1
|
Yin G, Yu T, Lian C, Li Y, Liu D, Li H, Zhou H, Yin P, Yao S. Multifunctional Fluorescent Probes for Profiling Cys, Hcy, GSH, and SO₂: Illuminating Their Dynamics in Apoptosis and Ferroptosis. Adv Healthc Mater 2025:e2404993. [PMID: 40317670 DOI: 10.1002/adhm.202404993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/16/2025] [Indexed: 05/07/2025]
Abstract
The ability to perform simultaneous fluorescence imaging of multiple targets is essential, providing crucial multi-parametric information necessary for understanding complex biological interactions and processes. In this study, TBC, a novel multi-signal fluorescent probe is presented, crafted for simultaneous differentiation and in situ real-time monitoring of homocysteine (Hcy), cysteine (Cys), sulfur dioxide (SO2), and glutathione (GSH), illuminating the dynamic metabolic status of endogenous reactive sulfur species. TBC achieves an ultrahigh signal-to-background ratio, enabling wash-free direct fluorescence imaging of the dynamics and distribution of these entities in living cells and zebrafish. Notably, TBC has revealed distinctive dynamic metabolic features of Hcy/Cys/SO2/GSH during apoptosis and ferroptosis. This innovative probe acts as a key tool for unraveling the conversion networks of multiple reactive sulfur species and assessing the impact of metabolic oscillations during programmed cell death and the progression of diverse diseases, effectively uncovering concurrent biochemical dynamics in various biological settings and cell death events.
Collapse
Affiliation(s)
- Guoxing Yin
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Ting Yu
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Chunhua Lian
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yang Li
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Dian Liu
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
| | - Haitao Li
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Huijun Zhou
- Department of Gastroenterology and Urology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, P. R. China
| | - Peng Yin
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Shouzhuo Yao
- Institute of Interdisciplinary Studies, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
2
|
Jiang L, Liu C, Wang J, Shan J, Zhang J, Ma Q, Sun Y. Novel ruthenium(II) complex-based two-photon luminescent probe for visualizing biothiols in ferroptosis-mediated hepatic ischemia-reperfusion injury. Talanta 2025; 283:127176. [PMID: 39515056 DOI: 10.1016/j.talanta.2024.127176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/25/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Ferroptosis exhibits a critical role in the occurrence and progression of hepatic ischemia-reperfusion injury (HIRI), which is closely linked to the down regulation of biothiols. Visualization of biothiols in ferroptosis is of great significance for elucidating the pathological mechanism of HIRI as well as developing new clinical treatment strategies. However, reliable tools for monitoring biothiols and demonstrating their dynamic changes in ferroptosis-mediated HIRI are still lacking. Herein, this work developed an innovative Ru(II) complex-based two-photon luminescent probe, named Ru-PDBS, for accurate tracking the biothiols fluxes in ferroptosis-mediated HIRI. The newly developed probe possessed high sensitivity, good selectivity and favorable biocompatibility, which makes it to be used for imaging and dynamic monitoring of biothiols in living cells during ferroptosis-mediated HIRI. Furthermore, visualization of biothiols in mouse livers during ferroptosis-mediated HIRI and drug treatment was achieved for the first time. All these results suggested that Ru-PDBS can serve as a reliable tool for elucidating the pathogenesis of ferroptosis-mediated HIRI, as well as for developing of new therapies.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Chaolong Liu
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| | - Jie Wang
- Department of Pharmacy, Qingdao Traditional Chinese Medicine Hospital, Qingdao Hiser Hospital Affiliated to Qingdao University, No.4 Renmin Road, Qingdao, 266033, China
| | - Jiongchen Shan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Junhuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Qingming Ma
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Prabakaran G, Xiong H. Unravelling the recent advancement in fluorescent probes for detection against reactive sulfur species (RSS) in foodstuffs and cell imaging. Food Chem 2025; 464:141809. [PMID: 39515154 DOI: 10.1016/j.foodchem.2024.141809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Sulfur-containing representative HSO3-/SO32-, H2S, and biothiols (Cys, Hcy, and GSH) present in food items and biological organisms have raised substantial global concerns about food safety due to their reactivity and potential health implications. Adhering to international health standards is essential for these compounds; in particular, plenty of challenges exist in ensuring product quality in the beverage industry. Many fluorescent probes are being employed in various spectroscopic techniques and have developed rapidly to selectively detect sulfur-related species in food products and bio-sensing for cell imaging. This comprehensive review provides a detailed overview of a wide range of fluorescent probes designed using different fluorophores for detecting reactive sulfur species (RSS) using spectroscopic techniques. Additionally, the review explores the detection of RSS components (HSO3-/SO32-, H2S, and biothiols) in food products and cell imaging using different cell lines, highlighting the crucial role of fluorescent probes in swiftly detecting these analytes in both natural and biological contexts. Furthermore, the review discusses future trends and perspectives, emphasizing the on-going progress in detecting these analytes in food products and cell imaging using various fluorescent probes.
Collapse
Affiliation(s)
- Gunasekaran Prabakaran
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China; School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
4
|
O AA, George S. Picric Acid Incorporated Fluorescent Nitrogen Doped Carbon Dot for "Turn-On" Detection of Glutathione. J Fluoresc 2025; 35:411-420. [PMID: 38079028 DOI: 10.1007/s10895-023-03541-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 02/09/2025]
Abstract
Glutathione (GSH), a non-protein thiol in living cells whose abnormal level indicates the onset of diseases like Alzheimer's, HIV, diabetes, cancer, Parkinson's, Dementia, etc. Herein, we have synthesized a low-cost, selective, and sensitive detection platform by using citric acid and urea-derived fluorescent carbon dots (NCDs) via the microwave-assisted method, showing fluorescence at 444 nm. This fluorescence was quenched with picric acid (PA), and this probe, picric acid incorporated nitrogen doped carbon dot (NCDs@PA) was further used for the detection of GSH. The characterization of the probe was done by photoluminescence study, UV-Visible absorption studies, ATR-FTIR, SEM, and DLS analysis. GSH induced fluorescence recovery due to the competitive binding of GSH to PA. GSH was detected within a linear range of 0.31 mM- 2.43 mM with a Limit of Detection (LoD) and Limit of Quantification (LoQ) of 32.10 µM and 107.32 µM, respectively. The sensor exhibited good selectivity and sensitivity towards GSH among various co-existing ions and biomolecules. The paper-strip-based sensing of glutathione was conducted to check practical applicability of the probe, and a real sample analysis was also conducted from spiked human samples.
Collapse
Affiliation(s)
- Aswathy A O
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Sony George
- Department of Chemistry, International Inter University Centre for Sensing and Imaging (IIUCSI), University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
5
|
Liu X, Hong D, Zhang Q, Jiang Y. Construction and Application of Copper Ion and Amino Acid Probe Based on Functionalized Metal-Organic Framework Probe. J Fluoresc 2024:10.1007/s10895-024-03908-1. [PMID: 39180574 DOI: 10.1007/s10895-024-03908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
The rapid development of fluorescence probe technology has promoted in-depth research in fields such as environment and life medicine. Traditional single channel fluorescent probes can achieve highly sensitive detection of targets, but they appear powerless in complex environments. In addition, in today's deteriorating resource environment, implementing multi target detection with one probe can effectively save preparation resources, which is in line with the development direction of fluorescent probes. To achieve this goal, designing and preparing multi-site probes is undoubtedly the first choice, but the complexity of their preparation is daunting. Herein, we propose the concept of cascade detection for the first time. After the probe completes the first target detection, the complex between the probe and the first target is achieved based on the characteristics of the first target to achieve subsequent target detection. Based on this, a metal-organic framework was used as a basic skeleton and the concept of serial reactions was applied. First, copper ions were detected through coordination. Then, the specificity of copper for sulfur-containing amino acids was utilized to detect the three types of amino acids, and the practical applications of the three probes were studied separately.
Collapse
Affiliation(s)
- Xinyi Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Dilong Hong
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Qian Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio- functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P.R. China.
| |
Collapse
|
6
|
Ma X, Lan Q, Pan S, Han Y, Liu Y, Wu Y. Biothiols-activated near-infrared frequency up-conversion luminescence probe for early evaluation of drug-induced hepatotoxicity. Anal Chim Acta 2024; 1312:342768. [PMID: 38834271 DOI: 10.1016/j.aca.2024.342768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
A novel biothiols-sensitive near-infrared (NIR) fluorescent probe RhDN based on a rhodamine skeleton was developed for early detection of drug-induced hepatotoxicity in living mice. RhDN can be used not only as a conventional large stokes shift fluorescent (FL) probe, but also as a kind of anti-Stokes frequency upconversion luminescence (FUCL) molecular probe, which represents a long wavelength excitation (808 nm) to short wavelength emission (760 nm), and response to Cys/Hcy/GSH with high sensitivity. Compared with traditional FL methods, the FUCL method exhibited a lower detection limit of Cys, Hcy, and GSH in 75.1 nM, 101.8 nM, and 84.9 nM, respectively. We exemplify RhDN for tracking endogenously biothiols distribution in living cells and further realize real-time in vivo bioimaging of biothiols activity in mice with dual-mode luminescence system. Moreover, RhDN has been successfully applied to visualize the detection of drug-induced hepatotoxicity in living mice. Overall, this report presents a unique approach to the development of large stokes shift NIR FUCL molecular probes for in vitro and in vivo biothiols biosensing.
Collapse
Affiliation(s)
- Xiao Ma
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Qingchun Lan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Shufen Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Yuting Han
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China
| | - Yi Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Yongquan Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, PR China.
| |
Collapse
|
7
|
Qin J, Wang J, Bian Y, Shao C. D-A-D type based NIR fluorescence probe for monitoring the cysteine levels in pancreatic cancer cell during ferroptosis. Bioorg Chem 2024; 146:107260. [PMID: 38457954 DOI: 10.1016/j.bioorg.2024.107260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/10/2024]
Abstract
Cysteine (Cys) as a crucial precursor for intracellular glutathione (GSH) synthesis, plays an important role in the redox regulation in ferroptosis, Therefore, evaluating intracellular Cys levels is worthy to better understand ferroptosis-related physiological process. In this work, we constructed a novel NIR coumarin-derived fluorescent probe (NCDFP-Cys) based on a dual-ICT system, the NCDFP-Cys can show fluorescence turn-on response at 717 nm toward Cys over other amino acids, and possess large Stokes shift (Δλ = 167 nm), low detection limit, hypotoxicity. More significantly, NCDFP-Cys has been utilized to monitor the intracellular Cys fluctuation in pancreatic cancer cells during ferroptosis induced by Erastin and RSL3 respectively, and revealing the difference of Cys levels changes in different activator-triggered ferroptosis pathways.
Collapse
Affiliation(s)
- Jingcan Qin
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China
| | - Jing Wang
- Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, Tongji University School of Medicine, Shanghai, China
| | - Yun Bian
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| | - Chengwei Shao
- Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China.
| |
Collapse
|
8
|
Lee SM, Kim H, Li P, Park HG. A label-free and washing-free method to detect biological thiols on a personal glucose meter utilizing glucose oxidase-mimicking activity of gold nanoparticles. Biosens Bioelectron 2024; 250:116019. [PMID: 38278122 DOI: 10.1016/j.bios.2024.116019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
We herein developed a label-free and washing-free method to detect biological thiols (biothiols) on a personal glucose meter (PGM) utilizing the intrinsic glucose oxidase (GOx)-mimicking activity of gold nanoparticles (AuNPs). By focusing on the fact that this activity could be diminished by target biothiols through their binding onto the AuNP surface, we correlated the concentration of biothiols with that of glucose readily measurable on a PGM and successfully determined cysteine (Cys), homocysteine (Hcy), and glutathione (GSH) down to 0.116, 0.059, and 0.133 μM, respectively, with high specificity against non-target biomolecules. We further demonstrated its practical applicability by reliably detecting target biothiol in heterogeneous human serum. Due to the meritorious features of PGM such as simplicity, portability, and cost-effectiveness, we believe that this work could serve as a powerful platform for biothiol detection in point-of-care settings.
Collapse
Affiliation(s)
- Sang Mo Lee
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyoyong Kim
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Pei Li
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
9
|
Lan J, Liu L, Li Z, Zeng R, Chen L, He Y, Wei H, Ding Y, Zhang T. A multi-signal mitochondria-targeted fluorescent probe for simultaneously distinguishing biothiols and realtime visualizing its metabolism in cancer cells and tumor models. Talanta 2024; 267:125104. [PMID: 37703779 DOI: 10.1016/j.talanta.2023.125104] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
Biothiols and its metabolite SO2 derivatives play vital roles in various physiological processes. Although a few probes have been designed for monitoring the metabolism of biothiols, developing multi-signal fluorescent probes with practicability for simultaneously distinguishing biothiols (GSH, Cys and Hcy) and real-time visualizing SO2 derivatives is an enormous challenge. To better visualize biothiols metabolism in vitro and vivo, we developed a novel multi-signal NIR fluorescent probe (probe 2) with mitochondria-targeted for distinguishing biothiols and its metabolism, based on an ICT-PET synergetic mechanism. Probe 2 with dual recognition sites distinguishing detected Cys/Hcy (Red-Green), GSH (Green) and SO32- (Blue) via three channels. First probe 2 distinguished Cys and GSH to estimate main biothiols in living cells through the ratio changes of two well-defined emission bands (Red-Green), and then imaged its metabolite SO2 with ratiometric fluorescence (Red-Blue), eliminating the interference by different biothiols. Notably, probe 2 exhibits satisfactory sensitivity (detection limit: 0.21, 0.13, 0.14 and 3.06 μM for Cys, Hcy, GSH and SO32-, respectively), high selectivity, reliability at physiological pH, and rapid fluorescence response (within 10 min). Given these advantages, probe 2 has been successfully applied to the real-time monitor GSH metabolic process in MCF-7 cells and biothiols metabolism in breast cancer, suggesting biothiols metabolic changes might be a diagnostic indicator during cancer treatment. So probe 2 is a convenient and efficient tool for understanding the physiological functions of biothiols and its metabolism.
Collapse
Affiliation(s)
- Jinshuai Lan
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Li Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhe Li
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ruifeng Zeng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yue Ding
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
10
|
Pivovarenko VG. Multi-parametric sensing by multi-channel molecular fluorescent probes based on excited state intramolecular proton transfer and charge transfer processes. BBA ADVANCES 2023; 3:100094. [PMID: 37347000 PMCID: PMC10279795 DOI: 10.1016/j.bbadva.2023.100094] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Considering the applications of fluorescent probes and the information they provide, their brightness of fluorescence and photostability are of paramount importance. However, in the case of steady-state fluorescence spectroscopy and fluorescence microscopy, the amount of information can be increased by the application of multi-channel probes, via a multi-band fluorophore introduced in the probe molecule. In most cases, the use of such a multi-band (or multi-channel) fluorophore can also be combined with the concomitant introduction of one or several analyte receptors. Most often, the design of ratiometric probes with multi-band fluorescence emission are based on phenomena such as photoinduced intramolecular charge transfer (ICT) or excited state intramolecular proton transfer (ESIPT). Although ICT probes were up to recently the most popular, ESIPT probes and among them 3-hydroxyflavone derivatives, were shown to be the most productive. Several general problems were resolved by this family of probes, as for example the measurement of local dielectric constant, local H-bond accepting ability, water local concentration and ATP concentration in small volumes. Incorporation of such multi-channel probes into lipid membranes allowed to measure the different membrane potentials and to detect cell apoptosis. Also, it enabled to recognize and characterize the rafts formation in different lipid bilayers and peculiar features of the charged membrane interface. Such probes are also able to provide a concentration-dependent fluorescence signals upon binding of H+, Mg2+and Ba2+ions, and thus to recognize these different cations. The multi-channel probes are effective tools in the study of interactions of macromolecules such as peptides, proteins and nucleic acids. The most useful feature is that they inform simultaneously about several physical parameters, in this way giving a better insight in the investigated system. Thus, by comparing the reviewed probes with other modern fluorescent approaches, it can be concluded they are more informative and accurate tools.
Collapse
Affiliation(s)
- Vasyl G. Pivovarenko
- Department of Chemistry, Kyiv National Taras Shevchenko University, 01033, Kyiv, Ukraine
| |
Collapse
|
11
|
Xie W, Jiang J, Shu D, Zhang Y, Yang S, Zhang K. Recent Progress in the Rational Design of Biothiol-Responsive Fluorescent Probes. Molecules 2023; 28:molecules28104252. [PMID: 37241992 DOI: 10.3390/molecules28104252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Biothiols such as cysteine, homocysteine, and glutathione play significant roles in important biological activities, and their abnormal concentrations have been found to be closely associated with certain diseases, making their detection a critical task. To this end, fluorescent probes have become increasingly popular due to their numerous advantages, including easy handling, desirable spatiotemporal resolution, high sensitivity, fast response, and favorable biocompatibility. As a result, intensive research has been conducted to create fluorescent probes for the detection and imaging of biothiols. This brief review summarizes recent advances in the field of biothiol-responsive fluorescent probes, with an emphasis on rational probe design, including the reaction mechanism, discriminating detection, reversible detection, and specific detection. Furthermore, the challenges and prospects of fluorescence probes for biothiols are also outlined.
Collapse
Affiliation(s)
- Wenzhi Xie
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jinyu Jiang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Dunji Shu
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yanjun Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Kai Zhang
- Department of Chemistry, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Laboratory of Chemical Biology &Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
12
|
Aghayan M, Mahmoudi A, Sazegar MR, Jahanafarin A, Nazari O, Hamidi P, Poorhasan Z, Sadat Shafaei B. The development of a novel copper-loaded mesoporous silica nanoparticle as a peroxidase mimetic for colorimetric biosensing and its application in H 2O 2 and GSH assay. ANAL SCI 2023:10.1007/s44211-023-00339-z. [PMID: 37067770 DOI: 10.1007/s44211-023-00339-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/30/2023] [Indexed: 04/18/2023]
Abstract
In recent years, the development of nanomaterials-based peroxidase mimics as enzyme sensors has been attracting considerable interest due to their outstanding features, including potent stability, and cost-effectiveness toward natural enzymes. In this work, mesoporous silica nanoparticles functionalized by copper (Cu-MSN) were prepared as a new artificial enzyme for the first time through the sol-gel procedure. A comprehensive investigation of the catalytic activity of Cu-MSN was done through the oxidation of chromogenic peroxidase substrates, 3,3',5,5'-tetramethylbenzidine (TMB), and (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), in the presence of H2O2. The results indicate that the peroxidase-like activity of the as-prepared sample is significantly higher than other nanoparticles. Additionally, for the study, a facile and rapid sensing method based on the enzyme-like activity of Cu-MSN to detect H2O2 and glutathione (GSH) was developed to examine the potency of the proposed biosensor. Preliminary analysis revealed that the limit of detection (LOD) of H2O2 and GSH is 0.2 and 0.0126 μM, in the range of 0.9-100 and 0.042-1 μM, respectively. These findings support the claims for the efficiency of the sensor in detection fields. Also, human serum was utilized as the real sample to obtain additional evidence.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Ali Mahmoudi
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Alireza Jahanafarin
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Omid Nazari
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Parisa Hamidi
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Zeynab Poorhasan
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Batoul Sadat Shafaei
- Department of Chemistry, Faculty of Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
13
|
An Off-Off fluorescence sensor based on ZnS quantum dots for detection of glutathione. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Moon H, Sultana T, Lee J, Huh J, Lee HD, Choi MS. Biomimetic lipid-fluorescein probe for cellular bioimaging. Front Chem 2023; 11:1151526. [PMID: 37153532 PMCID: PMC10160471 DOI: 10.3389/fchem.2023.1151526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Fluorescence probe is one of the most powerful tools for cellular imaging. Here, three phospholipid-mimicking fluorescent probes (FP1-FP3) comprising fluorescein and two lipophilic groups of saturated and/or unsaturated C18 fatty acids were synthesized, and their optical properties were investigated. Like in biological phospholipids, the fluorescein group acts as a hydrophilic polar headgroup and the lipid groups act as hydrophobic non-polar tail groups. Laser confocal microscope images illustrated that FP3, which contains both saturated and unsaturated lipid tails, showed great uptake into the canine adipose-derived mesenchymal stem cells.
Collapse
Affiliation(s)
- Hyungkyu Moon
- Department of Materials Chemistry and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Tania Sultana
- Regenerative Medicine Laboratory, Center for Stem Cell Research, Department of Biomedical Science and Technology, Institute of Biomedical Science and Technology, Konkuk University, Seoul, Republic of Korea
| | - JeongIk Lee
- Department of Veterinary Obstetrics and Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
- *Correspondence: Myung-Seok Choi, ; JeongIk Lee,
| | - Jungrim Huh
- Social Eco-Tech Research Institute, Konkuk University, Seoul, Republic of Korea
| | - Hae Dong Lee
- Department of Materials Chemistry and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Myung-Seok Choi
- Department of Materials Chemistry and Engineering, Konkuk University, Seoul, Republic of Korea
- *Correspondence: Myung-Seok Choi, ; JeongIk Lee,
| |
Collapse
|
15
|
Sun X, Guo F, Ye Q, Zhou J, Han J, Guo R. Fluorescent Sensing of Glutathione and Related Bio-Applications. BIOSENSORS 2022; 13:16. [PMID: 36671851 PMCID: PMC9855688 DOI: 10.3390/bios13010016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH), as the most abundant low-molecular-weight biological thiol, plays significant roles in vivo. Abnormal GSH levels have been demonstrated to be related to the dysfunction of specific physiological activities and certain kinds of diseases. Therefore, the sensing of GSH is emerging as a critical issue. Cancer, with typical high morbidity and mortality, remains one of the most serious diseases to threaten public health. As it is clear that much more concentrated GSH is present at tumor sites than at normal sites, the in vivo sensing of GSH offers an option for the early diagnosis of cancer. Moreover, by monitoring the amounts of GSH in specific microenvironments, effective diagnosis of ROS levels, neurological diseases, or even stroke has been developed as well. In this review, we focus on the fluorescent methodologies for GSH detection, since they can be conveniently applied in living systems. First, the fluorescent sensing methods are introduced. Then, the principles for fluorescent sensing of GSH are discussed. In addition, the GSH-sensing-related biological applications are reviewed. Finally, the future opportunities in in the areas of fluorescent GSH sensing-in particular, fluorescent GSH-sensing-prompted disease diagnosis-are addressed.
Collapse
|
16
|
Wu G, Zhao Y, Li X, Lu X, Qu T. Fluorescent probes based on the core-shell structure of molecular imprinted materials and gold nanoparticles for highly selective glutathione detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:5034-5040. [PMID: 36468235 DOI: 10.1039/d2ay01363k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Glutathione (GSH) is a polypeptide with important physiological functions. Real-time and accurate detection of GSH is of great significance for clinical diagnosis, disease treatment and pathogen detection. A fluorescent nanosensor based on composite core-shell nanoparticles for the highly selective detection of GSH is reported. In the cores, the fluorescence of rhodamine b was quenched by using gold nanoparticles (AuNPs), and GSH could competitively combine with AuNPs to cause rhodamine b to fall off, thereby recovering the fluorescence. In the shell part, molecularly imprinted materials using oxidized glutathione (GSSG) as a pseudotemplate provide GSH/GSSG specific pores and improve the specificity and anti-interference ability of the sensor. The GSH sensor has a detection range of 0-100 μM and limit of detection (LOD) of 0.18 μM, and robust sensing performance in fetal bovine serum, indicating its great potential for clinical diagnosis.
Collapse
Affiliation(s)
- Guoli Wu
- Department of Pharmacy, Children's Hospital of Shanxi, Taiyuan 030013, China
| | - Yongdan Zhao
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| | - Xiaofang Li
- College of Life Science, Inner Mongolia Agricultural University, Hohhot, 010000, China
| | - Xiaolin Lu
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| | - Tingli Qu
- College of Pharmacy, Shanxi Medical University, 56 Xinjian Nan Lu, Taiyuan 030001, China.
| |
Collapse
|
17
|
Liu X, Fu S, Zhang H, Li S, Zhu Z, Chen S, Hou H, Chen W, Hou P. Rational design of a GSH silent fluorescent probe for simultaneous detection of H2S and Cys/Hcy from distinct channels. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Tong X, Hao L, Song X, Wu S, Zhang N, Li Z, Chen S, Hou P. Construction of novel coumarin-carbazole-based fluorescent probe for tracking of endogenous and exogenous H 2S in vivo with yellow-emission and large Stokes shift. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121445. [PMID: 35660155 DOI: 10.1016/j.saa.2022.121445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/17/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Recent medical studies have confirmed that endogenous H2S serves as the third gas-messenger besides nitric oxide (NO) and carbon monoxide (CO), which is produced by enzyme-catalyzed metabolism of cysteine and takes part in multiple physiological processes. The abnormal levels induced by H2S overproduction in mammals can destroy tissues and organ systems, which lead to certain serious diseases, such as neurodegenerative diseases, cardiovascular diseases, and various cancers. In this work, we developed a novel coumarin-carbazole fluorescent probe COZ-DNB with yellow emission and a large Stokes shift for H2S detection. In probe COZ-DNB, the newly dye COZ-OH as a luminophore and the 2,4-dinitrophenyl ether moiety was chosen as a trigger group for H2S. Probe COZ-DNB itself displayed nearly non-fluorescent. However, COZ-DNB gave the remarkable fluorescence with an 83-fold enhancement in the yellow region after interaction with H2S. The sensing mechanism of COZ-DNB toward H2S was checked by means of UHPLC, HRMS and DFT/TD-DFT calculations. What's more, probe COZ-DNB also exhibited fast response (2.0 min), high sensitivity (65.0 nM), a large Stokes shift (161.0 nm), high stability and excellent selectivity. Furthermore, COZ-DNB was applied for imaging of exogenous and endogenous H2S in living HeLa cells and zebrafish with satisfactory performances. We anticipate COZ-DNB would be served as a potential tool for investigating the biological functions of H2S in pathological processes.
Collapse
Affiliation(s)
- Xu Tong
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Liguo Hao
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Xue Song
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Shuang Wu
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Na Zhang
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar, 161006, PR China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University, Qiqihar 161006, PR China.
| |
Collapse
|
19
|
Chen S, Fan J, Lv M, Hua C, Liang G, Zhang S. Internal Standard Assisted Surface-Enhanced Raman Scattering Nanoprobe with 4-NTP as Recognition Unit for Ratiometric Imaging Hydrogen Sulfide in Living Cells. Anal Chem 2022; 94:14675-14681. [PMID: 36222749 DOI: 10.1021/acs.analchem.2c02961] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydrogen sulfide (H2S), as the third endogenous gasotransmitter, is closely associated with various physiological and pathological processes, whereas many aspects of its functions remain unclear. Effective tools for the accurate detection of H2S in living organisms are urgently needed. We herein reported an internal standard assisted surface-enhanced Raman scattering (SERS) nanoprobe for ratiometric detection of H2S in vitro and in living cells based on the reduction of nitros with H2S. This nanoprobe consists of an internal standard (4-mercaptobenzonitrile, MPBN) embedded core-molecule-shell Au nanoflower (Au@MPBN@Au) as the high plasmonic active SERS substrate and the 4-nitrothiophenol (4-NTP) molecule immobilized on the surface as the H2S recognition unit. With the addition of H2S, the nitros peak (1329 cm-1) decreased. Meanwhile, three obvious new peaks appeared at 1139, 1387, and 1433 cm-1, which were related to the vibration of the dimerized product 4,4'-dimercaptoazobisbenzene (DMAB) of 4-aminothiophenol (4-ATP). However, the peak intensity at 2223 cm-1 derived from MPBN was not influenced by the outer environment. Thus, the H2S level was able to be determined based on the ratio of two peak intensities (I1139/I2223) with a detection limit as low as 0.24 μM. Notably, we have proved that SERS nanoprobe Au@MPBN@Au@4-NTP could ratiometrically image both the endogenous and exogenous H2S in living cells. We anticipate that Au@MPBN@Au@4-NTP could be applied for the study of H2S-related physiological function in the future.
Collapse
Affiliation(s)
- Sheng Chen
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China.,Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Jiayi Fan
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Mengya Lv
- College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Chenfeng Hua
- Zhengzhou Tobacco Research Institute of China National Tobacco Company, 2 Fengyang Street, Zhengzhou 450001, China
| | - Gaolin Liang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| | - Shusheng Zhang
- Center for Advanced Analysis & Gene Sequencing, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001, China
| |
Collapse
|
20
|
Reusable ring-like Fe3O4/Au nanozymes with enhanced peroxidase-like activities for colorimetric-SERS dual-mode sensing of biomolecules in human blood. Biosens Bioelectron 2022; 209:114253. [DOI: 10.1016/j.bios.2022.114253] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/07/2022] [Accepted: 04/02/2022] [Indexed: 12/26/2022]
|
21
|
Mei Y, Song QH. Real-time, sensitive and simultaneous detection of GSH and Cys/Hcy by 8-substituted phenylselenium BODIPYs: a structure-activity relationship. J Mater Chem B 2022; 10:6009-6017. [PMID: 35880906 DOI: 10.1039/d2tb01189a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Real-time and sensitive detection of biothiols is the key to biomedical research and clinical diagnosis. It is necessary to develop a highly sensitive and selective fluorescent probe for the detection of biothiols. In this paper, we have developed a series of meso-arylselenium BODIPY probes for the rapid and sensitive detection of biothiols and the dual-channel discrimination of GSH and Cys/Hcy. A structure-activity relationship was established from five p-substituted phenylselenium (R = NO2, F, H, OCH3 or N(CH2CH2)2O) BODIPYs. Compared with most reported fluorescent probes, such as meso-BODIPY sulfur ethers, these probes display much lower LODs (∼nM levels) and more rapid responses, which are ascribed to the higher fluorescence efficiencies of the sensing products (Φf = 0.48 for GSH, 0.18 for Cys and 0.14 for Hcy) and the introduction of arylselenium, which is more active than arylthiol. Among them, the best sensing performance is that of probe 2a (R = NO2); therefore, a structure-activity relationship of these fluorescent probes was also obtained. The excellent sensing performance was further revealed in the detection of GSH and Cys/Hcy in live cells.
Collapse
Affiliation(s)
- Yuan Mei
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
22
|
Hao Y, Zhang Y, Zhu D, Luo L, Chen L, Tang Z, Zeng R, Xu M, Chen S. Dual-emission fluorescent probe for discriminative sensing of biothiols. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
23
|
Tong X, Hao L, Song X, Wu S, Zhang N, Li Z, Chen S, Hou P. A fast-responsive fluorescent probe based on a styrylcoumarin dye for visualizing hydrogen sulfide in living MCF-7 cells and zebrafish. RSC Adv 2022; 12:17846-17852. [PMID: 35765346 PMCID: PMC9201871 DOI: 10.1039/d2ra00997h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/02/2022] [Indexed: 12/22/2022] Open
Abstract
As a vital antioxidant molecule, H2S can make an important contribution to regulating blood vessels and inhibiting apoptosis when present at an appropriate concentration. Higher levels of H2S can interfere with the physiological responses of the respiratory system and central nervous system carried out by mammalian cells. This is associated with many illnesses, such as diabetes, mental decline, cardiovascular diseases, and cancer. Therefore, the accurate measurement of H2S in organisms and the environment is of great significance for in-depth studies of the pathogenesis of related diseases. In this contribution, a new coumarin-carbazole-based fluorescent probe, COZ-DNBS, showing a rapid response and large Stokes shift was rationally devised and applied to effectively sense H2S in vivo and in vitro. Upon using the probe COZ-DNBS, the established fluorescent platform could detect H2S with excellent selectivity, showing 62-fold fluorescence enhancement, a fast-response time (<1 min), high sensitivity (38.6 nM), a large Stokes shift (173 nm), and bright-yellow emission. Importantly, the probe COZ-DNBS works well for monitoring levels of H2S in realistic samples, living MCF-7 cells, and zebrafish, showing that COZ-DNBS is a promising signaling tool for H2S detection in biosystems. The probe COZ-DNBS displayed excellent selectivity, a fast response, high sensitivity, a large Stokes shift, and bright-yellow emission in response to H2S.![]()
Collapse
Affiliation(s)
- Xu Tong
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Liguo Hao
- College of Medical Technology, Qiqihar Medical University Qiqihar 161006 China
| | - Xue Song
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Shuang Wu
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Na Zhang
- The Third Affiliated Hospital, Qiqihar Medical University Qiqihar 161006 China
| | - Zhongtao Li
- College of Medical Technology, Qiqihar Medical University Qiqihar 161006 China
| | - Song Chen
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| | - Peng Hou
- College of Pharmacy, Qiqihar Medical University Qiqihar 161006 China
| |
Collapse
|
24
|
Li X, Yadav P, Spingler B, Zelder F. A Cu II -Salicylidene Glycinato Complex for the Selective Fluorometric Detection of Homocysteine over 20 Proteinogenic Amino Acids. ChemistryOpen 2022; 11:e202200106. [PMID: 35723424 PMCID: PMC9208288 DOI: 10.1002/open.202200106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/17/2022] [Indexed: 11/23/2022] Open
Abstract
Homocysteine (Hcy) is a sulfur-containing α-amino acid that differs by one methylene (CH2 ) subunit from homologous cysteine (Cys). Elevated levels of Hcy are diagnostic markers of cardiovascular disease and other medical conditions. We present a new CuII -salicylidene glycinato complex 1 for the selective fluorometric detection of Hcy in water. In the presence of this analyte, the non-fluorescent copper-complex demetallates and disassembles into its building blocks. This process liberates a 3-chloro-5-sulfosalicylaldehyde signaling unit and is accompanied by a 51-fold turn-on fluorescence at 485 nm (λex =350 nm). Out of twenty proteinogenic amino acids, only histidine (12-fold turn-on fluorescence) and Cys (8-fold turn-on fluorescence) trigger some disassembly of probe 1. In comparison with important pioneering work on the detection of biothiols, this study strikingly demonstrates that structural modifications of chelate core structures steer substrate selectivity of metal-based probes. Importantly, probe 1 has proven suitable for the detection of Hcy in artificial urine.
Collapse
Affiliation(s)
- Xuecong Li
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Prerna Yadav
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Bernhard Spingler
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Felix Zelder
- Department of ChemistryUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| |
Collapse
|
25
|
Alshareef M, Snari RM, Alaysuy O, Aldawsari AM, Abumelha HM, Katouah H, El-Metwaly NM. Optical Detection of Acetone Using " Turn-Off" Fluorescent Rice Straw Based Cellulose Carbon Dots Imprinted onto Paper Dipstick for Diabetes Monitoring. ACS OMEGA 2022; 7:16766-16777. [PMID: 35601306 PMCID: PMC9118203 DOI: 10.1021/acsomega.2c01492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 05/08/2023]
Abstract
Persistent bad breath has been reported as a sign of serious diabetes health conditions. If an individual's breath has a strong odor of acetone, it may indicate high levels of ketones in the blood owing to diabetic ketoacidosis. Thus, acetone gas in the breath of patients with diabetes can be detected using the current easy-to-use fluorescent test dipstick. In another vein, rice straw waste is the most well-known solid pollutant worldwide. Thus, finding a simple technique to change rice straw into a valuable material is highly important. A straightforward and environmentally friendly approach for reprocessing rice straw as a starting material for the creation of fluorescent nitrogen-doped carbon dots (NCDs) has been established. The preparation process of NCDs was carried out via one-pot hydrothermal carbonization using NH4OH as a passivation substance. A testing strip was developed on the basis of cellulose CD nanoparticles (NPs) immobilized onto cellulose paper assay. The NCDs demonstrated a quantum yield of 23.76%. A fluorescence wavelength was detected at 443 nm upon applying an excitation wavelength of 354 nm. NCDs demonstrated remarkable selectivity for acetone gas as their fluorescence was definitely exposed to quenching by acetone as a consequence of the inner filter effect. A linear correlation was observed across the concentration range of 0.5-150 mM. To detect and measure acetone gas, the present cellulose paper strip has a "switch off" fluorescent signal. A readout limit was accomplished for an aqueous solution of acetone as low as 0.5 mM under ambient conditions. The chromogenic fluorescence of the cellulose assay responsiveness depends on the fluorescence quenching characteristic of the cellulose carbon dots in acetone. A thin fluorescent cellulose carbon dot layer was deposited onto the surface of cellulose strips by a simple impregnation process. CDs were made using NP morphology and analyzed using infrared spectroscopy and transmission electron microscopy. The carbon dot distribution on the paper strip was evaluated by scanning electron microscope and energy-dispersive X-ray analysis. The absorption and fluorescence spectral analyses were investigated. The paper sheets' mechanical qualities were also examined.
Collapse
Affiliation(s)
- Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Razan M. Snari
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Omaymah Alaysuy
- Department
of Chemistry, College of Science, University
of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Afrah M. Aldawsari
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- King
Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanadi Katouah
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
- ;
| |
Collapse
|
26
|
Mhatre S, Opere CA, Singh S. Unmet needs in glaucoma therapy: The potential role of hydrogen sulfide and its delivery strategies. J Control Release 2022; 347:256-269. [PMID: 35526614 DOI: 10.1016/j.jconrel.2022.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022]
Abstract
Glaucoma is an optic neuropathy disorder marked by progressive degeneration of the retinal ganglion cells (RGC). It is a leading cause of blindness worldwide, prevailing in around 2.2% of the global population. The hallmark of glaucoma, intraocular pressure (IOP), is governed by the aqueous humor dynamics which plays a crucial role in the pathophysiology of the diesease. Glaucomatous eye has an IOP of more than 22 mmHg as compared to normotensive pressure of 10-21 mmHg. Currently used treatments focus on reducing the elevated IOP through use of classes of drugs that either increase aqueous humor outflow and/or decrease its production. However, effective treatments should not only reduce IOP, but also offer neuroprotection and regeneration of RGCs. Hydrogen Sulfide (H2S), a gasotransmitter with several endogenous functions in mammalian tissues, is being investigated for its potential application in glaucoma. In addition to decreasing IOP by increasing aqueous humor outflow, it scavenges reactive oxygen species, upregulates the cellular antioxidant glutathione and protects RGCs from excitotoxicity. Despite the potential of H2S in glaucoma, its delivery to anterior and posterior regions of the eye is a challenge due to its unique physicochemical properties. Firstly, development of any delivery system should not require an aqueous environment since many H2S donors are susceptible to burst release of the gas in contact with water, causing potential toxicity and adverse effects owing to its inherent toxicity at higher concentrations. Secondly, the release of the gas from the donor needs to be sustained for a prolonged period of time to reduce dosing frequency as per the requirements of regulatory bodies. Lastly, the delivery system should provide adequate bioavailability throughout its period of application. Hence, an ideal delivery system should aim to tackle all the above challenges related to barriers of ocular delivery and physicochemical properties of H2S itself. This review discusses the therapeutic potential of H2S, its delivery challenges and strategies to overcome the associated chalenges.
Collapse
Affiliation(s)
- Susmit Mhatre
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Catherine A Opere
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| | - Somnath Singh
- School of Pharmacy and Health Professions, Creighton University, Omaha, NE 68178, USA.
| |
Collapse
|
27
|
Zhu J, Zhu R, Miao Q. Polymeric agents for activatable fluorescence, self-luminescence and photoacoustic imaging. Biosens Bioelectron 2022; 210:114330. [PMID: 35567882 DOI: 10.1016/j.bios.2022.114330] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
Numerous polymeric agents have been widely applied in biology and medicine by virtue of the facile chemical modification, feasible nano-engineering approaches and fine-tuned pharmacokinetics. To endow polymeric imaging agents with ability to monitor and measure subtle molecular or cellular alterations at diseased sites, activatable polymeric probes that can elicit signal changes in response to biomolecular interactions or the analytes of interest have to be developed. Herein, this review aims to provide a systemic interpretation and summarization of the design methodology and imaging utility of recently emerged activatable polymeric probes. An introduction of activatable probes allowing for precise imaging and classification of polymeric imaging agents is reported first. Then, we give a detailed discussion of the contemporary design approaches toward activatable polymeric probes in diverse imaging modes for the detection of various stimuli and their imaging applications. Finally, current challenges and future advances are discussed and highlighted.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Ran Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
29
|
Guo J, Fang B, Bai H, Wang L, Peng B, Qin XJ, Fu L, Yao C, Li L, Huang W. Dual/Multi-responsive fluorogenic probes for multiple analytes in mitochondria: From design to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Cai Y, Chen J, Liu X, Hu S, Wang Z. Synthesis of C–N@GC Nanomaterial Derived from Core-Shell ZIF-8@ZIF-67 and Its Application in the Detection of L-Cysteine. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Zhang J, Zhang Y, Guo Q, Wen G, Xiao H, Qi S, Wang Y, Zhang H, Wang L, Sun H. Photoacoustic/Fluorescence Dual-Modality Probe for Biothiol Discrimination and Tumor Diagnosis in Cells and Mice. ACS Sens 2022; 7:1105-1112. [PMID: 35357825 DOI: 10.1021/acssensors.2c00058] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing probes to simultaneously detect and discriminate biothiols is important, yet challenging. Activatable photoacoustic (PA) probes for discriminating biothiols in vivo are still lacking, and this hinders the diagnosis of thiol-related diseases. Herein we present the first PA and fluorescence dual-modality probe MB-NBD for discriminating different biothiol species. The probe has the advantages of both fluorescence imaging and PA imaging (high sensitivity and deep penetration) with distinct signal patterns toward hydrogen sulfide (H2S), cysteine/homocysteine (Cys/Hcy), and glutathione (GSH) treatment. The biothiol-activated product of MB-NBD exhibits enhancements in near-infrared fluorescence (NIRF) at 690 nm and absorbance/PA at 664 nm upon fast reaction, allowing it to selectively detect biothiol species over other reactive species. On the other hand, MB-NBD displays characteristic absorbance enhancement at 547 nm toward H2S, rendering specific detection of H2S. In addition, the specific enhancements in absorbance/PA at 470 nm and fluorescence at 550 nm toward Cys/Hcy treatment endows the probe with the capability of selectively detecting Cys/Hcy. Furthermore, MB-NBD is able to discriminate Cys and GSH by fluorescent imaging in live-cell and ratiometric PA imaging in mice experiments. MB-NBD has been successfully used to diagnose tumors by dual-channel ratiometric PA imaging.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Yachao Zhang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qiang Guo
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Guohua Wen
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hanyue Xiao
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuo Qi
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421200, China
| | - Yue Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huatang Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Lidai Wang
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hongyan Sun
- Department of Chemistry and COSADAF (Centre of Super-Diamond and Advanced Films), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| |
Collapse
|
32
|
Deep-Red Emissive Fluorescent Probe for Sensitive Detection of Cysteine in Milk and Living Cells. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02280-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
33
|
Jiang H, Yin G, Gan Y, Yu T, Zhang Y, Li H, Yin P. A multisite-binding fluorescent probe for simultaneous monitoring of mitochondrial homocysteine, cysteine and glutathione in live cells and zebrafish. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
34
|
Ye H, Cheng L, Tu X, Wang DW, Yi L. Rational design of a dual-reactive probe for imaging the biogenesis of both H2S and GSH from L-Cys rather than D-Cys in live cells. RSC Chem Biol 2022; 3:848-852. [PMID: 35866170 PMCID: PMC9257618 DOI: 10.1039/d2cb00105e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Biothiols and their interconversion are involved in cellular redox homestasis as well as many physiological processes. Here, a dual-reactive dual-quenching fluorescent probe was rationally developed based on thiolysis reactions of...
Collapse
Affiliation(s)
- Haishun Ye
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Longhuai Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Nankai University Tianjin 300071 China
| | - Xiaoqiang Tu
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Nankai University Tianjin 300071 China
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT) Beijing 100029 China
| |
Collapse
|
35
|
Cui CY, Li B, Cheng D, Li XY, Chen JL, Chen YT, Su XC. Simultaneous Quantification of Biothiols and Deciphering Diverse GSH Stability in Different Live Cells by 19F-Tag. Anal Chem 2021; 94:901-908. [PMID: 34958555 DOI: 10.1021/acs.analchem.1c03673] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
GSH, Cys, Hcy, and H2S are important biothiols and play important roles in the living systems. Quantitative and simultaneous determination of these biothiols under physiological conditions is still a challenge. Herein, we developed an effective 19F-reactive tag that readily interacts with these four biothiols for the generation of stable thioether products that have distinguishable 19F-chemical shifts. These thioester compounds encode the characteristic fingerprint profiles of each biothiols, allowing one to simultaneously quantify and determine these biothiols by 1D 19F NMR spectroscopy. The intra-/extracellular GSH in live cells was assessed by the established strategy, and remarkable variations in the GSH stability were determined between the normal mammalian cells and cancer cells. It is notable that GSH hydrolyzes efficiently in the out-membrane of the cancer cells and the lysates. In contrast, GSH remains stable in the tested normal cells.
Collapse
Affiliation(s)
- Chao-Yu Cui
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dan Cheng
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xia-Yan Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jia-Liang Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ya-Ting Chen
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xun-Cheng Su
- State Key Laboratory of Elemento-Organic Chemistry, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
36
|
Wang W, Ji M, Chen J, Wang P. A novel turn-on type AIE fluorescent probe for highly selective detection of cysteine/homocysteine and its application in living cells. Talanta 2021; 239:123091. [PMID: 34861486 DOI: 10.1016/j.talanta.2021.123091] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/17/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Biothiols, associated with multiple physiological and pathological processes, have structural similarities. Monitoring Biothiols selectively in organisms is of great significance. Burdened by the aggregation-caused quenching (ACQ) effect, the applications of conventional biothiols fluorescent probes are extremely limited. Herein, we developed a "turn-on" type aggregation-induced emission (AIE) fluorescent probe BQM-NBD, which was composed of a BQM-OH fluorophore molecule with AIE effect and the recognition group 7-nitro-1,2,3-benzoxadiazole (NBD). Non-fluorescent BQM-NBD produces strong fluorescence after the addition of cysteine (Cys) or homocysteine (Hcy). BQM-NBD exhibited excellent linearity for selective detection of Cys (0-100 Μm) and Hcy (0-50 μM) with detection limits of 6.0 × 10-8 M and 8.4 × 10-8 M, respectively. Simultaneously, after treatment with glutathione (GSH), it appeared no fluorescence. The results demonstrated BQM-NBD exhibited good selectivity to Cys/Hcy. Furthermore, BQM-NBD was successfully performed in the imaging of Cys in living cells with low cytotoxicity, which provides a feasible strategy for the selective detection of Cys in the living system.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China
| | - Min Ji
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, PR China
| | - Junqing Chen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, Jiangsu, 211189, PR China.
| | - Peng Wang
- School of Engineering, China Pharmaceutical University, Nanjing, 210009, PR China.
| |
Collapse
|
37
|
Mei Y, Li H, Song CZ, Chen XG, Song QH. An 8-arylselenium BODIPY fluorescent probe for rapid and sensitive discrimination of biothiols in living cells. Chem Commun (Camb) 2021; 57:10198-10201. [PMID: 34522932 DOI: 10.1039/d1cc03912a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By introducing 8-arylselenium as the active group, a BODIPY fluorescent probe ASeBD was constructed for rapid and sensitive detection and dual-channel discrimination of GSH and Cys/Hcy in solution and in living cells, and its mechanism was demonstrated.
Collapse
Affiliation(s)
- Yuan Mei
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Hao Li
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Cheng-Zhou Song
- Department of Polymer Science and Engineer, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiang-Gen Chen
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.
| |
Collapse
|
38
|
Tarai A, Li Y, Liu B, Zhang D, Li J, Yan W, Zhang J, Qu J, Yang Z. A review on recognition of tri-/tetra-analyte by using simple organic colorimetric and fluorometric probes. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214070] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Li W, Li M, Qi J. Nano-Drug Design Based on the Physiological Properties of Glutathione. Molecules 2021; 26:5567. [PMID: 34577040 PMCID: PMC8469141 DOI: 10.3390/molecules26185567] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/05/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Glutathione (GSH) is involved in and regulates important physiological functions of the body as an essential antioxidant. GSH plays an important role in anti-oxidation, detoxification, anti-aging, enhancing immunity and anti-tumor activity. Herein, based on the physiological properties of GSH in different diseases, mainly including the strong reducibility of GSH, high GSH content in tumor cells, and the NADPH depletion when GSSH is reduced to GSH, we extensively report the design principles, effect, and potential problems of various nano-drugs in diabetes, cancer, nervous system diseases, fluorescent probes, imaging, and food. These studies make full use of the physiological and pathological value of GSH and develop excellent design methods of nano-drugs related to GSH, which shows important scientific significance and prominent application value for the related diseases research that GSH participates in or responds to.
Collapse
Affiliation(s)
| | - Minghui Li
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| | - Jing Qi
- Daqing Campus, Harbin Medical University, 39 Xinyang Rd., Daqing 163319, China;
| |
Collapse
|
40
|
Xu Z, Si S, Zhang Z, Tan H, Qin T, Wang Z, Wang D, Wang L, Liu B. A fluorescent probe with dual acrylate sites for discrimination of different concentration ranges of cysteine in living cells. Anal Chim Acta 2021; 1176:338763. [PMID: 34399901 DOI: 10.1016/j.aca.2021.338763] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/07/2021] [Accepted: 06/13/2021] [Indexed: 11/15/2022]
Abstract
Monitoring of cysteine (Cys) is of significant importance for studying Cys-involved biological functions and clinically diagnosing Cys-related diseases. Recently, few fluorescent probes with two different reacting sites were reported to be capable of sensing different concentration ranges of Cys with distinct fluorescence signals, particularly suiting for bioimaging. However, due to relative sophisticated synthesis and moderate selectivity, the applications of these probes were still severely restricted. In this work, we proposed a novel probe design strategy by utilizing two same reacting groups, instead of two different reacting groups, to simplify the synthesis route and minimize the interference from competing species. Same reacting groups in a probe with different steric hindrances could exhibit different reactivities to Cys. This probe showed distinguishable fluorescence peak wavelengths towards low and high concentration ranges of Cys, giving green and blue emissions, respectively. Moreover, this probe was successfully applied for monitoring of Cys concentration in living cells. We believe this work provided a simpler strategy for dual-site fluorescent probes to sense difference concentration ranges of Cys, which may inspire more probe design in future.
Collapse
Affiliation(s)
- Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China; College of Physics and Optoelectronic Engineering, China
| | - Shufan Si
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Zhijun Zhang
- College of Physics and Optoelectronic Engineering, China; Center for AIE Research, Shenzhen University, Shenzhen, 518060, China
| | - Huiya Tan
- Medical Device Research and Testing Center of South China University of Technology, South China University of Technology, Guangzhou, 510006, China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Zhonglin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Dong Wang
- College of Physics and Optoelectronic Engineering, China; Center for AIE Research, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, China.
| |
Collapse
|
41
|
Zhang Y, Xia S, Wan S, Steenwinkel TE, Vohs T, Luck RL, Werner T, Liu H. Ratiometric Detection of Glutathione Based on Disulfide Linkage Rupture between a FRET Coumarin Donor and a Rhodamine Acceptor. Chembiochem 2021; 22:2282-2291. [PMID: 33983667 PMCID: PMC8265326 DOI: 10.1002/cbic.202100108] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/21/2021] [Indexed: 12/26/2022]
Abstract
Abnormal levels of glutathione, a cellular antioxidant, can lead to a variety of diseases. We have constructed a near-infrared ratiometric fluorescent probe to detect glutathione concentrations in biological samples. The probe consists of a coumarin donor, which is connected through a disulfide-tethered linker to a rhodamine acceptor. Under the excitation of the coumarin donor at 405 nm, the probe shows weak visible fluorescence of the coumarin donor at 470 nm and strong near-infrared fluorescence of the rhodamine acceptor at 652 nm due to efficient Forster resonance energy transfer (FRET) from the donor to the acceptor. Glutathione breaks the disulfide bond through reduction, which results in a dramatic increase in coumarin fluorescence and a corresponding decrease in rhodamine fluorescence. The probe possesses excellent cell permeability, biocompatibility, and good ratiometric fluorescence responses to glutathione and cysteine with a self-calibration capability. The probe was utilized to ratiometrically visualize glutathione concentration alterations in HeLa cells and Drosophila melanogaster larvae.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
- College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing, 408100, P. R. China
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Shulin Wan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Tara Vohs
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| |
Collapse
|
42
|
Aghayan M, Mahmoudi A, Sazegar MR, Adhami F. Tailoring cysteine detection in colorimetric techniques using Co/Fe-functionalized mesoporous silica nanoparticles. J Mater Chem B 2021; 9:3716-3726. [PMID: 33900347 DOI: 10.1039/d1tb00157d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Over the past decade, there has been a dramatic increase in the number of studies focused on sensors for cysteine (Cys) as a crucial factor in physiological function and disease diagnosis. Among those sensors, nanomaterial-based peroxidase mimetics have received particular attention from researchers. This study introduces a new series of mesoporous silica nanoparticles (MSNs) incorporated with iron and cobalt (Co/Fe-MSN) with a molar ratio of Si/Fe = 10 and cobalt species at 1, 3, and 5 wt% that have great potential in the sensing application. These nanomaterial characterization was investigated by FTIR spectroscopy, SEM, TEM, XRD, and nitrogen adsorption-desorption. The peroxidase activity of these nanomaterials was studied through kinetic analysis. The findings revealed that Co/Fe-MSN (1%) showed higher peroxidatic activity than the others towards the common chromogenic substrate 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) diammonium salt. Based on the enzymatic activity of Co/Fe-MSN (1%), a colorimetric sensing platform was designed to detect H2O2 and Cys. The limit of detection (LOD) for H2O2 and Cys was determined to be 1.1 μM and 0.89 nM, respectively. The results indicated that the proposed enzyme mimic exhibited excellent potential as a sensor in medical diagnostics and biological systems.
Collapse
Affiliation(s)
- Morvarid Aghayan
- Department of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Ali Mahmoudi
- Department of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Mohammad Reza Sazegar
- Department of Chemistry, Faculty of science, Islamic Azad University, North Tehran Branch, Tehran, Iran.
| | - Forogh Adhami
- Department of Chemistry, Faculty of science, Islamic Azad University, Yadegar-e-Imam Khomeini (RAH), Shahre rey Branch, Tehran, Iran
| |
Collapse
|
43
|
Shen R, Bai J, Qian Y. A mitochondria-targeted fluorescent dye naphthalimide-thioether-cyanine for NIR-activated photodynamic treatment of cancer cells. J Mater Chem B 2021; 9:2462-2468. [PMID: 33634295 DOI: 10.1039/d0tb02851g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, an NIR-activated fluorescent dye naphthalimide-thioether-cyanine (NPSCY) was developed for the photodynamic treatment of cancer cells. In this dye, naphthalimide and cyanine were selected as the two fluorophores, which were linked by the thioether group. Under 660 nm irradiation, NPSCY could produce 1O2 rapidly, suggesting the potential for photodynamic therapy. Cys can be considered as one of the markers of cancer cells and NPSCY could distinguish Cys from three channels (433 nm, 475 nm, 733 nm) due to the bilateral recognition of the thioether group, which was helpful for accurately locating cancer cells. Fortunately, NPSCY could also produce 1O2 after being reacted with the intracellular biological thiols, which also avoided the inactivation of the photosensitizer in cancer cells. The co-localization coefficient of 0.873 indicated that the cyanine group promoted the aggregation of NPSCY in mitochondria. This photosensitizer showed low dark toxicity and high phototoxicity. Meanwhile, the half-maximal inhibitory concentration (IC50) was calculated to be 3.7 μM. NPSCY could inhibit cell migration after irradiation at 660 nm.
Collapse
Affiliation(s)
- Ronghua Shen
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Jin Bai
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| | - Ying Qian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
44
|
Feng Y, Hu S, Wang Y, Song X, Cao C, Wang K, Jing C, Zhang G, Liu W. A multifunctional fluorescent probe for visualizing H 2S in wastewater with portable smartphone via fluorescent paper strip and sensing GSH in vivo. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124523. [PMID: 33310319 DOI: 10.1016/j.jhazmat.2020.124523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/07/2020] [Accepted: 11/08/2020] [Indexed: 06/12/2023]
Abstract
In this paper, a bifunctional tri-site fluorescent probe was designed for the first time not only for visualization and quantitative analysis of sensing H2S in wastewater by coupling paper strip and smartphone (Color recognizer, Xiyi Technology) but also for sensitively monitoring GSH in living cells, which relied on different emission channels and the pH of solutions. The recognition properties of GH towards H2S/GSH were satisfactorily demonstrated through fluorescence, UV-vis, 1H NMR and DFT calculations. More importantly, integrated with the paper strip, portable smartphone-sensing platform with a color recognizer app would accomplish cost-effective and rapid assays for colorimetric water quality testing, which displayed huge application potential in fields of environmental monitoring.
Collapse
Affiliation(s)
- Yan Feng
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Shanshan Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Yingzhe Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Xuerui Song
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Chen Cao
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Kun Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Chunling Jing
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Guolin Zhang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
45
|
Hu L, Zheng T, Song Y, Fan J, Li H, Zhang R, Sun Y. Ultrasensitive and selective fluorescent sensor for cysteine and application to drug analysis and bioimaging. Anal Biochem 2021; 620:114138. [PMID: 33639112 DOI: 10.1016/j.ab.2021.114138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 01/26/2023]
Abstract
A fluorescent sensor based on coumarin-maleimide conjugate was developed for efficient discrimination of Cys from Hcy and GSH in both organic and aqueous solution. Addition of Cys to the non-fluorescent sensor solution in DMF induced bright blue fluorescence and enhanced the fluorescence intensity by 320-fold while other amino acids and biothiols (Gly, Hcy, GSH, Glu, Val, Tyr, Arg, Trp, Lys, His, Leu, Phe, Asp and Met) did not bring about remarked change. The sensor responds to Cys extremely rapidly. If Cys was added to the sensor solution, the fluorescence intensity increased by 170-fold immediately and attained the maximum value in 5 min. A linear relationship was observed between Cys concentration within 2-20 μM and the fluorescence intensity of the sensor solution. The detection limit of the sensor toward Cys is as low as 4.7 nM. The sensor is also effective for specific detection of Cys in aqueous (DMF/H2O = 9:1, v/v) solution. Practical application of the sensor to drug analysis and bioimaging of living Hela cells has been verified. Possible sensing mechanism of the sensor toward Cys has been proposed.
Collapse
Affiliation(s)
- Luping Hu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Tao Zheng
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Ji Fan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Hongqi Li
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China.
| | - Ruiqing Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai, 201620, PR China
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kgs, Lyngby, 2800, Denmark
| |
Collapse
|
46
|
Hou X, Li Z, Li Y, Zhou Q, Liu C, Fan D, Wang J, Xu R, Xu Z. ICT-modulated NIR water-soluble fluorescent probe with large Stokes shift for selective detection of cysteine in living cells and zebrafish. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:119030. [PMID: 33049474 DOI: 10.1016/j.saa.2020.119030] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
The fluorescent probes with good water-solubility, long-wavelength emission and large Stokes shift are greatly desirable for in vivo detection. Herein, we designed a novel 1,8-naphthalimide-based near-infrared (NIR) optical and fluorescent probe (NTC) for sensing cysteine (Cys). Using acrylate as the recognition site, the probe demonstrated high selectivity and sensitivity for Cys with a low detection limit (0.093 μM) in aqueous buffer solution due to the excellent water-solubility. Upon the reaction with Cys, the recovery of intramolecular charge transfer (ICT) in the probe led to about 40-fold fluorescence enhancement. Furthermore, the reaction result was investigated by 1H NMR, and HRMS analyses, and the sensing mechanism was validated by quantum calculations. Finally, NTC was applied to image exogenous and endogenous Cys in HeLa cells and zebrafish selectively, implying that the probe possessed great potential application in biological fluorescence sensing.
Collapse
Affiliation(s)
- Xufeng Hou
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Zhensheng Li
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Yunqiang Li
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Qihang Zhou
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China; Department of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China
| | - Chunhui Liu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Dang Fan
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Jinjin Wang
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Ruijie Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China
| | - Zhihong Xu
- Key Laboratory of Chemo/Biosensing and Detection, College of Chemical and Materials Engineering, Xuchang University, Henan 461000, PR China; Department of Chemistry, Zhengzhou University, Zhengzhou, 450052, PR China.
| |
Collapse
|
47
|
Lv L, Luo W, Diao Q. A novel ratiometric fluorescent probe for selective detection and imaging of H 2S. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 246:118959. [PMID: 32987270 DOI: 10.1016/j.saa.2020.118959] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
In this work, a novel phenoxazine-based fluorescent probe BPO-N3 was developed to detect H2S. The results showed that the probe had high selectivity and sensitivity toward H2S, and its detection mechanism was based the ratio between green and red fluorescence signals; its detection limit was as low as 30 nM. The fluorescent imaging experiments further showed that the probe BPO-N3 could successfully detect endogenous and exogenous H2S in living cells. This probe can be used as a powerful tool for in-depth study of H2S function in various physiological processes.
Collapse
Affiliation(s)
- Linlin Lv
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China
| | - Weiwei Luo
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China
| | - Quanping Diao
- School of Chemistry and Life Science, Anshan Normal University, Ping'an Street 43, Anshan 114005, China.
| |
Collapse
|
48
|
Li H, Fang Y, Yan J, Ren X, Zheng C, Wu B, Wang S, Li Z, Hua H, Wang P, Li D. Small-molecule fluorescent probes for H2S detection: Advances and perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
50
|
Chai Z, Wu Q, Cheng K, Liu X, Jiang L, Liu M, Li C. Simultaneous detection of small molecule thiols with a simple 19F NMR platform. Chem Sci 2020; 12:1095-1100. [PMID: 34163876 PMCID: PMC8179020 DOI: 10.1039/d0sc04664g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Thiols play critical roles in regulating biological functions and have wide applications in pharmaceutical and biomedical industries. However, we still lack a general approach for the simultaneous detection of various thiols, especially in complex systems. Herein, we establish a 19F NMR platform where thiols are selectively fused into a novelly designed fluorinated receptor that has two sets of environmentally different 19F atoms with fast kinetics (k 2 = 0.73 mM-1 min-1), allowing us to generate unique two-dimensional codes for about 20 thiols. We demonstrate the feasibility of the approach by reliably quantifying thiol drug content in tablets, discriminating thiols in living cells, and for the first time monitoring the thiol related metabolism pathway at the atomic level. Moreover, the method can be easily extended to detect the activity of thiol related enzymes such as γ-glutamyl transpeptidase. We envision that the versatile platform will be a useful tool for detecting thiols and elucidating thiol-related processes in complex systems.
Collapse
Affiliation(s)
- Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Qiong Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai Cheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Xiaoli Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China
| | - Ling Jiang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Maili Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences Wuhan 430071 China .,Graduate University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|