ling-Zhi Peng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Yan-Mei Lei
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , P.R. China
| |
Collapse
|
31
|
Feng Y, Wang N, Ju H. Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dots in Aqueous Medium and Its Application in Imaging Analysis. Anal Chem 2017; 90:1202-1208. [DOI: 10.1021/acs.analchem.7b03821] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
32
|
Tiwari A, Dhoble SJ. Recent advances and developments on integrating nanotechnology with chemiluminescence assays. Talanta 2017; 180:1-11. [PMID: 29332786 DOI: 10.1016/j.talanta.2017.12.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 11/30/2022]
Abstract
Chemiluminescence (CL) techniques are extensively utilized for detection of analytes due to their high sensitivity, rapidity and selectivity. With the advent of nanotechnology and incorporation of the nanoparticles in the CL system has revolutionized the assays due to their unique optical and mechanical properties. Several CL-based reactions have been developed where these nanoparticle based CL sensors have evolved as excellent prospects for sensing in various analytical applications. This review article addresses the nanoparticles based CL detection system that are recently developed, the mechanisms has been summarized and the role of luminophors have been discussed. This article critically analyzes the optimal conditions for the CL detection along with quantitative assessment of the analytes. We have included the use of semiconductor nanoparticles, metal nanoparticles, graphene based nanostructures, mesoporous nanospheres, layered double hydroxides, clays for CL detection. The scope and application of these nanoscale material based CL system in various branches of science and technology including chemistry, biomedical applications, pharmaceutics, food, environmental and toxicological applications has been critically summarized.
Collapse
Affiliation(s)
- Ashish Tiwari
- Department of Chemistry, Naveen Government College, Pamgarh 495554, India.
| | - S J Dhoble
- Department of Physics, RTM Nagpur University, Nagpur 440033, India
| |
Collapse
|
33
|
Deng Y, Chang Q, Yin K, Liu C, Wang Y. A highly stable electrochemiluminescence sensing system of cadmium sulfide nanowires/graphene hybrid for supersensitive detection of pentachlorophenol. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
34
|
Feng Y, Sun F, Wang N, Lei J, Ju H. Ru(bpy)32+ Incorporated Luminescent Polymer Dots: Double-Enhanced Electrochemiluminescence for Detection of Single-Nucleotide Polymorphism. Anal Chem 2017. [DOI: 10.1021/acs.analchem.7b01603] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yaqiang Feng
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Feng Sun
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ningning Wang
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical
Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
35
|
The progress of luminescent assay in clinical diagnosis and treatment of diabetes mellitus. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.07.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Chen H, Li W, Wang Q, Jin X, Nie Z, Yao S. Nitrogen doped graphene quantum dots based single-luminophor generated dual-potential electrochemiluminescence system for ratiometric sensing of Co2+ ion. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
37
|
Liu J, Cui M, Zhou H, Zhang S. Efficient double-quenching of electrochemiluminescence from CdS:Eu QDs by hemin-graphene-Au nanorods ternary composite for ultrasensitive immunoassay. Sci Rep 2016; 6:30577. [PMID: 27460868 PMCID: PMC4962035 DOI: 10.1038/srep30577] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/04/2016] [Indexed: 12/19/2022] Open
Abstract
A novel ternary composite of hemin-graphene-Au nanorods (H-RGO-Au NRs) with high electrocatalytic activity was synthesized by a simple method. And this ternary composite was firstly used in construction of electrochemiluminescence (ECL) immunosensor due to its double-quenching effect of quantum dots (QDs). Based on the high electrocatalytic activity of ternary complexes for the reduction of H2O2 which acted as the coreactant of QDs-based ECL, as a result, the ECL intensity of QDs decreased. Besides, due to the ECL resonance energy transfer (ECL-RET) strategy between the large amount of Au nanorods (Au NRs) on the ternary composite surface and the CdS:Eu QDs, the ECL intensity of QDs was further quenched. Based on the double-quenching effect, a novel ultrasensitive ECL immunoassay method for detection of carcinoembryonic antigen (CEA) which is used as a model biomarker analyte was proposed. The designed immunoassay method showed a linear range from 0.01 pg mL−1 to 1.0 ng mL−1 with a detection limit of 0.01 pg mL−1. The method showing low detection limit, good stability and acceptable fabrication reproducibility, provided a new approach for ECL immunoassay sensing and significant prospect for practical application.
Collapse
Affiliation(s)
- Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Meirong Cui
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.,Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, P. R. China
| | - Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| |
Collapse
|
38
|
Dong T, Yangxiao K, Zhao K, Deng A, Li J. Signal Amplification Strategy for Highly Sensitive Detecting Brombuterol with Electrochemiluminescent Immunoassay by Using CdSe QDs as Label and Gold Nanoparticle as Substrate. ELECTROANAL 2016. [DOI: 10.1002/elan.201600332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Tiantian Dong
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering & Materials Science; Soochow University; Suzhou 215123 China
| | - Kete Yangxiao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering & Materials Science; Soochow University; Suzhou 215123 China
| | - Kang Zhao
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering & Materials Science; Soochow University; Suzhou 215123 China
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering & Materials Science; Soochow University; Suzhou 215123 China
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou; College of Chemistry, Chemical Engineering & Materials Science; Soochow University; Suzhou 215123 China
| |
Collapse
|
39
|
Yu YQ, Zhang HY, Chai YQ, Yuan R, Zhuo Y. A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification. Biosens Bioelectron 2016; 85:8-15. [PMID: 27148827 DOI: 10.1016/j.bios.2016.04.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/14/2016] [Accepted: 04/26/2016] [Indexed: 11/29/2022]
Abstract
Herein, a novel signal amplification strategy was designed using the perylene derivative as the co-reaction accelerator toward graphene-CdTe quantum dots (G-CdTe)/S2O8(2-) system to construct a highly sensitive electrochemiluminescent (ECL) aptasensor for thrombin (TB) detection. Firstly, the G-CdTe nanocomposites were prepared by one-step method of in situ generating CdTe quantum dots onto the surface of the graphene oxide by using 3-mercaptopropionic acid as the CdTe QDs stabilizer. Then, a kind of perylene derivative (PTC-Lys), was synthesized by covalently binding L-lysine to 3,4,9,10-perylenetetracarboxylic acid, which was further immobilized onto the G-CdTe by the π-π* stacking and cross-linked the detection thrombin aptamer (TBA II) to obtain the TBA II/PTC-Lys/G-CdTe signal probes. It is worth pointing out that PTC-Lys acting as an efficient co-reaction accelerator interacted with the co-reactant of S2O8(2-) rather than G-CdTe to promote the more oxidant mediators of SO4(•-), which could further react with G-CdTe to produce excited state species G-CdTe* for emitting light. Compared with the G-CdTe/S2O8(2-) ECL system, our proposed strategy with the introduction of co-reaction accelerator of PTC-Lys exhibited ultra-high sensitivity to quantify the concentration of TB from 1.0×10(-7)nM to 10nM with a detection limit of 34aM.
Collapse
Affiliation(s)
- Yan-Qing Yu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hai-Yu Zhang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
40
|
Lu L, Guo L, Li M, Kang T, Cheng S, Miao W. Investigation of perfluorooctanoic acid induced DNA damage using electrogenerated chemiluminescence associated with charge transfer in DNA. Anal Bioanal Chem 2016; 408:7137-45. [PMID: 27108285 DOI: 10.1007/s00216-016-9559-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/30/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
An electrogenerated chemiluminescence (ECL)-DNA sensor was designed and fabricated for the investigation of DNA damage by a potential environmental pollutant, perfluorooctanoic acid (PFOA). The ECL-DNA sensor consisted of a Au electrode that had a self-assembled monolayer of 15 base-pair double-stranded (ds) DNA oligonucleotides with covalently attached semiconductor CdSe quantum dots (QDs) at the distal end of the DNA. Characterization of the ECL-DNA sensor was conducted with X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), ECL, and cyclic voltammetry before and after the exposure of the sensor to PFOA. Consistent data revealed that the dsDNA on Au was severely damaged upon the incubation of the electrode in PFOA, causing significant increase in charge (or electron) transfer (CT) resistance within DNA strands. Consequently, the cathodic coreactant ECL responses of the Au/dsDNA-QDs electrode in the presence of K2S2O8 were markedly decreased. The strong interaction between DNA and PFOA via the hydrophobic interaction, especially the formation of F···H hydrogen bonds by insertion of the difluoro-methylene group of PFOA into the DNA base pairs, was believed to be responsible for the dissociation or loosening of dsDNA structure, which inhibited the CT through DNA. A linear relationship between the ECL signal of the sensor and the logarithmical concentration of PFOA displayed a dynamic range of 1.00 × 10(-14)-1.00 × 10(-4) M, with a limit of detection of 1.00 × 10(-15) M at a signal-to-noise ratio of 3. Graphical Abstract Illustration of ECL detection of PFOA on a Au/dsDNA-QDs ECL-DNA sensor.
Collapse
Affiliation(s)
- Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Linqing Guo
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Meng Li
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Tianfang Kang
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Shuiyuan Cheng
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Wujian Miao
- Key Laboratory of Beijing on Regional Air Pollution Control, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China. .,Department of Chemistry and Biochemistry, The University of Southern Mississippi, 118 College Drive, Hattiesburg, MS, 39406, USA.
| |
Collapse
|
41
|
Jie G, Jie G. Sensitive electrochemiluminescence detection of cancer cells based on a CdSe/ZnS quantum dot nanocluster by multibranched hybridization chain reaction on gold nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra00750c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We prepared a novel amplified electrochemiluminescence signal probe based on CdSe/ZnS quantum dots by multibranched DNA hybridization chain reaction on gold nanoparticles, and developed a sensitive ECL biosensor for detection of cancer cells.
Collapse
Affiliation(s)
- Guitao Jie
- Haemal Internal Medicine
- Yishui Central Hospital in Linyi City
- Linyi
- P. R. China
| | - Guifen Jie
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
42
|
Dai B, Wang L, Shao J, Huang X, Yu G. CdS-modified porous foam nickel for label-free highly efficient detection of cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra01067a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CdS-modified foam nickel (FN) was successfully constructed for the effective detection of cancer cells based on an electrochemiluminescence (ECL) technique and provides a new platform for the realization of an ECL sensor for cancer cells.
Collapse
Affiliation(s)
- Bing Dai
- School of Mechanical and Power Engineering
- Harbin University of Science and Technology
- Harbin 150080
- China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Junpeng Shao
- School of Mechanical and Power Engineering
- Harbin University of Science and Technology
- Harbin 150080
- China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Guangbin Yu
- School of Mechanical and Power Engineering
- Harbin University of Science and Technology
- Harbin 150080
- China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
| |
Collapse
|
43
|
Feng Y, Dai C, Lei J, Ju H, Cheng Y. Silole-Containing Polymer Nanodot: An Aqueous Low-Potential Electrochemiluminescence Emitter for Biosensing. Anal Chem 2015; 88:845-50. [DOI: 10.1021/acs.analchem.5b03391] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Yaqiang Feng
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chunhui Dai
- Key
Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jianping Lei
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yixiang Cheng
- Key
Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical
Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
44
|
Feng Y, Wang Q, Lei J, Ju H. Electrochemiluminescent DNA sensing using carbon nitride nanosheets as emitter for loading of hemin labeled single-stranded DNA. Biosens Bioelectron 2015; 73:7-12. [DOI: 10.1016/j.bios.2015.05.042] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/19/2015] [Indexed: 01/09/2023]
|
45
|
Ma MN, Zhuo Y, Yuan R, Chai YQ. New Signal Amplification Strategy Using Semicarbazide as Co-reaction Accelerator for Highly Sensitive Electrochemiluminescent Aptasensor Construction. Anal Chem 2015; 87:11389-97. [PMID: 26457826 DOI: 10.1021/acs.analchem.5b02848] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A highly sensitive electrochemiluminescent (ECL) aptasensor was constructed using semicarbazide (Sem) as co-reaction accelerator to promote the ECL reaction rate of CdTe quantum dots (CdTe QDs) and the co-reactant of peroxydisulfate (S2O8(2-)) for boosting signal amplification. The co-reaction accelerator is a species that when it is introduced into the ECL system containing luminophore and co-reactant, it can interact with co-reactant rather than luminophore to promote the ECL reaction rate of luminophore and co-reactant; thus the ECL signal is significantly amplified in comparison with that in which only luminophore and co-reactant are present. In this work, the ECL signal probes were first fabricated by alternately assembling the Sem and Au nanoparticles (AuNPs) onto the surfaces of hollow Au nanocages (AuNCs) via Au-N bond to obtain the multilayered nanomaterials of (AuNPs-Sem)n-AuNCs for immobilizing amino-terminated detection aptamer of thrombin (TBA2). Notably, the Sem with two -NH2 terminal groups could not only serve as cross-linking reagent to assemble AuNPs and AuNCs but also act as co-reaction accelerator to enhance the ECL reaction rate of CdTe QDs and S2O8(2-) for signal amplification. With the sandwich-type format, TBA2 signal probes could be trapped on the CdTe QD-based sensing interface in the presence of thrombin (TB) to achieve a considerably enhanced ECL signal in S2O8(2-) solution. As a result, the Sem in the TBA2 signal probes could accelerate the reduction of S2O8(2-) to produce the more oxidant mediators of SO4(•-), which further boosted the production of excited states of CdTe QDs to emit light. With the employment of the novel co-reaction accelerator Sem, the proposed ECL biosensor exhibited ultrahigh sensitivity to quantify the concentration of TB from 1 × 10(-7) to 1 nM with a detection limit of 0.03 fM, which demonstrated that the co-reaction accelerator could provide a simple, efficient, and low-cost approach for signal amplification and hold great potential for other ECL biosensors construction.
Collapse
Affiliation(s)
- Meng-Nan Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Ying Zhuo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| | - Ya-Qin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University , Chongqing 400715, China
| |
Collapse
|
46
|
Chen H, Li W, Zhao P, Nie Z, Yao S. A CdTe/CdS quantum dots amplified graphene quantum dots anodic electrochemiluminescence platform and the application for ascorbic acid detection in fruits. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Du X, Jiang D, Liu Q, Zhu G, Mao H, Wang K. Fabrication of graphene oxide decorated with nitrogen-doped graphene quantum dots and its enhanced electrochemiluminescence for ultrasensitive detection of pentachlorophenol. Analyst 2015; 140:1253-9. [PMID: 25554750 DOI: 10.1039/c4an01752h] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nitrogen-doped graphene quantum dots (NGQDs), as a new class of quantum dots, have potential applications in fuel cells and optoelectronics fields due to their electrocatalytic activity, tunable luminescence and biocompatibility. Herein, a facile hydrothermal approach for cutting nitrogen-doped graphene into NGQDs has been proposed for the first time. The resulting NGQDs were homogeneously modified onto the surface of graphene oxide (GO) to form NGQDs-GO nanocomposites. Compared with NGQDs, the as-prepared NGQDs-GO nanocomposites exhibited excellent electrochemiluminescence (ECL) performances including 3.8-fold enhancement of ECL intensity and a decrease by 200 mV of the ECL onset potential, which are ascribed to the introduction of GO. Based on the selective inhibitory effect of pentachlorophenol (PCP) on the ECL intensity of the NGQDs-GO system, a novel ECL sensor for PCP concentration determination was constructed, with a wide linear response ranging from 0.1 to 10 pg mL(-1) and a detection limit of 0.03 pg mL(-1). The practicability of the sensing platform in real water samples showed satisfactory results, which could open the possibility of using NGQDs-based nanocomposites in the electroanalytical field.
Collapse
Affiliation(s)
- Xiaojiao Du
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P.R. China.
| | | | | | | | | | | |
Collapse
|
48
|
Graphene oxide amplified electrochemiluminescence of graphitic carbon nitride and its application in ultrasensitive sensing for Cu2+. Anal Chim Acta 2015; 891:113-9. [DOI: 10.1016/j.aca.2015.05.054] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/27/2015] [Accepted: 05/30/2015] [Indexed: 11/21/2022]
|
49
|
Zhao WW, Wang J, Zhu YC, Xu JJ, Chen HY. Quantum Dots: Electrochemiluminescent and Photoelectrochemical Bioanalysis. Anal Chem 2015; 87:9520-31. [DOI: 10.1021/acs.analchem.5b00497] [Citation(s) in RCA: 185] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wei-Wei Zhao
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Jing Wang
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Yuan-Cheng Zhu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Science, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu P.R. China
- Collaborative
Innovation Center of Functionalized Probes for Chemical Imaging in
Universities of Shandong, Shandong Normal University, Jinan 250014, Shandong P.R. China
| |
Collapse
|
50
|
Zhou H, Liu J, Zhang S. Quantum dot-based photoelectric conversion for biosensing applications. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2014.12.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|