1
|
Mueller BL, Molden TA, Hammock J, Kolpashchikov DM. Tailed molecular beacon probes: an approach for the detection of structured DNA and RNA analytes. Chem Commun (Camb) 2025; 61:2095-2098. [PMID: 39792394 DOI: 10.1039/d4cc05984k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Molecular beacon (MB) probes have been extensively used for nucleic acid analysis. However, MB probes fail to hybridize with folded DNA or RNA. Here, we demonstrate that MB probes equipped with extra sequences complementary to the analyte, named 'tail', can increase the signal-to-background ratio by ∼40-fold and hybridization rates by ∼800-fold compared to conventional MB probes. Tailed MB probes can be used as mismatched-tolerant alternatives to traditional hairpin probes for fast assays.
Collapse
Affiliation(s)
- Brittany L Mueller
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Tatiana A Molden
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Jordan Hammock
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, Florida 32816, USA.
- National Center for Forensic Science University of Central Florida, Orlando, Florida 32816, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
2
|
Liu X, Shi Q, Qi P, Wang Z, Zhang T, Zhang S, Wu J, Guo Z, Chen J, Zhang Q. Recent advances in living cell nucleic acid probes based on nanomaterials for early cancer diagnosis. Asian J Pharm Sci 2024; 19:100910. [PMID: 38948397 PMCID: PMC11214190 DOI: 10.1016/j.ajps.2024.100910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/16/2023] [Accepted: 02/05/2024] [Indexed: 07/02/2024] Open
Abstract
The early diagnosis of cancer is vital for effective treatment and improved prognosis. Tumor biomarkers, which can be used for the early diagnosis, treatment, and prognostic evaluation of cancer, have emerged as a topic of intense research interest in recent years. Nucleic acid, as a type of tumor biomarker, contains vital genetic information, which is of great significance for the occurrence and development of cancer. Currently, living cell nucleic acid probes, which enable the in situ imaging and dynamic monitoring of nucleic acids, have become a rapidly developing field. This review focuses on living cell nucleic acid probes that can be used for the early diagnosis of tumors. We describe the fundamental design of the probe in terms of three units and focus on the roles of different nanomaterials in probe delivery.
Collapse
Affiliation(s)
- Xuyao Liu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Qi Shi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Peng Qi
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Ziming Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Tongyue Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Sijia Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zhaopei Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Qiang Zhang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
3
|
Pang H, Peng Y, Zhang R, Gao Z, Lai X, Li D, Zhao X, Wang Y, Pei H, Qiao B, Ji Y, Wu Q. A triggered DNA nanomachine with enzyme-free for the rapid detection of telomerase activity in a one-step method. Anal Chim Acta 2024; 1299:342420. [PMID: 38499416 DOI: 10.1016/j.aca.2024.342420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/08/2024] [Accepted: 02/26/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Telomerase is considered a biomarker for the early diagnosis and clinical treatment of cancer. The rapid and sensitive detection of telomerase activity is crucial to biological research, clinical diagnosis, and drug development. However, the main obstacles facing the current telomerase activity assay are the cumbersome and time-consuming procedure, the easy degradation of the telomerase RNA template and the need for additional proteases. Therefore, it is necessary to construct a new method for the detection of telomerase activity with easy steps, efficient reaction and strong anti-interference ability. RESULTS Herein, an efficient, enzyme-free, economical, sensitive, fluorometric detection method for telomerase activity in one-step, named triggered-DNA (T-DNA) nanomachine, was created based on target-triggered DNAzyme-cleavage activity and catalytic molecular beacon (CMB). Telomerase served as a switch and extended few numbers of (TTAGGG)n repeat sequences to initiate the signal amplification in the T-DNA nanomachine, resulting in a strong fluorescent signal. The reaction was a one-step method with a shortened time of 1 h and a constant temperature of 37 °C, without the addition of any protease. It also sensitively distinguished telomerase activity in various cell lines. The T-DNA nanomachine offered a detection limit of 12 HeLa cells μL-1, 9 SK-Hep-1 cells μL-1 and 3 HuH-7 cells μL-1 with a linear correlation detection range of 0.39 × 102-6.25 × 102 HeLa cells μL-1 for telomerase activity. SIGNIFICANCE In conclusion, our study demonstrated that the triggered-DNA nanomachine fulfills the requirements for rapid detection of telomerase activity in one-step under isothermal and enzyme-free conditions with excellent specificity, and its simple and stable structure makes it ideal for complex systems. These findings indicated the application prospect of DNA nanomachines in clinical diagnostics and provided new insights into the field of DNA nanomachine-based bioanalysis.
Collapse
Affiliation(s)
- Huajie Pang
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Yanan Peng
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Rui Zhang
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Zhijun Gao
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Xiangde Lai
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Dongxia Li
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Xuan Zhao
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Yuanyuan Wang
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China
| | - Hua Pei
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China
| | - Bin Qiao
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| | - Yuxiang Ji
- The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| | - Qiang Wu
- The First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China; The Second Affiliated Hospital, School of Tropical Medicine, Hainan Medical University, Haikou, 570311, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences (No. 2019RU013), Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
4
|
Rokutani S, Hiraka K, Saitoh H, Saito T, Nonaka Y, Ueno K, Tsukakoshi K, Ohnishi N, Ikebukuro K. Aptamer-enhanced particle aggregation inhibition assay for simple homogeneous protein detection using DNA aptamer and thermo-responsive magnetic nanoparticles. Biosens Bioelectron 2024; 245:115827. [PMID: 37979546 DOI: 10.1016/j.bios.2023.115827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/24/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
A simple and sensitive homogeneous protein detection system is required for the early detection of biomarkers. Thermo-responsive magnetic particles (TM) have already been developed to achieve easy bound/free separation at the homogeneous protein detection system, but they are still limited owing to the requirement of secondary antibodies and negatively charged polymers, and it is challenging to control the TM aggregation behavior because of the size of the TM. Therefore, at new method to control TM aggregation behavior that is simple, easy, and highly sensitive is required. In this study, we developed a DNA aptamer-based TM assay as a simple protein detection system without additional secondary molecular recognition elements or negatively charged polymer. In the first attempt, a DNA aptamer was modified on the TM surface, and its aggregation behavior was monitored depending on the target molecule concentration. The TM aggregation rate during the heating process decreased depending on the amount of the DNA aptamer and increased depending on the target protein level. This suggests that the DNA aptamer prevented TM aggregation owing to its negative charge and achieved target protein detection owing to the cancellation of repulsion. Capturable aptamers were used in the TM assay to improve the sensitivity and limit of detection. The designed Capture DNA was modified on the TM surface, and the aptamer was captured in the presence of the target protein through a conformational change. Eventually, Capturable aptamer-based TM assay achieved a sub-nanomolar limit of detection and higher sensitivity than that of our initial investigation. Through this study and the ease of the DNA aptamer design, it was shown that the DNA aptamer-modified TM assay enabled the development of a simple and sensitive homogeneous protein detection system.
Collapse
Affiliation(s)
- Shunsuke Rokutani
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kentaro Hiraka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan; College of Science, Engineering and Technology, Grand Canyon University, 3300 W Camelback Rd, Phoenix, AZ, 85017, USA; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hiroshi Saitoh
- JNC Petrochemical Corporation, Goi Research Center, 5-1 Goi-kaigan, Ichihara, Chiba, 290-8551, Japan
| | - Taiki Saito
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Yoshihiko Nonaka
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kinuko Ueno
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Noriyuki Ohnishi
- JNC Petrochemical Corporation, Goi Research Center, 5-1 Goi-kaigan, Ichihara, Chiba, 290-8551, Japan.
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
5
|
Chen XF, Zhao X, Yang Z. Aptamer-Based Antibacterial and Antiviral Therapy against Infectious Diseases. J Med Chem 2021; 64:17601-17626. [PMID: 34854680 DOI: 10.1021/acs.jmedchem.1c01567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleic acid aptamers are single-stranded DNA or RNA molecules selected in vitro that can bind to a broad range of targets with high affinity and specificity. As promising alternatives to conventional anti-infective agents, aptamers have gradually revealed their potential in the combat against infectious diseases. This article provides an overview on the state-of-art of aptamer-based antibacterial and antiviral therapeutic strategies. Diverse aptamers targeting pathogen-related components or whole pathogenic cells are summarized according to the species of microorganisms. These aptamers exhibited remarkable in vitro and/or in vivo inhibitory effect for pathogenic invasion, enzymatic activities, or viral replication, even for some highly drug-resistant strains and biofilms. Aptamer-mediated drug delivery and controlled drug release strategies are also included herein. Critical technical barriers of therapeutic aptamers are briefly discussed, followed by some future perspectives for their implementation into clinical utility.
Collapse
Affiliation(s)
- Xiao-Fei Chen
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Xin Zhao
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, PR China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, PR China.,Guangzhou Laboratory, Guangzhou 510320, PR China.,Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 510005, PR China
| |
Collapse
|
6
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
7
|
Hairpin DNA-Mediated isothermal amplification (HDMIA) techniques for nucleic acid testing. Talanta 2021; 226:122146. [PMID: 33676697 DOI: 10.1016/j.talanta.2021.122146] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/21/2021] [Accepted: 01/24/2021] [Indexed: 01/19/2023]
Abstract
Nucleic acid detection is of great importance in a variety of areas, from life science and clinical diagnosis to environmental monitoring and food safety. Unfortunately, nucleic acid targets are always found in trace amounts and their response signals are difficult to be detected. Amplification mechanisms are then practically needed to either duplicate nucleic acid targets or enhance the detection signals. Polymerase chain reaction (PCR) is one of the most popular and powerful techniques for nucleic acid analysis. But the requirement of costly devices for precise thermo-cycling procedures in PCR has severely hampered the wide applications of PCR. Fortunately, isothermal molecular reactions have emerged as promising alternatives. The past decade has witnessed significant progress in the research of isothermal molecular reactions utilizing hairpin DNA probes (HDPs). Based on the nucleic acid strand interaction mechanisms, the hairpin DNA-mediated isothermal amplification (HDMIA) techniques can be mainly divided into three categories: strand assembly reactions, strand decomposition reactions, and strand creation reactions. In this review, we introduce the basics of HDMIA methods, including the sensing principles, the basic and advanced designs, and their wide applications, especially those benefiting from the utilization of G-quadruplexes and nanomaterials during the past decade. We also discuss the current challenges encountered, highlight the potential solutions, and point out the possible future directions in this prosperous research area.
Collapse
|
8
|
Li C, Luo S, Wang J, Shen Z, Wu ZS. Nuclease-resistant signaling nanostructures made entirely of DNA oligonucleotides. NANOSCALE 2021; 13:7034-7051. [PMID: 33889882 DOI: 10.1039/d1nr00197c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nucleic acid probes have the advantages of excellent biocompatibility, biodegradability, versatile functionalities and remarkable programmability. However, the low biostability of nucleic acid probes under complex physiological conditions limits their in vivo application. Despite impressive progress in the development of inorganic material-mediated biostable nucleic acid nanostructures, uncertain systemic toxicity of composite nanocarriers has hindered their application in living organisms. In the field of biomedicine, as a promising alternative capable of avoiding potential cytotoxicity, biologically stable nanostructures composed entirely of DNA oligonucleotides have been rapidly developed in recent years, offering an exciting in vivo tool for cancer diagnosis and clinical treatment. In this review, we summarize the recent advances in the development of nuclease-resistant DNA nanostructures with different geometrical shapes, such as tetrahedron, octahedron, DNA triangular prism (DTP), DNA nanotubes and DNA origami, introduce innovative assembly strategies, and discuss unique structural advantages and especially biological applications in cellular imaging and targeted drug delivery in an organism. Finally, we conclude with the challenges in the clinical development of DNA nanostructures and present an outlook of the future of this rapidly expanding field.
Collapse
Affiliation(s)
- Congcong Li
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | | | | | | | | |
Collapse
|
9
|
Li H, Han M, Weng X, Zhang Y, Li J. DNA-Tetrahedral-Nanostructure-Based Entropy-Driven Amplifier for High-Performance Photoelectrochemical Biosensing. ACS NANO 2021; 15:1710-1717. [PMID: 33439617 DOI: 10.1021/acsnano.0c09374] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In virtue of the inherent molecular recognition and programmability, DNA has recently become the most promising for high-performance biosensors. The rationally engineered nucleic acid architecture will be very advantageous to hybridization efficiency, specificity, and sensitivity. Herein, a robust and split-mode photoelectrochemical (PEC) biosensor for miRNA-196a was developed based on an entropy-driven tetrahedral DNA (EDTD) amplifier coupled with superparamagnetic nanostructures. The DNA tetrahedron structure features in rigidity and structural stability that contribute to obtain precise identification units and specific orientations, improving the hybridization efficiency, sensitivity, and selectivity of the as-designed PEC biosensor. Further, superparamagnetic Fe3O4@SiO2@CdS particles integrated with DNA nanostructures are beneficial for the construction of a split-mode, highly selective, and reliable PEC biosensor. Particularly, the enzyme- and hairpin-free EDTD amplifier eliminates unnecessary interference from the complex secondary structure of pseudoknots or kissing loops in typical hairpin DNAs, significantly lowers the background noise, and improves the detection sensitivity. This PEC biosensor is capable of monitoring miRNA-196a in practical settings with additional advantages of efficient electrode fabrication, stability, and reproducibility. This strategy can be extended to various miRNA assays in complex biological systems with excellent performance.
Collapse
Affiliation(s)
- Hongbo Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Min Han
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xuan Weng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| |
Collapse
|
10
|
|
11
|
Zhang X, Wang F, Sheng JL, Sun MX. Advances and Application of DNA-functionalized Nanoparticles. Curr Med Chem 2020; 26:7147-7165. [DOI: 10.2174/0929867325666180501103620] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 01/04/2023]
Abstract
DNA-functionalized nanoparticle (DfNP) technology, the integration of DNA with
nanotechnology, has emerged over recent decades as a promising biofunctionalization tool in
the light of biotechnological approaches. The development of DfNPs has exhibited significant
potential for several biological and biomedical applications. In this review, we focus on the
mechanism of a series of DNA-NP nanocomposites and highlight the superstructures of
DNA-based NPs. We also summarize the applications of these nanocomposites in cell imaging,
cancer therapy and bioanalytical detection.
Collapse
Affiliation(s)
- Xun Zhang
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| | - Fei Wang
- Shanghai Tuberculosis Key Laboratory, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Jin-Liang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Min-Xuan Sun
- Jiangsu Key Laboratory of Medical Optics, Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
12
|
A Simple Liquid Crystal-based Aptasensor Using a Hairpin-shaped Aptamer for the Bare-Eye Detection of Carcinoembryonic Antigen. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3406-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Electrochemical DNA Biosensors Based on Labeling with Nanoparticles. NANOMATERIALS 2019; 9:nano9101361. [PMID: 31547500 PMCID: PMC6836269 DOI: 10.3390/nano9101361] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023]
Abstract
This work reviews the field of DNA biosensors based on electrochemical determination of nanoparticle labels. These labeling platforms contain the attachment of metal nanoparticles (NPs) or quantum dots (QDs) on the target DNA or on a biorecognition reporting probe. Following the development of DNA bioassay, the nanotags are oxidized to ions, which are determined by voltammetric methods, such as pulse voltammetry (PV) and stripping voltammetry (SV). The synergistic effects of NPs amplification (as each nanoprobe releases a large number of detectable ions) and the inherent sensitivity of voltammetric techniques (e.g., thanks to the preconcentration step of SV) leads to the construction of ultrasensitive, low cost, miniaturized, and integrated biodevices. This review focuses on accomplishments in DNA sensing using voltammetric determination of nanotags (such as gold and silver NPs, and Cd- and Pb-based QDs), includes published works on integrated three electrode biodevices and paper-based biosystems, and discusses strategies for multiplex DNA assays and signal enhancement procedures. Besides, this review mentions the electroactive NP synthesis procedures and their conjugation protocols with biomolecules that enable their function as labels in DNA electrochemical biosensors.
Collapse
|
14
|
Knob R, Hanson RL, Tateoka OB, Wood RL, Guerrero-Arguero I, Robison RA, Pitt WG, Woolley AT. Sequence-specific sepsis-related DNA capture and fluorescent labeling in monoliths prepared by single-step photopolymerization in microfluidic devices. J Chromatogr A 2018; 1562:12-18. [PMID: 29859687 DOI: 10.1016/j.chroma.2018.05.042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 02/08/2023]
Abstract
Fast determination of antibiotic resistance is crucial in selecting appropriate treatment for sepsis patients, but current methods based on culture are time consuming. We are developing a microfluidic platform with a monolithic column modified with oligonucleotides designed for sequence-specific capture of target DNA related to the Klebsiella pneumoniae carbapenemase (KPC) gene. We developed a novel single-step monolith fabrication method with an acrydite-modified capture oligonucleotide in the polymerization mixture, enabling fast monolith preparation in a microfluidic channel using UV photopolymerization. These prepared columns had a threefold higher capacity compared to monoliths prepared in a multistep process involving Schiff-base DNA attachment. Conditions for denaturing, capture and fluorescence labeling using hybridization probes were optimized with synthetic 90-mer oligonucleotides. These procedures were applied for extraction of a PCR amplicon from the KPC antibiotic resistance gene in bacterial lysate obtained from a blood sample spiked with E. coli. The results showed similar eluted peak areas for KPC amplicon extracted from either hybridization buffer or bacterial lysate. Selective extraction of the KPC DNA was verified by real time PCR on eluted fractions. These results show great promise for application in an integrated microfluidic diagnostic system that combines upstream blood sample preparation and downstream single-molecule counting detection.
Collapse
Affiliation(s)
- Radim Knob
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Robert L Hanson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States
| | - Olivia B Tateoka
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - Ryan L Wood
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, United States
| | - Israel Guerrero-Arguero
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, United States
| | - William G Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, United States
| | - Adam T Woolley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
15
|
Harroun SG, Prévost-Tremblay C, Lauzon D, Desrosiers A, Wang X, Pedro L, Vallée-Bélisle A. Programmable DNA switches and their applications. NANOSCALE 2018; 10:4607-4641. [PMID: 29465723 DOI: 10.1039/c7nr07348h] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
DNA switches are ideally suited for numerous nanotechnological applications, and increasing efforts are being directed toward their engineering. In this review, we discuss how to engineer these switches starting from the selection of a specific DNA-based recognition element, to its adaptation and optimisation into a switch, with applications ranging from sensing to drug delivery, smart materials, molecular transporters, logic gates and others. We provide many examples showcasing their high programmability and recent advances towards their real life applications. We conclude with a short perspective on this exciting emerging field.
Collapse
Affiliation(s)
- Scott G Harroun
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
2-aminopurine probe in combination with catalyzed hairpin assembly signal amplification for simple and sensitive detection of microRNA. Talanta 2017; 174:336-340. [DOI: 10.1016/j.talanta.2017.06.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 11/20/2022]
|
17
|
Brown CW, Buckhout-White S, Díaz SA, Melinger JS, Ancona MG, Goldman ER, Medintz IL. Evaluating Dye-Labeled DNA Dendrimers for Potential Applications in Molecular Biosensing. ACS Sens 2017; 2:401-410. [PMID: 28723206 DOI: 10.1021/acssensors.6b00778] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA nanostructures provide a reliable and predictable scaffold for precisely positioning fluorescent dyes to form energy transfer cascades. Furthermore, these structures and their attendant dye networks can be dynamically manipulated by biochemical inputs, with the changes reflected in the spectral response. However, the complexity of DNA structures that have undergone such types of manipulation for direct biosensing applications is quite limited. Here, we investigate four different modification strategies to effect such dynamic manipulations using a DNA dendrimer scaffold as a testbed, and with applications to biosensing in mind. The dendrimer has a 2:1 branching ratio that organizes the dyes into a FRET-based antenna in which excitonic energy generated on multiple initial Cy3 dyes displayed at the periphery is then transferred inward through Cy3.5 and/or Cy5 relay dyes to a Cy5.5 final acceptor at the focus. Advantages of this design included good transfer efficiency, large spectral separation between the initial donor and final acceptor emissions for signal transduction, and an inherent tolerance to defects. Of the approaches to structural rearrangement, the first two mechanisms we consider employed either toehold-mediated strand displacement or strand replacement and their impact was mainly via direct transfer efficiency, while the other two were more global in their effect using either a belting mechanism or an 8-arm star nanostructure to compress the nanostructure and thereby modulate its spectral response through an enhancement in parallelism. The performance of these mechanisms, their ability to reset, and how they might be utilized in biosensing applications are discussed.
Collapse
Affiliation(s)
- Carl W. Brown
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | | | - Sebastián A. Díaz
- American Society for Engineering Education, Washington, DC 20036, United States
| | | | | | | | | |
Collapse
|
18
|
Ji D, Wang H, Ge J, Zhang L, Li J, Bai D, Chen J, Li Z. Label-free and rapid detection of ATP based on structure switching of aptamers. Anal Biochem 2017; 526:22-28. [PMID: 28315316 DOI: 10.1016/j.ab.2017.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 12/18/2022]
Abstract
In this work, an aptamer-based fluorescent strategy for label-free detection of ATP was developed by using Thioflavin T (ThT) as a fluorescence indicator, which can specifically bind with G-quadruplex DNAs to generate enhanced fluorescence intensity. In the absence of ATP, the folded structure of ATP aptamer allows the intercalation of ThT to produce strong fluorescence signal. However, upon ATP binding to the aptamer where ThT intercalated, the conformational change or distortion of the aptamer is large enough to cause much less intercalation of ThT and consequently drastic suppression of the fluorescence intensity. As such, the concentration of ATP could be identified very easily by observing fluorescence changes of this sensing system. This label-free assay could be accomplished very easily and quickly with a "mix-and-detect" detection method and exhibits high sensitivity to ATP with a detection limit of 33 nM in a wide range of 0.1-1000 μM. Furthermore, this proposed method is capable of detecting ATP in human serum and cell extracts. This method offers several advantages such as simplicity, rapidity, low cost, good stability and excellent selectivity, which make it hold great potential for the detection of ATP in bioanalytical and biological studies.
Collapse
Affiliation(s)
- Danyang Ji
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongqi Wang
- Institute of Quality Standard and Testing Technology for Agroproducts, Henan Academy of Agricultural Science, Zhengzhou 450002, PR China
| | - Jia Ge
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lin Zhang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jianjun Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Dongmei Bai
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Juan Chen
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Zhaohui Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR China; Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
19
|
Xie N, Liu S, Yang X, He X, Huang J, Wang K. DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery. Analyst 2017; 142:3322-3332. [DOI: 10.1039/c7an01154g] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein, we review and summarise the development and biological applications of DNA tetrahedron, including cellular biosensors and drug delivery systems.
Collapse
Affiliation(s)
- Nuli Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Shiyuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics
- College of Chemistry and Chemical Engineering
- Institute of Biology
- Hunan University
- Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province
| |
Collapse
|
20
|
Tang J, Shi H, He X, Lei Y, Guo Q, Wang K, Yan L, He D. Tumor cell-specific split aptamers: target-driven and temperature-controlled self-assembly on the living cell surface. Chem Commun (Camb) 2016; 52:1482-5. [PMID: 26660498 DOI: 10.1039/c5cc08977h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An activatable split aptamer probe with target-induced shape change and thermosensitivity was developed. Triggered by proteins on the cell surface, the probe could assemble into a desired binding shape, thus affording a FRET-based tumor cell assay. Moreover, a reversible cell catch/release strategy was realized through mild temperature switching (4°C/37°C).
Collapse
Affiliation(s)
- Jinlu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Yanli Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Qiuping Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Lv'an Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| | - Dinggeng He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Changsha, 410082, China.
| |
Collapse
|
21
|
Molecular beacons with JOE dye: Influence of linker and 3′ couple quencher. Mol Cell Probes 2016; 30:285-290. [DOI: 10.1016/j.mcp.2016.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 11/23/2022]
|
22
|
Increased electrocatalyzed performance through hairpin oligonucleotide aptamer-functionalized gold nanorods labels and graphene-streptavidin nanomatrix: Highly selective and sensitive electrochemical biosensor of carcinoembryonic antigen. Biosens Bioelectron 2016; 83:142-8. [PMID: 27111123 DOI: 10.1016/j.bios.2016.04.039] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 11/22/2022]
Abstract
We report a triplex signal amplification strategy for sensitive biosensing of cancer biomarker by taking advantage of hairpin-shaped oligonucleotide-functionalized gold nanorods (HO-GNRs), graphene and the avidin-biotin reation. The strategy expands electrochemical detection of carcinoembryonic antigen (CEA) by using an aptamer as biosensor's recognition element and HO-GNRs as signal enhancer. To construct this biosensor, the GNR was used as a carrier of horseradish peroxidase (HRP) and HO aptamer with a biotin at the 3'-end and a thiol at the 5'-end, which amplified the electrochemical response because of a large molar ratio of HRP to HO. In the presence of target CEA, the binding reactions of CEA with the loop portions of the HOs caused HOs' loop-stem structure opened and exposed the biotins, and then HRP-GNRs-HO conjugates were captured on graphene and streptavidin modified electrodes via the reaction between the exposed biotins and preimmobilized streptavidins. The accumulation of HRP effectively catalyzed the hydrogen peroxide-mediated oxidation of o-phenylenediamine to generate an electrochemical reduction current for CEA detection. Under optimal conditions, the electrochemical biosensor exhibited a wide dynamic range of 5pgmL(-1) and 50ngmL(-1) toward CEA standards with a low detection limit of 1.5pgmL(-1) (signal-to-noise ratio of 3). The proposed biosensor accurately detected CEA concentration in 8 human serum samples from patients with lung diseases, showing excellent correlations with standard chemiluminescence immunoassay. Furthermore, these results of target DNA detection made it abundantly clear that the proposed strategy can also be extended for detection of other relative biomarkers using different functional DNA structures, which shows great prospects in single-nucleotide polymorphisms analysis, biomedical sensing and application for accurate clinical diseases diagnostic.
Collapse
|
23
|
Wang Y, Jiang L, Leng Q, Wu Y, He X, Wang K. Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification. Biosens Bioelectron 2016; 77:914-20. [DOI: 10.1016/j.bios.2015.10.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/12/2023]
|
24
|
Oliveira N, Souza E, Ferreira D, Zanforlin D, Bezerra W, Borba MA, Arruda M, Lopes K, Nascimento G, Martins D, Cordeiro M, Lima-Filho J. A Sensitive and Selective Label-Free Electrochemical DNA Biosensor for the Detection of Specific Dengue Virus Serotype 3 Sequences. SENSORS 2015; 15:15562-77. [PMID: 26140346 PMCID: PMC4541844 DOI: 10.3390/s150715562] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 06/13/2015] [Accepted: 06/23/2015] [Indexed: 11/16/2022]
Abstract
Dengue fever is the most prevalent vector-borne disease in the world, with nearly 100 million people infected every year. Early diagnosis and identification of the pathogen are crucial steps for the treatment and for prevention of the disease, mainly in areas where the co-circulation of different serotypes is common, increasing the outcome of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Due to the lack of fast and inexpensive methods available for the identification of dengue serotypes, herein we report the development of an electrochemical DNA biosensor for the detection of sequences of dengue virus serotype 3 (DENV-3). DENV-3 probe was designed using bioinformatics software and differential pulse voltammetry (DPV) was used for electrochemical analysis. The results showed that a 22-m sequence was the best DNA probe for the identification of DENV-3. The optimum concentration of the DNA probe immobilized onto the electrode surface is 500 nM and a low detection limit of the system (3.09 nM). Moreover, this system allows selective detection of DENV-3 sequences in buffer and human serum solutions. Therefore, the application of DNA biosensors for diagnostics at the molecular level may contribute to future advances in the implementation of specific, effective and rapid detection methods for the diagnosis dengue viruses.
Collapse
Affiliation(s)
- Natália Oliveira
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Elaine Souza
- Universidade Federal de Alagoas (UFAL), Campus Arapiraca, Av. Manoel Severino Barbosa, s/n, Bom Sucesso, 57.309-005 Arapiraca, AL, Brazil.
| | - Danielly Ferreira
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Deborah Zanforlin
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Wessulla Bezerra
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Maria Amélia Borba
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Mariana Arruda
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Kennya Lopes
- Departamento de Virologia e Terapia Experimental (LAVITE), Centro de Pesquisas Aggeu Magalhães (CPqAM), Fundação Oswaldo Cruz (Fiocruz)-Pernambuco, Av. Professor Moraes Rego, s/n, Campus da UFPE, 50.670-420 Recife, PE, Brazil.
| | - Gustavo Nascimento
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
| | - Danyelly Martins
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
- Departamento de Bioquímica, Universidade Federal de Pernambuco-UFPE, Av. Professor Moraes Rego, s/n, Campus da UFPE, CEP: 50670-901 Recife, PE, Brazil.
| | - Marli Cordeiro
- Departamento de Bioquímica, Universidade Federal de Pernambuco-UFPE, Av. Professor Moraes Rego, s/n, Campus da UFPE, CEP: 50670-901 Recife, PE, Brazil.
| | - José Lima-Filho
- Laboratório de Imunopatologia Keizo Asami (LIKA), Universidade Federal de Pernambuco-UFPE, Av. Prof. Moraes Rego, s/n, Campus da UFPE, 50670-901 Recife, PE, Brazil.
- Departamento de Bioquímica, Universidade Federal de Pernambuco-UFPE, Av. Professor Moraes Rego, s/n, Campus da UFPE, CEP: 50670-901 Recife, PE, Brazil.
| |
Collapse
|
25
|
Ryazantsev DY, Kvach MV, Tsybulsky DA, Prokhorenko IA, Stepanova IA, Martynenko YV, Gontarev SV, Shmanai VV, Zavriev SK, Korshun VA. Design of molecular beacons: 3' couple quenchers improve fluorogenic properties of a probe in real-time PCR assay. Analyst 2015; 139:2867-72. [PMID: 24736939 DOI: 10.1039/c4an00081a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Convenient preparation of fluorogenic hairpin DNA probes (molecular beacons) carrying a pair of FAM fluorophores (located close to 5'-terminus of the probe) or a pair of BHQ1 quenchers on 3'-terminus (with (BHQ1)2 or BHQ1-BHQ1 composition) is reported. These probes were used for the first time in a real-time PCR assay and showed considerable improvements in fluorogenic properties (the total fluorescence increase or signal-to-background ratio) in assay conditions vs. conventional one-FAM-one-BHQ1 molecular beacon probes as well as vs. hydrolyzable one-FAM-one-BHQ1 TaqMan probes. At the same time, such multiple modifications of the probe do not influence its Cq (a fractional PCR cycle used for quantification). The probe MB14 containing a BHQ1-BHQ1 pair showed a PCR fluorescence/background value of 9.6 which is more than two times higher than that of a regular probe MB2 (4.6). This study demonstrates prospects for the design of highly fluorogenic molecular beacon probes suitable for quantitative real-time PCR and for other potential applications (e.g. intracellular RNA detection and SNP/mutation analysis).
Collapse
Affiliation(s)
- Dmitry Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lee CC, Liao YC, Lai YH, Lee CCD, Chuang MC. Recognition of dual targets by a molecular beacon-based sensor: subtyping of influenza A virus. Anal Chem 2015; 87:5410-6. [PMID: 25879394 DOI: 10.1021/acs.analchem.5b00810] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A molecular beacon (MB)-based sensor to offer a decisive answer in combination with information originated from dual-target inputs is designed. The system harnesses an assistant strand and thermodynamically favored designation of unpaired nucleotides (UNs) to process the binary targets in "AND-gate" format and report fluorescence in "off-on" mechanism via a formation of a DNA four-way junction (4WJ). By manipulating composition of the UNs, the dynamic fluorescence difference between the binary targets-coexisting circumstance and any other scenario was maximized. Characteristic equilibrium constant (K), change of entropy (ΔS), and association rate constant (k) between the association ("on") and dissociation ("off") states of the 4WJ were evaluated to understand unfolding behavior of MB in connection to its sensing capability. Favorable MB and UNs were furthermore designed toward analysis of genuine genetic sequences of hemagglutinin (HA) and neuraminidase (NA) in an influenza A H5N2 isolate. The MB-based sensor was demonstrated to yield a linear calibration range from 1.2 to 240 nM and detection limit of 120 pM. Furthermore, high-fidelity subtyping of influenza virus was implemented in a sample of unpurified amplicons. The strategy opens an alternative avenue of MB-based sensors for dual targets toward applications in clinical diagnosis.
Collapse
Affiliation(s)
- Chun-Ching Lee
- †Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | - Yu-Chieh Liao
- ‡Institute of Population Health Science, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan
| | - Yu-Hsuan Lai
- †Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| | | | - Min-Chieh Chuang
- †Department of Chemistry, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
27
|
A fluorescent biosensing platform based on the polydopamine nanospheres intergrating with Exonuclease III-assisted target recycling amplification. Biosens Bioelectron 2015; 71:143-149. [PMID: 25897884 DOI: 10.1016/j.bios.2015.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/30/2015] [Accepted: 04/12/2015] [Indexed: 11/20/2022]
Abstract
Rapid, cost-effective, sensitive and specific analysis of biomolecules is important in the modern healthcare system. Here, a fluorescent biosensing platform based on the polydopamine nanospheres (PDANS) intergrating with Exonuclease III (Exo III) was developed. Due to the interaction between the ssDNA and the PDANS, the fluorescence of 6-carboxyfluorescein (FAM) labelled in the probe would been quenched by PDANS through FRET. While, in the present of the target DNA, the probe DNA would hybridize with the target DNA to form the double-strand DNA complex. Thus, Exo III could catalyze the stepwise removal of mononucleotides from 3'-terminus in the probe DNA, releasing the target DNA. As the FAM was released from the probe DNA, the fluorescence would no longer been quenched, led to the signal on. As one target DNA molecule could undergo a number of cycles to trigger the degradation of abundant probe DNA, Exo III-assisted target recycling would led to the amplification of the signal. The detection limit for DNA was 5 pM, which was 20 times lower than that without Exo III. And the assay time was largely shortened due to the faster signal recovery kinetics. What is more, this target recycling strategy was also applied to conduct an aptamer-based biosensing platform. The fluorescence intensity was also enhanced for the assay of adenosine triphosphate (ATP). For the Exo III-assisted target recycling amplification, DNA and ATP were fast detected with high sensitivity and selectivity. This work provides opportunities to develop simple, rapid, economical, and sensitive biosensing platforms for biomedical diagnostics.
Collapse
|
28
|
Chowdhury JA, Moriguchi T, Shinozuka K. Pseudo-Dumbbell-Type Molecular Beacon Probes Bearing Modified Deoxyuridine Derivatives and a Silylated Pyrene as a Fluorophore. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2015. [DOI: 10.1246/bcsj.20140372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Jakir Ahmed Chowdhury
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| | - Tomohisa Moriguchi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| | - Kazuo Shinozuka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University
| |
Collapse
|
29
|
Kokkinos C, Economou A, Speliotis T, Petrou P, Kakabakos S. Flexible microfabricated film sensors for the in situ quantum dot-based voltammetric detection of DNA hybridization in microwells. Anal Chem 2014; 87:853-7. [PMID: 25514352 DOI: 10.1021/ac503791j] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new flexible miniaturized integrated device was microfabricated for the in situ ultrasensitive voltammetric determination of DNA mutation in a microwell format, using quantum dots (QDs) labels. The integrated device consisted of thin Bi, Ag, and Pt films (serving as the working, reference, and counter electrode, respectively) deposited by sputtering on a flexible polyimide substrate. A DNA assay was employed in microwell format, where an immobilized complementary oligonucleotide probe hybridized with the biotinylated target oligonucleotide followed by reaction with streptavidin-conjugated PbS QDs. After the acidic dissolution of the QDs, the flexible sensor was rolled and inserted into the microwell and the Pb(II) released was determined in situ by anodic stripping voltammetry. Since the analysis took place directly in the microwell, the volume of the working solution was only 100 μL and the target DNA could be detected at a concentration down to 1.1 fmol L(-1). The proposed flexible microdevice addresses the restrictions of conventional rigid electrodes while it provides a low cost integrated transducer for the ultrasensitive detection of important biomolecules.
Collapse
Affiliation(s)
- Christos Kokkinos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina , Ioannina, 45110, Greece
| | | | | | | | | |
Collapse
|
30
|
Dziuba D, Pohl R, Hocek M. Bodipy-labeled nucleoside triphosphates for polymerase synthesis of fluorescent DNA. Bioconjug Chem 2014; 25:1984-95. [PMID: 25290695 DOI: 10.1021/bc5003554] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
New fluorescent nucleosides and nucleoside triphosphate (dNTPs) analogs bearing the F-Bodipy fluorophore linked through a short, flexible nonconjugate tether were synthesized. The Bodipy-labeled dNTPs were substrates for several DNA polymerases which incorporated them into DNA in primer extension, nicking enzyme amplification reaction, and polymerase chain reaction. The fluorescence of F-Bodipy is not quenched upon incorporation in DNA and can be detected both in solutions and on gels.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead & IOCB Research Center , Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | | |
Collapse
|
31
|
Inhibited aptazyme-based catalytic molecular beacon for amplified detection of adenosine. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.05.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Li Q, Zhao X, Liu H, Qu F. Low pH capillary electrophoresis application to improve capillary electrophoresis-systematic evolution of ligands by exponential enrichment. J Chromatogr A 2014; 1364:289-94. [PMID: 25193175 DOI: 10.1016/j.chroma.2014.08.073] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 08/21/2014] [Accepted: 08/22/2014] [Indexed: 11/24/2022]
Abstract
In this work, a novel low pH CE-SELEX (LpH-CE-SELEX) as a CE-SELEX variant is proposed. Transferring (Trf), bovine serum albumin (BSA) and cytochrome c (Cyt c) as model protein are incubated with a FAM labeled ssDNA library, respectively. Incubation mixture is separated in low pH CE (pH 2.6), where positively charged protein, protein-ssDNA complex and negatively charged ssDNA library migrate oppositely without EOF driven. Analysis of protein-ssDNA complex under positive voltage and unbound ssDNA library under negative voltage by CE-UV are applied for interactive evaluation. By increasing injection time, larger amount protein-ssDNA complex can be collected conveniently at the cathode end whereas ssDNA migrates to anode. Finally, stability of protein-ssDNA complex in low pH CE separation is discussed.
Collapse
Affiliation(s)
- Qian Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xinying Zhao
- Beijing Centre for Physical and Chemical Analysis, Beijing 100089, China
| | - Hongyang Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Qu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
33
|
Huang J, He Y, Yang X, Wang K, Quan K, Lin X. Split aptazyme-based catalytic molecular beacons for amplified detection of adenosine. Analyst 2014; 139:2994-7. [DOI: 10.1039/c4an00454j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|