1
|
Chen G, Lai B. Matrix overcompensation calibration: A new strategy to correct matrix effects of carbon origin in multielement analysis by inductively coupled plasma mass spectrometry. Anal Chim Acta 2024; 1309:342675. [PMID: 38772665 DOI: 10.1016/j.aca.2024.342675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/11/2024] [Accepted: 05/02/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND Elemental analysis by inductively coupled plasma mass spectrometry (ICP-MS) may suffer from matrix effects; those caused by organic matrices cannot be corrected by internal standardization. A new strategy, matrix overcompensation calibration (MOC), was developed to correct such matrix effects. RESULTS Clear fruit juices were diluted 1:50 in 1 % HNO3 (v/v)- 0.5 % HCl (v/v)- 5 % ethanol (v/v). A standard series was treated likewise to construct an external calibration curve. As, Se, Cd, and Pb in juices were determined by dilute-and-shoot ICP-MS based on this MOC strategy. The results agreed with those obtained by standard addition calibration and microwave-aided digestion; data accuracy was validated by spike-recovery studies. SIGNIFICANCE Unlike standard addition calibration, a single external calibration curve established by MOC can be applicable to juices of diversified fruit, geographical, and manufacturer origins enhancing productivity.
Collapse
Affiliation(s)
- Guoying Chen
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania, 19038, USA.
| | - Bunhong Lai
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, Pennsylvania, 19038, USA
| |
Collapse
|
2
|
de Oliveira Costa T, Rangel Botelho J, Helena Cassago Nascimento M, Krause M, Tereza Weitzel Dias Carneiro M, Coelho Ferreira D, Roberto Filgueiras P, de Oliveira Souza M. A one-class classification approach for authentication of specialty coffees by inductively coupled plasma mass spectroscopy (ICP-MS). Food Chem 2024; 442:138268. [PMID: 38242000 DOI: 10.1016/j.foodchem.2023.138268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Due to the lucrative nature of specialty coffees, there have been instances of adulteration where low-cost materials are mixed in to increase the overall volume, resulting in illegal profit. A widely used and recommended approach to detect possible adulteration is the application of one-class classifiers (OCC), which only require information about the target class to build the models. Thus, this work aimed to identify adulterations in specialty coffees with low-quality coffee using multielement analysis determined by ICP-MS and to evaluate the performance of one-class classifiers (dd-SIMCA, OCRF, and OCPLS). Therefore, authentic specialty coffee samples were adulterated with low-quality coffee in 25 % to 75 % (w/w) proportions. Samples were subjected to acid decomposition for analysis by ICP-MS. OCPLS method presented the best performance to detect adulterations with low-quality coffee in specialty coffees, showing higher specificity (SPE = 100 %) and reliability rate (RLR = 94.3 %).
Collapse
Affiliation(s)
- Tayná de Oliveira Costa
- Laboratório de Analítica, Metabolômica e Quimiometria (LAMeQui), Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Campus Alegre (IFES), Brazil; Programa de Pós-Graduação em Ciências Naturais (PPGCN), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil
| | | | | | - Maiara Krause
- Departamento de Química, Universidade Federal do Espírito Santo (UFES), Brazil
| | | | | | | | - Murilo de Oliveira Souza
- Laboratório de Analítica, Metabolômica e Quimiometria (LAMeQui), Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, Campus Alegre (IFES), Brazil; Programa de Pós-Graduação em Ciências Naturais (PPGCN), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Brazil.
| |
Collapse
|
3
|
Fabjanowicz M, Różańska A, Abdelwahab NS, Pereira-Coelho M, Haas ICDS, Madureira LADS, Płotka-Wasylka J. An analytical approach to determine the health benefits and health risks of consuming berry juices. Food Chem 2024; 432:137219. [PMID: 37647705 DOI: 10.1016/j.foodchem.2023.137219] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Food products composition analysis is a prerequisite for verification of product quality, fulfillment of regulatory enforcements, checking compliance with national and international food standards, contracting specifications, and nutrient labeling requirements and providing quality assurance for use of the product for the supplementation of other foods. These aspects also apply to the berry fruit and berry juice. It also must be noted that even though fruit juices are generally considered healthy, there are many risks associated with mishandling both fruits and juices themselves. The review gathers information related with the health benefits and risk associated with the consumption of berry fruit juices. Moreover, the focus was paid to the quality assurance of berry fruit juice. Thus, the analytical methods used for determination of compounds influencing the sensory and nutritional characteristics of fruit juice as well as potential contaminants or adulterations.
Collapse
Affiliation(s)
- Magdalena Fabjanowicz
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| | - Anna Różańska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland
| | - Nada S Abdelwahab
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina Pereira-Coelho
- Departament of Chemistry, Federal University of Santa Catarina, Des. Vitor Lima Av., Trindade, 88040-900 Florianópolis, SC, Brazil
| | - Isabel Cristina da Silva Haas
- Department of Food Science and Technology, Federal University of Santa Catarina, Admar Gonzaga Rd., 1346, Itacorubi, 88034-001 Florianópolis, SC, Brazil
| | | | - Justyna Płotka-Wasylka
- Department of Analytical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland; BioTechMed Center, Gdańsk University of Technology, 11/12 Narutowicza Street, 80-233 Gdańsk, Poland.
| |
Collapse
|
4
|
Saelee N, Cheong LZ, Chaijan M. Optimized Acetic Acid Production by Mixed Culture of Saccharomyces cerevisiae TISTR 5279 and Gluconobacter oxydans TBRC 4013 for Mangosteen Vinegar Fermentation Using Taguchi Design and Its Physicochemical Properties. Foods 2023; 12:3256. [PMID: 37685189 PMCID: PMC10487089 DOI: 10.3390/foods12173256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
This research investigates the enhancement of acetic acid production in the mangosteen vinegar fermentation process through mixed-culture fermentation involving S. cerevisiae TISTR 5279 and G. oxydans TBRC 4013, alongside an analysis of the resulting mangosteen vinegar's qualities and properties using Taguchi Experimental Design (TED). It focuses on key parameters, such as the juice concentration, inoculum ratio, and pasteurization conditions, to optimize acetic acid production. The findings highlight that the unpasteurized condition exerts the most significant influence on acetic acid production yield (p < 0.01), followed by the 3:1 inoculum ratio of S. cerevisiae TISTR 5279 to G. oxydans TBRC 4013 and a 10% mangosteen concentration. The achieved theoretical maximum yield of acetic acid on day 21 was 85.23 ± 0.30%, close to the predicted 85.33% (p > 0.05). Furthermore, the highest recorded acetic acid concentration reached 5.34 ± 0.92%. On day 14 of fermentation, the maximum productivity and yield were 3.81 ± 0.10 g/L/h and 0.54 ± 0.22 g/g, respectively. The resulting mangosteen vinegar exhibited elevated levels of total phenolic content (359.67 ± 47.26 mg GAE/100 mL), total flavonoid content (12.96 ± 0.65 mg CAE/100 mL), and anti-DPPH radical activity (17.67 ± 0.22%), suggesting potential health benefits. Beyond these chemical aspects, the mangosteen vinegar displayed distinct physical and chemical characteristics from the original mangosteen juice, possibly conferring additional health advantages. These findings are promising for industrial vinegar fermentation models and propose the potential use of the product as a valuable dietary supplement.
Collapse
Affiliation(s)
- Nisa Saelee
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Parkville, VIC 3010, Australia;
| | - Manat Chaijan
- School of Agricultural Technology and Food Industry, Walailak University, Nakhon Si Thammarat 80160, Thailand;
- Food Technology and Innovation Research Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
Lan T, Wang J, Bao S, Zhao Q, Sun X, Fang Y, Ma T, Liu S. Effects and impacts of technical processing units on the nutrients and functional components of fruit and vegetable juice. Food Res Int 2023; 168:112784. [PMID: 37120231 DOI: 10.1016/j.foodres.2023.112784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
Fruit and vegetable juice (FVJ) has become a favorite beverage for all age groups because of its excellent sensory and nutritional qualities. FVJ has a series of health benefits such as antioxidant, anti-obesity, anti-inflammatory, anti-microbial and anti-cancer. Except for raw materials selection, processing technology and packaging and storage also play a vital role in the nutrition and functional components of FVJ. This review systematically reviews the important research results on the relationship between FVJ processing and its nutrition and function in the past 10 years. Based on the brief elucidation of the nutrition and health benefits of FVJ and the unit operation involved in the production process, the influence of a series of key technology units, including pretreatment, clarification, homogenization, concentration, sterilization, drying, fermentation and packaging and storage, on the nutritional function of FVJ was systematically expounded. This contribution provides an update on the impacts of technical processing units on the nutrients and functional components of FVJ and new perspectives for future studies.
Collapse
|
6
|
Singh N, Sharma R, Dubey A, Awasthi O, Saha S, Bharadwaj C, Sharma V, Sevanthi AM, Kumar A, Deepak. Citrus improvement for enhancedmineral nutrients in fruit juice through interspecific hybridization. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
7
|
Toxic metals and essential elements contents in fruit juices and other non-alcoholic beverages from local markets in New Orleans, Louisiana. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
8
|
Probabilistic risk assessment of exposure to multiple metals and pesticides through consumption of fruit juice samples collected from Iranian market. Food Chem Toxicol 2022; 170:113493. [DOI: 10.1016/j.fct.2022.113493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/13/2022]
|
9
|
Ma T, Wang J, Lan T, Bao S, Zhao Q, Sun X, Liu X. How to comprehensively improve juice quality: a review of the impacts of sterilization technology on the overall quality of fruit and vegetable juices in 2010-2021, an updated overview and current issues. Crit Rev Food Sci Nutr 2022; 64:2197-2247. [PMID: 36106453 DOI: 10.1080/10408398.2022.2121806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fruit and vegetable juices (FVJ) are rich in nutrients, so they easily breed bacteria, which cause microbial pollution and rapid deterioration of their quality and safety. Sterilization is an important operation in FVJ processing. However, regardless of whether thermal sterilization or non-thermal sterilization is used, the effect and its impact on the overall quality of FVJ are strongly dependent on the processing parameters, microbial species, and FVJ matrix. Therefore, for different types of FVJ, an understanding of the impacts that different sterilization technologies have on the overall quality of the juice is important in designing and optimizing technical parameters to produce value-added products. This article provides an overview of the application of thermal and non-thermal technique in the field of FVJ processing over the past 10 years. The operating principle and effects of various technologies on the inactivation of microorganisms and enzymes, nutritional and functional characteristics, physicochemical properties, and sensory quality of a wide range of FVJ are comprehensively discussed. The application of different combinations of hurdle technology in the field of FVJ sterilization processing are also discussed in detail. Additionally, the advantages, limitations, and current application prospects of different sterilization technologies are summarized.
Collapse
Affiliation(s)
- Tingting Ma
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Jiaqi Wang
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Tian Lan
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Shihan Bao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Qinyu Zhao
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xiangyu Sun
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| | - Xuebo Liu
- College of Food Science and Engineering, College of Enology, Shaanxi Provincial Key Laboratory of Viti-Viniculture, Viti-viniculture Engineering Technology Center of State Forestry and Grassland Administration, Shaanxi Engineering Research Center for Viti-Viniculture, Heyang Viti-viniculture Station, Ningxia Helan Mountain Eastern Foot wine Station, Northwest A&F University, Yangling, China
| |
Collapse
|
10
|
Shen S, Cheng H, Liu Y, Chen Y, Chen S, Liu D, Ye X, Chen J. New electrolyte beverages prepared by the citrus canning processing water through chemical improvement. Food Chem X 2021; 12:100155. [PMID: 34816121 PMCID: PMC8591342 DOI: 10.1016/j.fochx.2021.100155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/19/2021] [Accepted: 11/04/2021] [Indexed: 12/01/2022] Open
Abstract
Citrus segment membrane removal during canning was improved for clean process. The improved process using mixed acid (alkali) showed good membrane removal result. The processing water was fully used for preparing a new healthy electrolyte drink. The bioactive compounds in the canning processing water were completely recoverd. This green process with economic viability has great society benefits.
In the production of canned citrus, large amounts of processing water were discharged during the segment membrane removal process, causing severe pollution. In order to reduce pollution and recover the bioactive compounds in the processing water, the production of canned satsuma mandarin, sweet orange and grapefruit were studied, and improved acid (0.1% HCl, 0.4% citric acid) and alkali (0.1% KOH, 0.2% NaOH) were used to conduct the new chemical hydrolysis process to remove the segment membrane. The obtained acid and alkali processing water were firstly explored the potential to make novel beverages, which contain electrolytes (Na: 472–945 ppm; K: 208–279 ppm; Cl: 364–411 ppm; citrate: 1105–1653 ppm) and potential prebiotics such as pectin and flavonoids. The improved segment membrane removal process realized the conversion of wastewater into drinkable beverages at low costs. The bioactive compounds were fully recovered without wastewater discharging, which produced great environmental, economic and health value.
Collapse
Affiliation(s)
- Sihuan Shen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Huan Cheng
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Ying Liu
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou 310018, China
| | - Yanpei Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China
| | - Jianle Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China.,NingboTech University, Ningbo 315100, China
| |
Collapse
|
11
|
Kabir MH, Guindo ML, Chen R, Liu F. Geographic Origin Discrimination of Millet Using Vis-NIR Spectroscopy Combined with Machine Learning Techniques. Foods 2021; 10:foods10112767. [PMID: 34829048 PMCID: PMC8623769 DOI: 10.3390/foods10112767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/12/2023] Open
Abstract
Millet is a primary food for people living in the dry and semi-dry regions and is dispersed within most parts of Europe, Africa, and Asian countries. As part of the European Union (EU) efforts to establish food originality, there is a global need to create Protected Geographical Indication (PGI) and Protected Designation of Origin (PDO) of crops and agricultural products to ensure the integrity of the food supply. In the present work, Visible and Near-Infrared Spectroscopy (Vis-NIR) combined with machine learning techniques was used to discriminate 16 millet varieties (n = 480) originating from various regions of China. Five different machine learning algorithms, namely, K-nearest neighbor (K-NN), Linear discriminant analysis (LDA), Logistic regression (LR), Random Forest (RF), and Support vector machine (SVM), were used to train the NIR spectra of these millet samples and to assess their discrimination performance. Visible cluster trends were obtained from the Principal Component Analysis (PCA) of the spectral data. Cross-validation was used to optimize the performance of the models. Overall, the F-Score values were as follows: SVM with 99.5%, accompanied by RF with 99.5%, LDA with 99.5%, K-NN with 99.1%, and LR with 98.8%. Both the linear and non-linear algorithms yielded positive results, but the non-linear models appear slightly better. The study revealed that applying Vis-NIR spectroscopy assisted by machine learning technique can be an essential tool for tracing the origins of millet, contributing to a safe authentication method in a quick, relatively cheap, and non-destructive way.
Collapse
Affiliation(s)
- Muhammad Hilal Kabir
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.)
- Department of Agricultural and Bioresource Engineering, Abubakar Tafawa Balewa University, Bauchi PMB 0248, Nigeria
| | - Mahamed Lamine Guindo
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.)
| | - Rongqin Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.)
| | - Fei Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China; (M.H.K.); (M.L.G.); (R.C.)
- Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-571-88982825
| |
Collapse
|
12
|
Authentication of American ginseng (Panax quinquefolius L.) from different origins by linear discriminant analysis of multi-elements. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03816-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Cerqueira da Silva VH, Sampaio da Silva Junior AL, Pinheiro Lôbo I, Galvao Paranhos da Silva E, Almeida Bezerra M, Gonçalves Silva A, da Silva Lima L, Mota de Jesus R. Chemometric tools in the optimization of a microwave-assisted digestion procedure for guarana-based drink samples and data analysis from elemental, caffeine, and epicatechin contents. Food Chem 2021; 365:130468. [PMID: 34392233 DOI: 10.1016/j.foodchem.2021.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
In this work, a method was developed for the determination of Na, K, Ca, Mg, P, S, Fe, Zn, Mn, and Cu by ICP OES and caffeine and epicatechin by HPLC-DAD in industrialized guarana-based beverages. The acid digestion in microwave oven was optimized by constrained mixture design. The optimum volumes found for the reagents were 2.60 mL (HNO3), 1.80 mL (H2O2), and 0.60 mL (HCl) for a final volume of 10 mL, resulting in a final digestate with residual acidity of 0.8 mol L-1 and 9% for residual carbon content. The detection limits found for the studied elements were between 0.0010 and 0.050 mg L-1. Precision (%RSD) was always below 6%. Accuracy was assessed by analyzing a certified reference material and addition and recovery tests. PCA and HCA were applied to caffeine, epicatechin and elemental concentrations aiming to evidence latent information.
Collapse
Affiliation(s)
- Vinnícius Henrique Cerqueira da Silva
- State University of Santa Cruz, Department of Exact and Technological Sciences, Research Group in Analytical Chemistry of Southern Bahia, Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - André Luiz Sampaio da Silva Junior
- State University of Santa Cruz, Department of Exact and Technological Sciences, Research Group in Analytical Chemistry of Southern Bahia, Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Ivon Pinheiro Lôbo
- State University of Santa Cruz, Department of Exact and Technological Sciences, Research Group in Analytical Chemistry of Southern Bahia, Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Erik Galvao Paranhos da Silva
- State University of Santa Cruz, Department of Exact and Technological Sciences, Research Group in Analytical Chemistry of Southern Bahia, Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, Bahia, Brazil
| | - Marcos Almeida Bezerra
- State University of Southwest Bahia, Jequié Campus, Department of Sciences and Technologies, Rua José Moreira Sobrinho s/n, Jequié, Bahia 45.208-091, Brazil
| | - Allison Gonçalves Silva
- Federal Institute of Education, Science and Technology of Bahia - IFBA Porto Seguro, Rod. Br 367Km 57 5, Bairro Fontana I - CEP, 45810-000, Bahia, Brazil
| | - Luciano da Silva Lima
- Federal Institute of Education, Science and Technology of Bahia - IFBA Porto Seguro, Rod. Br 367Km 57 5, Bairro Fontana I - CEP, 45810-000, Bahia, Brazil
| | - Raildo Mota de Jesus
- State University of Santa Cruz, Department of Exact and Technological Sciences, Research Group in Analytical Chemistry of Southern Bahia, Rodovia Ilhéus-Itabuna, km 16, 45662-900 Ilhéus, Bahia, Brazil.
| |
Collapse
|
14
|
Determination of essential and non-essential element concentrations and health risk assessment of some commercial fruit juices in Turkey. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2020; 57:4432-4442. [PMID: 33087957 DOI: 10.1007/s13197-020-04480-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/14/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
Aim of present study is to quantify essential (Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, P, Se and Zn) and non-essential/toxic (Al, As, Ba, Cd, Ni, Pb and Ti) elements of 100% fruit juices (orange, apple, pomegranate and grape) and fruit nectars (orange, peach, apricot and cherry and the determination of non-carcinogenic and carcinogenic risks. For this purpose, inductively coupled plasma-optical emmision spectroscopy was used to find out element content of samples after microwave digestion process. Essential element contents of 100% fruit juices and nectars were determined as max. 1350 mg/L (K, in 100% orange juice) and min. 0.007 mg/L (Cr, in 100% grape, cherry and apricot nectar and Cu, Mo, in 100% apple juice). Furthermore, the daily intake percentages of essential elements were calculated for 200 mL fruit juice consumption. Target hazard quotients, hazard indexes (HI) and target carcinogenic risks (TR) of non-essential, trace and ultra trace elements were also calculated and risk analysis were conducted. According to the results, the HI and TR of samples were founded as less than 1 and 1 × 10-4, respectively. All samples evaluated as in the low risk group.
Collapse
|
15
|
Rocha PSM, Cruz GFB, Cassella RJ. Evaluation of Copper and Manganese Concentrations in Commercial Fruit Juices and Nectars Consumed in Brazil by GF AAS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2020; 2020:8816068. [PMID: 33123407 PMCID: PMC7585672 DOI: 10.1155/2020/8816068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The present work proposes a simple method for direct determination of Cu and Mn in commercial fruit juices and nectars by graphite furnace atomic absorption spectrometry (GF AAS). We analyzed samples of different flavors (orange, mango, passion fruit, peach, and grape) and brands of Brazilian commercial fruit juices and nectars. We also carried out a study to define a suitable temperature program and to optimize the calibration conditions. It was possible to determine Cu and Mn in the samples just after a simple dilution of samples with a 0.70 mol L-1 HNO3 solution, except in the case of grape juice. We compared the results obtained with the proposed method to those obtained after a traditional treatment based on acid digestion in a microwave oven, and no significant differences were observed (except for grape juice). The accuracy of the method was assessed through a recovery test, which provided recovery percentages in the range of 81-117%. Precision was always better than 8%, and the limits of quantification for Cu and Mn were 6 μg L-1 and 9 μg L-1, respectively. We analyzed twenty-two samples, and the concentrations of Cu and Mn were in the range of 24.1-321 μg L-1 and 116-3296 μg L-1, respectively. Statistical analysis using a two-way analysis of variance (ANOVA) at 95% confidence level showed that flavor and brand impacted on the concentration of the analytes in the samples. Among the samples analyzed, the grape juice presented the highest concentrations of both Cu and Mn.
Collapse
Affiliation(s)
- Pamela S. M. Rocha
- Departamento de Química Analítica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, Niterói, RJ 24020-141, Brazil
| | - Graziela F. B. Cruz
- Departamento de Química Analítica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, Niterói, RJ 24020-141, Brazil
| | - Ricardo J. Cassella
- Departamento de Química Analítica, Universidade Federal Fluminense, Outeiro de São João Batista s/n, Centro, Niterói, RJ 24020-141, Brazil
| |
Collapse
|
16
|
Non-targeted Detection of Multiple Frauds in Orange Juice Using Double Water-Soluble Fluorescence Quantum Dots and Chemometrics. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01570-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Melo JC, Carvalho WC, Boa Morte ES, Araujo RGO, Santos DCMB. Sequential Determination of Cd, Co, Cu, Fe, Mg, Mn, Ni, Pb, and Zn in Powdered Refreshments by FS-F AAS After a Simple Sample Treatment. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01589-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Authenticity and traceability in beverages. Food Chem 2019; 277:12-24. [DOI: 10.1016/j.foodchem.2018.10.091] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 10/04/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023]
|
19
|
Pohl P, Dzimitrowicz A, Jamroz P, Greda K. Development and optimization of simplified method of fast sequential HR-CS-FAAS analysis of apple juices on the content of Ca, Fe, K, Mg, Mn and Na with the aid of response surface methodology. Talanta 2018; 189:182-189. [DOI: 10.1016/j.talanta.2018.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/10/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022]
|
20
|
Pohl P, Dzimitrowicz A, Jamroz P, Greda K. HR-CS FAAS based method for direct determination of total concentrations of Ca, Fe, Mg and Mn in functional apple beverages and evaluation of contributions of the bioaccessible fraction of these elements by in vitro gastrointestinal digestion and chemical fractionation. Microchem J 2018. [DOI: 10.1016/j.microc.2018.04.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
21
|
Souza SO, Costa SSL, Brum BCT, Santos SH, Garcia CAB, Araujo RGO. Determination of nutrients in sugarcane juice using slurry sampling and detection by ICP OES. Food Chem 2018; 273:57-63. [PMID: 30292375 DOI: 10.1016/j.foodchem.2018.03.060] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 02/08/2023]
Abstract
The fractional factorial and Doehlert designs for optimization of a slurry sampling procedure to determine of nutrients in sugarcane juice by inductively coupled plasma optical emission spectrometry (ICP OES) were applied. External calibration curves were used for direct analysis of the slurry. This procedure allowed determination of Ca, Cu, Fe, K and Mg with limits of detection (LoD) obtained of 2.0, 0.04, 0.2, 1.0 and 1.5 mg L-1, respectively. The precision was expressed as relative standard deviation (%RSD), being better than 1.4% (n = 3). Accuracy was confirmed by comparison with sample digestion method. The results for analysis of fourteen sugarcane juices samples demonstrated that the nutrients Ca, Cu, Fe, K and Mg have average contents of 108, 0.506, 6.40, 470 and 114 mg L-1, respectively. The proposed analytical method is a good alternative for simultaneous determination of nutrients in sugarcane juice using introduction of slurries and detection by ICP OES.
Collapse
Affiliation(s)
- Sidnei Oliveira Souza
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Salvador, Bahia 40170-115, Brazil
| | - Silvânio Silvério L Costa
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Salvador, Bahia 40170-115, Brazil; Universidade Federal de Sergipe, Departamento de Química, Laboratório de Química Analítica Ambiental, São Cristóvão, Sergipe 49100-000, Brazil
| | - Bia Catarina T Brum
- Instituto Tecnológico e de Pesquisa do Estado de Sergipe (ITPS), Aracaju, Sergipe 49020-380, Brazil
| | - Samir Hipólito Santos
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Salvador, Bahia 40170-115, Brazil
| | - Carlos Alexandre B Garcia
- Universidade Federal de Sergipe, Departamento de Química, Laboratório de Química Analítica Ambiental, São Cristóvão, Sergipe 49100-000, Brazil; Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA, Brazil
| | - Rennan Geovanny O Araujo
- Universidade Federal da Bahia, Instituto de Química, Departamento de Química Analítica, Salvador, Bahia 40170-115, Brazil; Instituto Nacional de Ciência e Tecnologia do CNPq - INCT de Energia e Ambiente, Universidade Federal da Bahia, Salvador, BA, Brazil.
| |
Collapse
|
22
|
Jedryczko D, Pohl P, Welna M. Determination of the total cadmium, copper, lead and zinc concentrations and their labile species fraction in apple beverages by flow-through anodic stripping chronopotentiometry. Food Chem 2017; 225:220-229. [DOI: 10.1016/j.foodchem.2016.12.092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/02/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
23
|
Marques TL, Wiltsche H, Nóbrega JA, Winkler M, Knapp G. Performance evaluation of a high-pressure microwave-assisted flow digestion system for juice and milk sample preparation. Anal Bioanal Chem 2017; 409:4449-4458. [DOI: 10.1007/s00216-017-0388-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 11/29/2022]
|
24
|
Gómez-Nieto B, Gismera MJ, Sevilla MT, Procopio JR. Determination of essential elements in beverages, herbal infusions and dietary supplements using a new straightforward sequential approach based on flame atomic absorption spectrometry. Food Chem 2017; 219:69-75. [DOI: 10.1016/j.foodchem.2016.09.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 12/18/2022]
|
25
|
Augusto ADS, Sperança MA, Andrade DF, Pereira-Filho ER. Nutrient and Contaminant Quantification in Solid and Liquid Food Samples Using Laser-Ablation Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS): Discussion of Calibration Strategies. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0703-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
26
|
Gaiad JE, Hidalgo MJ, Villafañe RN, Marchevsky EJ, Pellerano RG. Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques. Microchem J 2016. [DOI: 10.1016/j.microc.2016.07.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lai G, Chen G, Chen T. Speciation of As III and As V in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry. Food Chem 2016. [DOI: 10.1016/j.foodchem.2015.05.052] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Cardador MJ, Gallego M. Haloacetic acids content of fruit juices and soft drinks. Food Chem 2015; 173:685-93. [DOI: 10.1016/j.foodchem.2014.10.105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/09/2014] [Accepted: 10/18/2014] [Indexed: 02/02/2023]
|
29
|
Kılıç S, Yenisoy-Karakaş S, Kılıç M. Metal Contamination in Fruit Juices in Turkey: Method Validation and Uncertainty Budget. FOOD ANAL METHOD 2015. [DOI: 10.1007/s12161-015-0136-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Welna M, Szymczycha-Madeja A. Effect of sample preparation procedure for the determination of As, Sb and Se in fruit juices by HG-ICP-OES. Food Chem 2014; 159:414-9. [DOI: 10.1016/j.foodchem.2014.03.046] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Revised: 03/04/2014] [Accepted: 03/09/2014] [Indexed: 11/29/2022]
|