1
|
Li L, Huang L, Li M, He S, Xu H, Lu C, Xing C. Versatile and programmable dual-mode logic gold nanoflares for intracellular correlated DNA repair enzymes imaging. Biosens Bioelectron 2025; 282:117501. [PMID: 40288308 DOI: 10.1016/j.bios.2025.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/14/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
In situ monitoring of correlated DNA repair enzyme activities in living cells is crucial for clinical and biomedical research. Here, we introduce a versatile, programmable dual-mode logic gold nanoflares strategy for OR/AND gate logic imaging the activity of apurinic/apyrimidinic endonuclease 1 (APE1) and flap endonuclease 1 (FEN1) within cells. The logic gold nanoflares were designed via conjugating enzyme-activatable sites modified branched double-stranded DNA structures to gold nanoparticles. These meticulously engineered nanoflares specifically respond to APE1 and FEN1 in living cells through logic biocomputing, emitting a fluorescent signal that allows for the sensitive monitor of APE1 and FEN1 activities. In vitro experiments demonstrate that the nanoflares are highly biocompatible and can make effectively and sensitively judgments on the two enzyme targets across various cancer cell lines. This OR/AND dual-mode logic gold nanoflare strategy offers a straightforward tool for the comprehensive analysis of multiple DNA repair enzymes, presenting promising applications in disease diagnosis, drug efficacy evaluation, and programmable therapeutics.
Collapse
Affiliation(s)
- Liannishang Li
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China
| | - Lei Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China
| | - Mingxi Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China
| | - Shaoying He
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China
| | - Huo Xu
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China.
| | - Chunhua Lu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Chao Xing
- Fujian Key Laboratory of Functional Marine Sensing Materials, Center for Advanced Marine Materials and Smart Sensors, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, PR China; MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| |
Collapse
|
2
|
Wang LJ, Pan LP, Zou X, Qiu JG, Zhang CY. Activatable Self-Dissociation of Watson-Crick Structures with Fluorescent Nucleotides for Sensing Multiple Human Glycosylases at Single-Cell Level. Anal Chem 2022; 94:17700-17708. [PMID: 36475642 DOI: 10.1021/acs.analchem.2c04624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nucleobase oxidation and alkylation can destroy Watson-Crick base-pairing to challenge the genomic integrity. Human 8-oxoguanine glycosylase 1 (hOGG1) and alkyladenine glycosylase (hAAG) are evolved to counter these two cytotoxic lesions through base-excision repair, and their deregulations are implicated with multifactorial diseases and cancers. Herein, we demonstrate activatable self-dissociation of Watson-Crick structures with fluorescent nucleotides for sensing multiple human glycosylases at single-cell level. The presence of hOGG1 and hAAG catalyzes 8-oxoG and deoxyinosine removal in functional probe 1 to release two trigger probes (1 and 2). Then, trigger probes hybridize with functional probe 2 to activate the autocatalytic degradation of functional probes 2 (Cycle I) and 3 (Cycle II), replicating abundant trigger probes (1-4) and releasing two fluorophores (2-aminopurine (2-AP) and pyrrolo-dC (P-dC)). New trigger probes (1, 2) and (3, 4), in turn, hybridize with free functional probes 2 and 3, repeating Cycles I and II turnovers. Through multicycle self-dissociation of Watson-Crick structures, 2-AP and P-dC are exponentially accumulated for the simultaneous quantification of hOGG1 and hAAG. This nanodevice exhibits high sensitivity with a detection limit of 2.9 × 10-3 U/mL for hOOG1 and 1.5 × 10-3 U/mL for hAAG, and it can measure enzymatic kinetics, identify potential inhibitors, discriminate glycosylases between cancer and normal cell lines, and even quantify glycosylase activities in a single HeLa cell. Moreover, this assay may be rapidly and isothermally performed in one tube with only one tool enzyme in a quencher-free manner, promising a simple and powerful platform for multiple human glycosylase detection.
Collapse
Affiliation(s)
- Li-Juan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China.,School of Chemistry and Chemical Engineering, Southeast University, Nanjing211189, China
| | - Li-Ping Pan
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Xiaoran Zou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| | - Jian-Ge Qiu
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou450000, Henan, China
| | - Chun-Yang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan250014, China
| |
Collapse
|
3
|
Wang L, Zhang H, Chen W, Chen H, Xiao J, Chen X. Recent advances in DNA glycosylase assays. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Feng Y, Cai S, Xiong G, Zhang G, Wang S, Su X, Yu C. Sensitive Detection of DNA Lesions by Bulge-Enhanced Highly Specific Coamplification at Lower Denaturation Temperature Polymerase Chain Reaction. Anal Chem 2017; 89:8084-8091. [PMID: 28675037 DOI: 10.1021/acs.analchem.7b01599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutagenic modifications of nucleotides or DNA lesions that result from environmental stress have proven to be associated with a variety of diseases, particularly cancer. The method for accurately detecting the lesions is therefore of great importance for biomedical research and toxicity study. We develop a sensitive and low-cost bulge-enhanced coamplification at lower denaturation temperature polymerase chain reaction (COLD-PCR) method for detecting DNA lesions (uracil and 8-oxoguanine) by combining an in vitro base excision repair (BER) pathway and COLD-PCR. The modified bases are converted to bulge via the BER pathway involving converting modified bases to an apurinic/apyrimidinic (AP) site, cleavage at the AP site, and break ligation. The presence of the bulge induces a large change of the hybridization thermodynamics of double-stranded DNA, eventually enhancing the specificity of COLD-PCR. Besides, we used the free energy of hybridization as a reference to optimize the critical denaturation temperature (Tc) of COLD-PCR obtaining more specific amplification than empirical Tc. Taking advantage of the proposed bulge-enhanced COLD-PCR, we are able to identify the presence of DNA lesion-containing strands at low abundance down to 0.01%. This method also exhibits high sensitivity for glycosylase with a detection limit of 10-4 U/mL [3 S/N (signal-to-noise ratio)] that is superior than some recently reported methods. With the design of the repair guide probe, the level of oxidative damage in genomic DNA caused by chemicals and photodynamic therapy (PDT) can be evaluated, heralding more applications in clinical diagnosis and epigenetic study.
Collapse
Affiliation(s)
- Yu Feng
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shuang Cai
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Guoliang Xiong
- Department of Nephrology, Shenzhen Affiliated Hospital, Guangzhou University of Chinese Medicine , Shenzhen 518033, Guangdong, China
| | - Guanfei Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shihui Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Xin Su
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| | - Changyuan Yu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|