1
|
Payamifar S, Khalili Y, Foroozandeh A, Abdouss M, Hasanzadeh M. Magnetic mesoporous silica nanoparticles as advanced polymeric scaffolds for efficient cancer chemotherapy: recent progress and challenges. RSC Adv 2025; 15:16050-16074. [PMID: 40370857 PMCID: PMC12076205 DOI: 10.1039/d5ra00948k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
Magnetic mesoporous silica nanoparticles (MMS NPs) stand out as excellent options for targeted chemotherapy owing to their remarkable features, such as extensive surface area, substantial pore volume, adjustable and uniform pore size, facile scalability, and versatile surface chemistry. This review comprehensively explores the latest developments in MMS NPs, emphasizing their design, functionalization, and application in cancer therapy. Initially, we discuss the critical need for targeted and controlled drug delivery (DD) in oncology, highlighting the role of magnetic and MMs in addressing some challenges. Subsequently, the key features of MMS NPs, such as their high surface area, pore structure, and functionalization strategies, are examined for their impact on their DD performance for efficient cancer chemotherapy. The integration of chemotherapy methods such as photothermal therapy and photodynamic therapy with MMS NPs is also explored, showcasing multifunctional platforms that combine imaging and therapeutic capabilities. Finally, we identify the current challenges and provide future perspectives for the development and clinical translation of MMS NPs, underscoring their potential to reshape CT paradigms.
Collapse
Affiliation(s)
- Sara Payamifar
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Yasaman Khalili
- School of Chemistry, Faculty of Science, University of Tehran Iran
| | - Amin Foroozandeh
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology Tehran Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
2
|
Hsu CY, Mansouri S, Rizaev J, Sanghvi G, Olegovich Bokov D, Kaur J, Sharma I, Rajput P, Mustafa YF, Hussein L. Synergistic effect between bacteriophages and nanozymes for hybrid dual recognition of pathogenic bacteria from water, food, and agricultural samples: promising new tools for sensitive and specific biosensing. NANOSCALE 2025; 17:8401-8414. [PMID: 40091675 DOI: 10.1039/d5nr00146c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Worldwide, pathogenic bacteria are among the most significant causes of infections. Indeed, delays in diagnosis and detection of these bacteria result in high morbidity and mortality rates and detection platforms must be developed to overcome these challenges. Biosensors, as high-potential analytical tools, can play an important role in the detection of pathogenic bacteria. The application of nanozymes as nanomaterial-based artificial enzymes in the structure of biosensors can overcome the limitations of common biological elements. Furthermore, the integration of bacteriophages, as novel bioreceptors, with nanozymes enabled a clear distinction between viable and dead bacteria. The application of bacteriophage-nanozyme as hybrid probes in biosensors can boost pathogenic bacteria detection. In this review, the effects of different nanozymes, including metal-based, metal oxide-based, and metal-organic framework (MOF)-based nanozymes, after integration with bacteriophages are discussed. Perspectives and challenges of a combination of these novel bioreceptors and nanomaterial-based artificial enzymes are presented for detecting various pathogenic bacteria.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona 85004, USA
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
| | - Jasur Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18, Amir Temur Street, Samarkand, Uzbekistan.
| | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University, Rajkot-360003, Gujarat, India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy named after A.P. Nelyubin, Sechenov First Moscow State Medical University, 8 Trubetskaya St., bldg. 2, Moscow, 119991, Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, 2/14 Ustyinsky pr., Moscow, 109240, Russian Federation
| | - Jaswinder Kaur
- Department of Medical Lab Sciences, Chandigarh Group of Colleges-Jhanjeri, Mohali-140307, Punjab, India
| | - Indu Sharma
- NIMS School of Allied Sciences and Technology, NIMS University Rajasthan, Jaipur, 303121, India
| | - Pranchal Rajput
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | - Layth Hussein
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University, Najaf, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Department of Computers Techniques Engineering, College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Wu Z, Chen Q, Lin Z, Chen Y, Gan X, He Y. Dual-functional probe for sensitive detection of MCF-7 cells and mendelian randomization analysis of MUC1 association with multiple cancers. Sci Rep 2025; 15:6167. [PMID: 39979505 PMCID: PMC11842835 DOI: 10.1038/s41598-025-90575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/13/2025] [Indexed: 02/22/2025] Open
Abstract
The present study successfully developed a method based on a dual-functional probe for detecting breast cancer cells MCF-7 by recognizing the MUC1 protein on the cell surface. This method integrated inductively coupled plasma mass spectrometry (ICP-MS) and fluorescence imaging technology, enhancing the sensitivity, specificity, and accuracy of breast cancer cell detection. Additionally, through two-sample Mendelian randomization (MR) analysis, we verified a potential correlation between breast cancer and MUC1 (PIVW<0.05), while also proving no potential correlation between liver cancer and MUC1 (PIVW>0.05). Furthermore, this study explored the relationship between other cancers and MUC1, indicating a potential correlation between ovarian cancer and colorectal cancer with MUC1 (PIVW<0.05). In summary, this study provides new strategies for the early diagnosis and treatment of breast cancer and offers new insights into the potential of MUC1 as a biomarker for the detection of other cancers.
Collapse
Affiliation(s)
- Zhuzheng Wu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen, Fujian, China
| | - Qingquan Chen
- The School of Public Health, Fujian Medical University, Fuzhou, 350108, Fujian Province, China
| | - Zhifeng Lin
- The School of Public Health, Fujian Medical University, Fuzhou, 350108, Fujian Province, China
| | - Yating Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiaohao Gan
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ye He
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
4
|
Jasim SA, Rachchh N, Pallathadka H, Sanjeevi R, Bokov DO, Bobonazarovna SF, Jabbar HS, Mahajan S, Mustafa YF, Alhadrawi M. Recent advances in carbon-based materials derived from diverse green biowaste for sensing applications: a comprehensive overview from the perspective of synthesis method and application. RSC Adv 2024; 14:39787-39803. [PMID: 39691222 PMCID: PMC11651345 DOI: 10.1039/d4ra07693a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/05/2024] [Indexed: 12/19/2024] Open
Abstract
The rapid increase in global waste, driven by population growth, has raised significant environmental concerns. Among different types of wastes, green biowastes (BWs) containing organic matter have attracted considerable attention. The conversion of BW, particularly from herbaceous and animal sources, to carbon-based materials (CBMs) introduces a suitable platform for waste management and resource recovery. Furthermore, this strategy creates valuable materials from low-value waste for various applications, sensing included. The abundance of these wastes provides a sustainable and affordable raw material and enhances the feasibility of fabricating these materials. Generally, the presence of carbon in their structure can present an accessible resource for producing different carbon materials, especially carbon dots (CDs), carbon quantum dots (CQDs), and graphene quantum dots (GQDs). The performance of these CBMs has been enhanced by optimizing synthesis processes, incorporating functional groups, and integrating various materials. The synthesized CBMs possess desirable features, such as biocompatibility, excellent physical, chemical, and electrical conductivity. These materials have been used in different sensors such as electrochemical (EC) and optical sensors for presenting high performance sensing probes with several benefits such as real-time monitoring, rapid detection, and high sensitivity. The first section of this review is dedicated to the preparation of CBMs, derived from green BWs, by different synthesized methods for use in different fields including biomedical application, food safety, and environmental monitoring. In addition, the challenges, limitations, and future directions in the development of these CBMs were completely discussed to improve their performance.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif Anbar Iraq
| | - Nikunj Rachchh
- Marwadi University Research Center, Department of Mechanical Engineering, Faculty of Engineering & Technology, Marwadi University Rajkot-360003 Gujarat India
| | | | - R Sanjeevi
- NIMS School of Allied Sciences and Technology, NIMS University Rajasthan Jaipur 303121 India
| | - Dmitry Olegovich Bokov
- Institute of Pharmacy Named After A. P. Nelyubin, Sechenov First Moscow State Medical University 8 Trubetskaya St., Bldg. 2 Moscow 119991 Russian Federation
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety 2/14 Ustyinsky pr. Moscow 109240 Russian Federation
| | | | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University-Erbil Kurdistan Region Iraq
- Research Center, Knowledge University Kirkuk Road 44001 Erbil Iraq
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul Mosul-41001 Iraq
| | - Merwa Alhadrawi
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University Najaf Iraq
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University of Al Diwaniyah Al Diwaniyah Iraq
- Department of Refrigeration and Air Conditioning Techniques, College of Technical Engineering, The Islamic University of Babylon Babylon Iraq
| |
Collapse
|
5
|
Mazlan NF, Sage EE, Mohamad NS, Mackeen MM, Tan LL. On-site sensing for aflatoxicosis poisoning via ultraviolet excitable aptasensor based on fluorinated ethylene propylene strip: a promising forensic tool. Sci Rep 2024; 14:17357. [PMID: 39075202 PMCID: PMC11286874 DOI: 10.1038/s41598-024-68264-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
The environmental contamination by extremophile Aspergillus species, i.e., Aflatoxin B1, is hardly controllable in Southeast Asia and Sub-Saharan Africa, which lack handling resources and controlled storage facilities. Acute aflatoxicosis poisoning from aflatoxin-prone dietary staples could cause acute hepatic necrosis, acute liver failure, and death. Here, as the cheaper, more straightforward, and facile on-site diagnostic kit is needed, we report an ultraviolet-excitable optical aptasensor based on a fluorinated ethylene propylene film strip. Molecular dynamics on the aptamer.AFB1 complex revealed that the AFB1 to the aptamer increases the overall structural stability, suggesting that the aptamer design is suitable for the intended application. Under various influencing factors, the proposed label-free strategy offers a fast 20-min on-site fabrication simplicity and 19-day shelf-life. The one-pot incubation provides an alternative to catalytic detection and exhibited 4 times reusability. The recovery of crude brown sugar, processed peanuts, and long-grain rice were 102.74 ± 0.41 (n = 3), 86.90 ± 3.38 (n = 3), and 98.50 ± 0.42 (n = 3), comparable to High-Performance Liquid Chromatography-Photodiode Array Detector results. This study is novel owing to the peculiar UV-active spectrum fingerprint and the convenient use of hydrophobic film strips that could promote breakthrough innovations and new frontiers for on-site/forensic detection of environmental pollutants.
Collapse
Affiliation(s)
- Nur-Fadhilah Mazlan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Edison Eukun Sage
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Nur Syamimi Mohamad
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Mukram Mohamed Mackeen
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ling Ling Tan
- Southeast Asia Disaster Prevention Research Initiative (SEADPRI), Institute for Environment and Development (LESTARI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
6
|
Mladenović M, Jarić S, Mundžić M, Pavlović A, Bobrinetskiy I, Knežević NŽ. Biosensors for Cancer Biomarkers Based on Mesoporous Silica Nanoparticles. BIOSENSORS 2024; 14:326. [PMID: 39056602 PMCID: PMC11274377 DOI: 10.3390/bios14070326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
Mesoporous silica nanoparticles (MSNs) exhibit highly beneficial characteristics for devising efficient biosensors for different analytes. Their unique properties, such as capabilities for stable covalent binding to recognition groups (e.g., antibodies or aptamers) and sensing surfaces, open a plethora of opportunities for biosensor construction. In addition, their structured porosity offers capabilities for entrapping signaling molecules (dyes or electroactive species), which could be released efficiently in response to a desired analyte for effective optical or electrochemical detection. This work offers an overview of recent research studies (in the last five years) that contain MSNs in their optical and electrochemical sensing platforms for the detection of cancer biomarkers, classified by cancer type. In addition, this study provides an overview of cancer biomarkers, as well as electrochemical and optical detection methods in general.
Collapse
Affiliation(s)
| | | | | | | | | | - Nikola Ž. Knežević
- BioSense Institute, University of Novi Sad, Dr Zorana Djindjica 1, 21000 Novi Sad, Serbia; (M.M.); (S.J.); (M.M.); (A.P.)
| |
Collapse
|
7
|
Talebi S, Nourbakhsh N, Talebi A, Nourbakhsh AA, Haghighat A, Manshayi M, Bakhsheshi HR, Karimi R, Nazeri R, Mackenzie KJD. Hard tissue formation in pulpotomized primary teeth in dogs with nanomaterials MCM-48 and MCM-48/hydroxyapatite: an in vivo animal study. BMC Oral Health 2024; 24:322. [PMID: 38468251 PMCID: PMC10926592 DOI: 10.1186/s12903-024-04098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND This animal study sought to evaluate two novel nanomaterials for pulpotomy of primary teeth and assess the short-term pulpal response and hard tissue formation in dogs. The results were compared with mineral trioxide aggregate (MTA). METHODS This in vivo animal study on dogs evaluated 48 primary premolar teeth of 4 mongrel female dogs the age of 6-8 weeks, randomly divided into four groups (n = 12). The teeth underwent complete pulpotomy under general anesthesia. The pulp tissue was capped with MCM-48, MCM-48/Hydroxyapatite (HA), MTA (positive control), and gutta-percha (negative control), and the teeth were restored with intermediate restorative material (IRM) paste and amalgam. After 4-6 weeks, the teeth were extracted and histologically analyzed to assess the pulpal response to the pulpotomy agent. RESULTS The data were analyzed using the Kruskal‒Wallis, Fisher's exact, Spearman's, and Mann‒Whitney tests. The four groups were not significantly different regarding the severity of inflammation (P = 0.53), extent of inflammation (P = 0.72), necrosis (P = 0.361), severity of edema (P = 0.52), extent of edema (P = 0.06), or connective tissue formation (P = 0.064). A significant correlation was noted between the severity and extent of inflammation (r = 0.954, P < 0.001). The four groups were significantly different regarding the frequency of bone formation (P = 0.012), extent of connective tissue formation (P = 0.047), severity of congestion (P = 0.02), and extent of congestion (P = 0.01). No bone formation was noted in the gutta-percha group. The type of newly formed bone was not significantly different among the three experimental groups (P = 0.320). CONCLUSION MCM-48 and MCM-48/HA are bioactive nanomaterials that may serve as alternatives for pulpotomy of primary teeth due to their ability to induce hard tissue formation. The MCM-48 and MCM-48/HA mesoporous silica nanomaterials have the potential to induce osteogenesis and tertiary (reparative) dentin formation.
Collapse
Affiliation(s)
- Sahar Talebi
- Dentist, Research Committee, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Nosrat Nourbakhsh
- Department of Pediatric Dentistry, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ardeshir Talebi
- Department of Pathology, Medical School, Dental Research Center, Dental Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Amir Abbas Nourbakhsh
- Department of Materials Science, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Abbas Haghighat
- Department of Maxillofacial Surgery, Dental Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maziar Manshayi
- DVM. Dental Science Research Center. Dentistry faculty, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamid Reza Bakhsheshi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Razieh Karimi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Rahman Nazeri
- Dentist, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kenneth J D Mackenzie
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Tananaiko O, Walcarius A. Composite Silica-Based Films as Platforms for Electrochemical Sensors. CHEM REC 2024; 24:e202300194. [PMID: 37737456 DOI: 10.1002/tcr.202300194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Indexed: 09/23/2023]
Abstract
Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.
Collapse
Affiliation(s)
- Oksana Tananaiko
- Department of Analytical Chemistry, National Taras Shevchenko University of Kyiv, Volodymyrska Str., 64, Kyiv, Ukraine, 01601
| | | |
Collapse
|
9
|
Sun W, Zhang N, Ren X, Wu D, Jia Y, Wei Q, Ju H. Nano-matrixes propped self-enhanced electrochemiluminescence biosensor for microRNA detection. Biosens Bioelectron 2023; 242:115750. [PMID: 37844387 DOI: 10.1016/j.bios.2023.115750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
MicroRNAs (miRNA) are the potential biomarker for breast cancer, a biosensor for detecting miRNA-21 was successfully prepared by covalently linking carbohydrazide (CON4H6) and tris (4,4 '- dicarboxylic acid-2,2' - bipyridyl) ruthenium dichloride (Ru (dcbpy)32+) as a self-enhanced emitter (Ru-CON4H6). The biosensor was prepared by coating the electrode with mesoporous silica encapsulated Ru-CON4H6 as luminophores (RMSNs) to covalently link a couple of DNA strands (Q1-H2). The RMSNs coated electrode exhibited strong ECL emission due to the intramolecular electron transfer between the electrochemically oxidized Ru (dcbpy)32+ and co-reactant CON4H6. In the presence of target miRNA-21 and an assistant hairpin H1, H2 could be released from the surface through a strand displacement reaction (SDR), and the reserved Q1 could form G-quadruplex upon the addition of K+. The formed G-quadruplex then interacted with Q2-Fc in the presence of Mg2+ to form a DNA complex on the biosensor surface, which quenched the nano-matrixes propped self-enhanced ECL emission through the electron exchange between Fc and electrode or oxidized ECL intermediates. Under optimal conditions, the ECL decrease showed a correlation with target concentration, leading to a biosensing method for sensitive detection of miRNA-21. The proposed ECL method demonstrated a detectable concentration range from 0.1 fM to 1 nM along with a detection limit of 0.03 fM, good accuracy, and acceptable reproducibility, showing that the self-enhanced ECL biosensing strategy supported by nano-matrix provided a new way for the ultrasensitive detection of miRNA, and promoted the development of breast cancer diagnosis.
Collapse
Affiliation(s)
- Weijia Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yue Jia
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China; Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Qasim almajidi Y, Althomali RH, Gandla K, Uinarni H, Sharma N, Hussien BM, Alhassan MS, Mireya Romero-Parra R, Singh Bisht Y. Multifunctional immunosensors based on mesoporous silica nanomaterials as efficient sensing platforms in biomedical and food safety analysis: A review of current status and emerging applications. Microchem J 2023; 191:108901. [DOI: 10.1016/j.microc.2023.108901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Jia T, Luo Y, Sheng X, Fang J, Merlin D, Iyer SS. Palladium encapsulated mesoporous silica nanoparticles for the rapid detection of analytes. Analyst 2023; 148:2064-2072. [PMID: 36988972 DOI: 10.1039/d3an00252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
We designed a simple, inexpensive, and user-friendly assay using mesoporous silica nanoparticles to detect analytes.
Collapse
Affiliation(s)
- Tianwei Jia
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Ying Luo
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Xiaolin Sheng
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Jieqiong Fang
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| | - Didier Merlin
- 790 Petit Science Center, Institute of Biomedical Science, Georgia State University and Atlanta Veterans Affairs Medical Center, Atlanta, GA 30033, USA
| | - Suri S Iyer
- 788 Petit Science Center, Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30302, USA.
| |
Collapse
|
12
|
Hui Y, Huang Z, Alahi MEE, Nag A, Feng S, Mukhopadhyay SC. Recent Advancements in Electrochemical Biosensors for Monitoring the Water Quality. BIOSENSORS 2022; 12:bios12070551. [PMID: 35884353 PMCID: PMC9313366 DOI: 10.3390/bios12070551] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 05/06/2023]
Abstract
The release of chemicals and microorganisms from various sources, such as industry, agriculture, animal farming, wastewater treatment plants, and flooding, into water systems have caused water pollution in several parts of our world, endangering aquatic ecosystems and individual health. World Health Organization (WHO) has introduced strict standards for the maximum concentration limits for nutrients and chemicals in drinking water, surface water, and groundwater. It is crucial to have rapid, sensitive, and reliable analytical detection systems to monitor the pollution level regularly and meet the standard limit. Electrochemical biosensors are advantageous analytical devices or tools that convert a bio-signal by biorecognition elements into a significant electrical response. Thanks to the micro/nano fabrication techniques, electrochemical biosensors for sensitive, continuous, and real-time detection have attracted increasing attention among researchers and users worldwide. These devices take advantage of easy operation, portability, and rapid response. They can also be miniaturized, have a long-life span and a quick response time, and possess high sensitivity and selectivity and can be considered as portable biosensing assays. They are of special importance due to their great advantages such as affordability, simplicity, portability, and ability to detect at on-site. This review paper is concerned with the basic concepts of electrochemical biosensors and their applications in various water quality monitoring, such as inorganic chemicals, nutrients, microorganisms' pollution, and organic pollutants, especially for developing real-time/online detection systems. The basic concepts of electrochemical biosensors, different surface modification techniques, bio-recognition elements (BRE), detection methods, and specific real-time water quality monitoring applications are reviewed thoroughly in this article.
Collapse
Affiliation(s)
- Yun Hui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Zhaoling Huang
- School of Mechanical and Electrical Engineering, Guilin University of Electronic Technology, Guilin 541004, China;
| | - Md Eshrat E. Alahi
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- Correspondence: (M.E.E.A.); (S.F.)
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany;
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shilun Feng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Correspondence: (M.E.E.A.); (S.F.)
| | | |
Collapse
|
13
|
Margiana R, Hammid AT, Ahmad I, Alsaikhan F, Turki Jalil A, Tursunbaev F, Umar F, Romero Parra RM, Fakri Mustafa Y. Current Progress in Aptasensor for Ultra-Low Level Monitoring of Parkinson's Disease Biomarkers. Crit Rev Anal Chem 2022; 54:617-632. [PMID: 35754381 DOI: 10.1080/10408347.2022.2091920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, Parkinson's disease (PD) has been introduced as a long-term degenerative disorder of the central nervous system which mainly affects approximately more than ten million people worldwide. The vast majority of diagnostic methods for PD have operated based on conventional sensing platforms, while the traditional laboratory tests are not efficient for diagnosis of PD in the early stage due to symptoms of this common neurodegenerative syndrome starting slowly. The advent of the aptasensor has revolutionized the early-stage diagnosis of PD by measuring related biomarkers due to the myriad advantages of originating from aptamers which can be able to sensitive and selective capture various types of related biomarkers. The progress of numerous sensing platforms and methodologies in terms of biosensors based on aptamer application for PD diagnosis has revealed promising results. In this review, we present the latest developments in myriad types of aptasensors for the determination of related PD biomarkers. Working strategies, advantages and limitations of these sensing approaches are also mentioned, followed by prospects and challenges.
Collapse
Affiliation(s)
- Ria Margiana
- Department of Anatomy, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Master's Programme Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Dr. Soetomo General Academic Hospital, Indonesia Surabaya
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja'afar Al-Sadiq University, Baghdad, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, Iraq
| | - Farkhod Tursunbaev
- Independent Researcher, "Medcloud" Educational Centre, Tashkent, Uzbekistan
- Research Scholar, Department of Science and Innovation, Akfa University, Tashkent, Uzbekistan
| | - Fadilah Umar
- Department of Sports Science, Faculty of Sports, Sebelas Maret University, Surakarta, Indonesia
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| |
Collapse
|
14
|
Bio-fabrication of Bio-inspired Silica Nanomaterials from Bryophyllum pinnatum Leaf for Agricultural Applications. Appl Biochem Biotechnol 2022; 194:4266-4277. [PMID: 35666380 DOI: 10.1007/s12010-022-03996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
A green chemistry approach was employed to synthesize silica nanoparticles (SiNPs) using aqueous extract of Bryophyllum pinnatum leaf as capping agents. The novelty of this study was to produce silica nanoparticles using the biological method. An analysis of the physicochemical properties of formed nanoparticles was successfully completed through sophisticated characterization methods, such as UV-Visible absorbance spectroscopy, Fourier transform infra-red spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, zeta potential analysis, and thermo-gravimetric analysis. All the characterization results indicated their spherical morphology and amorphous nature with an average size of 24 nm. FT-IR results highlighted the key bioactive compounds that could be responsible for capping and reducing the formation of SiNPs. Synthesized SiNPs show excellent stability with a negative zeta potential value of - 32 mV. The biomolecules from B. pinnatum were successfully working for the formation of Si NPs with spherical shapes. Moreover, to assess the agricultural application, green-synthesized SiNPs were carried out by seed germination assay on Vigna radiata. The seed germination assay confirms that a low concentration of SiNPs enhances seed germination. Meanwhile, a higher concentration of the SiNPs inhibits seed germination and shoot, and root formation. SiNPs at optimum concentration could be used in the agriculture field as nano growth promoters.
Collapse
|
15
|
Liu X, Zhang X, Chen J, Zhang C, Feng S, Zhang W. Tunable synthesis of dendritic fibrous nano silica using 1-pentanol-water microemulsion at low oil to water ratio. NANOTECHNOLOGY 2022; 33:325601. [PMID: 35487193 DOI: 10.1088/1361-6528/ac6bb0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Dendritic fibrous nanosilica (DFNS) is a suitable nano-carrier for loading pesticides with radially oriented pores and a large surface area. The microemulsion method is standard method to prepare DFNS, and 1-pentanol is taken to replace cyclohexane as an oil solvent due to its high stability and nontoxic property. The results showed that the volume ratio of 1-pentanol (oil) to water (O/W) and the molar ratio of hexadecyltrimethylammonium bromide (CTAB) to tetraethylorthosilicate (TEOS) had effected on morphology and adsorption properties of DFNS in the water-CTAB-1-pentanol-ethanol-trimethylbenzene (TMB) microemulsion system. DFNS with bicontinuous concentric lamellar morphologies can be synthesized in this microemulsion at the meager O/W volume ratio (0.025-0.045). It features a tight mesoporous structure with a thin dendritic fibrous in 0.03 to 0.04 O/W volume ratio. The particle sizes, surface areas, and porosity of DFNS were positively correlated with the addition of the silica precursor TEOS. The size of DFNS increased from 123 to about 220 nm with the CTAB/TEOS molar ratio decreasing from 0.119 to 0.050. When the molar ratio of CTAB to TEOS = 0.119, DFNS has a smaller particle size (123 nm) with a larger surface area and abundant honeycomb mesopores; the low O/W volume ratio strategy provides theoretical support for the industrialization development of DFNS and nano-pesticides, which plays a profound role in promoting the sustainable development of pesticide reduction, efficiency and green agriculture.
Collapse
Affiliation(s)
- Xuexue Liu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiang Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jian Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Changhao Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Songke Feng
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weiguo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| |
Collapse
|
16
|
Nayl AA, Abd-Elhamid AI, Aly AA, Bräse S. Recent progress in the applications of silica-based nanoparticles. RSC Adv 2022; 12:13706-13726. [PMID: 35530394 PMCID: PMC9073631 DOI: 10.1039/d2ra01587k] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Functionalized silica nanoparticles (SiO2 NPs) have attracted great attention due to their promising distinctive, versatile, and privileged physiochemical characteristics. These enhanced properties make this type of functionalized nanoparticles particularly appropriate for different applications. A lack of reviews that summarizes the fabrications of such nanomaterials and their different applications in the same work has been observed in the literature. Therefore, in this work, we will discuss the recent signs of progress in the fabrication of functionalized silica nanoparticles and their attractive applications that have been extensively highlighted (advanced catalysis, drug-delivery, biomedical applications, environmental remediation applications, and wastewater treatment). These applications have been selected for demonstrating the role of the surface modification step on the various properties of the silica surface. In addition, the current challenges in the applications of functionalized silica nanoparticles and corresponding strategies to discuss these issues and future perspectives for additional improvement have been addressed.
Collapse
Affiliation(s)
- A A Nayl
- Department of Chemistry, College of Science, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - A I Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City) New Borg Al-Arab Alexandria 21934 Egypt
| | - Ashraf A Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University 61519-El-Minia Egypt
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT) Fritz-Haber-Weg 6 76133 Karlsruhe Germany
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen D-76344 Germany
| |
Collapse
|
17
|
Emerging optical and electrochemical biosensing approaches for detection of ciprofloxacin residues in food and environment samples: A comprehensive overview. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Sulfonic acid-functionalized mesoporous silica catalyst with different morphology for biodiesel production. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-021-2133-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Fluorogenic Detection of Human Serum Albumin Using Curcumin-Capped Mesoporous Silica Nanoparticles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031133. [PMID: 35164400 PMCID: PMC8838683 DOI: 10.3390/molecules27031133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022]
Abstract
Mesoporous silica nanoparticles loaded with rhodamine B and capped with curcumin are used for the selective and sensitive fluorogenic detection of human serum albumin (HSA). The sensing mesoporous silica nanoparticles are loaded with rhodamine B, decorated with aminopropyl moieties and capped with curcumin. The nanoparticles selectively release the rhodamine B cargo in the presence of HSA. A limit of detection for HSA of 0.1 mg/mL in PBS (pH 7.4)-acetonitrile 95:5 v/v was found, and the sensing nanoparticles were used to detect HSA in spiked synthetic urine samples.
Collapse
|
20
|
Aptamer-binding zirconium-based metal-organic framework composites prepared by two conjunction approaches with enhanced bio-sensing for detecting isocarbophos. Talanta 2022; 236:122822. [PMID: 34635212 DOI: 10.1016/j.talanta.2021.122822] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/22/2022]
Abstract
A novel label-free and enzyme-free detection strategy has been developed for the electrochemical biosensor detection of isocarbophos (ICP) using UiO-66-NH2 and aptamer as the signal transducers. In this work, the ICP aptamers were attached to UiO-66-NH2 through physical mixing and chemical combination methods. In the presence of ICP, the aptamers could undergo conformational change and bind to them, which prevent the electron transfer to the surface of electrode. By comparing the two conjunction approaches of aptasensors, these proposed strategies could selectively and sensitively detect ICP with a detection limit of 6 ng mL-1 (20.74 nM) and 0.9 ng mL-1 (3.11 nM). Furthermore, we have also demonstrated the capability of this strategy in the detection of ICP in real samples from vegetable and fruit extract, indicating the potential application of this strategy in food safety issues.
Collapse
|
21
|
Li X, Zhang Y, Liu Q, Jin Y, Li B. CRISPR/Cas12a-based fluorescence immunoassay: combination of efficient signal generation with specific molecule recognition. Analyst 2022; 147:3833-3837. [DOI: 10.1039/d2an01048h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensing strategy ingeniously combines the efficient signal generation of the CRISPR/Cas12a system with antigen–antibody-specific recognition.
Collapse
Affiliation(s)
- Xi Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yuyuan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Qiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Jin
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Baoxin Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
22
|
Kholafazad kordasht H, Mirzaie A, Seidi F, Hasanzadeh M. Low fouling and ultra-sensitive electrochemical screening of ractopamine using mixed self-assembly of PEG and aptamer immobilized on the interface of poly (dopamine)/GCE: A new apta-platform towards point of care (POC) analysis. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Li Y, Su R, Li H, Guo J, Hildebrandt N, Sun C. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal Chem 2021; 94:193-224. [PMID: 34788014 DOI: 10.1021/acs.analchem.1c04294] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ying Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ruifang Su
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France
| | - Hongxia Li
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jiajia Guo
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055 Shenzhen, China
| | - Niko Hildebrandt
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique: Réactivité et Analyse), UMR 6014, CNRS, Université de Rouen Normandie, INSA, 76821 Mont-Saint-Aignan Cedex, France.,Université Paris-Saclay, 91190 Saint-Aubin, France.,Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Chunyan Sun
- Department of Food Quality and Safety, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
24
|
Kim JH, Suh YJ, Park D, Yim H, Kim H, Kim HJ, Yoon DS, Hwang KS. Technological advances in electrochemical biosensors for the detection of disease biomarkers. Biomed Eng Lett 2021; 11:309-334. [PMID: 34466275 PMCID: PMC8396145 DOI: 10.1007/s13534-021-00204-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
With an increasing focus on health in contemporary society, interest in the diagnosis, treatment, and prevention of diseases has grown rapidly. Accordingly, the demand for biosensors for the early diagnosis of disease is increasing. However, the measurement range of existing electrochemical sensors is relatively high, which is not suitable for early disease diagnosis, requiring the detection of small amounts of biocomponents. Various attempts have been made to overcome this and amplify the signal, including binding with various labeling molecules, such as DNA, enzymes, nanoparticles, and carbon materials. Efforts are also being made to increase the sensitivity of electrochemical sensors, and the combination of nanomaterials, materials, and biotechnology offers the potential to increase sensitivity in a variety of ways. Recent studies suggest that electrochemical sensors can be a powerful tool in providing comprehensive insights into the targeting and detection of disease-associated biomarkers. Significant advances in nanomaterial and biomolecule approaches for improved sensitivity have resulted in the development of electrochemical biosensors capable of detecting multiple biomarkers in real time in clinically relevant samples. In this review, we have discussed the recent studies on electrochemical sensors for detection of diseases such as diabetes, degenerative diseases, and cancer. Further, we have highlighted new technologies to improve sensitivity using various materials, including DNA, enzymes, nanoparticles, and carbon materials.
Collapse
Affiliation(s)
- Jae Hyun Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Young Joon Suh
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dongsung Park
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hyoju Yim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Hongrae Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Hye Jin Kim
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul, 02841 Republic of Korea
| | - Kyo Seon Hwang
- Department of Clinical Pharmacology and Therapeutics, College of Medicine, Kyung Hee University, Kyungheedae-ro 26, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
25
|
Wang Y, Zhang B, Ding X, Du X. Dendritic mesoporous organosilica nanoparticles (DMONs): Chemical composition, structural architecture, and promising applications. NANO TODAY 2021; 39:101231. [DOI: 10.1016/j.nantod.2021.101231] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
26
|
Kordasht HK, Hasanzadeh M, Seidi F, Alizadeh PM. Poly (amino acids) towards sensing: Recent progress and challenges. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
27
|
Advances in aptamer-based nanomaterials for separation and analysis of non-genetic biomarkers in biofluids. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Candela-Noguera V, Vivo-Llorca G, Díaz de Greñu B, Alfonso M, Aznar E, Orzáez M, Marcos MD, Sancenón F, Martínez-Máñez R. Gene-Directed Enzyme Prodrug Therapy by Dendrimer-Like Mesoporous Silica Nanoparticles against Tumor Cells. NANOMATERIALS 2021; 11:nano11051298. [PMID: 34069171 PMCID: PMC8156333 DOI: 10.3390/nano11051298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/15/2022]
Abstract
We report herein a gene-directed enzyme prodrug therapy (GDEPT) system using gated mesoporous silica nanoparticles (MSNs) in an attempt to combine the reduction of side effects characteristic of GDEPT with improved pharmacokinetics promoted by gated MSNs. The system consists of the transfection of cancer cells with a plasmid controlled by the cytomegalovirus promoter, which promotes β-galactosidase (β-gal) expression from the bacterial gene lacZ (CMV-lacZ). Moreover, dendrimer-like mesoporous silica nanoparticles (DMSNs) are loaded with the prodrug doxorubicin modified with a galactose unit through a self-immolative group (DOXO-Gal) and modified with a disulfide-containing polyethyleneglycol gatekeeper. Once in tumor cells, the reducing environment induces disulfide bond rupture in the gatekeeper with the subsequent DOXO-Gal delivery, which is enzymatically converted by β-gal into the cytotoxic doxorubicin drug, causing cell death. The combined treatment of the pair enzyme/DMSNs-prodrug are more effective in killing cells than the free prodrug DOXO-Gal alone in cells transfected with β-gal.
Collapse
Affiliation(s)
- Vicente Candela-Noguera
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - Gema Vivo-Llorca
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - Borja Díaz de Greñu
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - María Alfonso
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - Elena Aznar
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avda Fernando Abril Martorell, 46026 Valencia, Spain
| | - Mar Orzáez
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- Centro de Investigación Príncipe Felipe, Laboratorio de Péptidos y Proteínas, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain
| | - María Dolores Marcos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avda Fernando Abril Martorell, 46026 Valencia, Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avda Fernando Abril Martorell, 46026 Valencia, Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, 46022 Valencia, Spain; (V.C.-N.); (G.V.-L.); (B.D.d.G.); (M.A.); (E.A.); (M.D.M.); (F.S.)
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Universitat Politècnica de València y Centro de Investigación Príncipe Felipe, C/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 46022 Valencia, Spain
- Unidad Mixta de Investigación en Nanomedicina y Sensores, Instituto de Investigación Sanitaria La Fe (IISLAFE), Universitat Politècnica de València, Avda Fernando Abril Martorell, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
29
|
Yue F, Li F, Kong Q, Guo Y, Sun X. Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143129. [PMID: 33121792 DOI: 10.1016/j.scitotenv.2020.143129] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 05/25/2023]
Abstract
Aminoglycoside antibiotics (AAs) have been extensively applied in medical field and animal husbandry owing to desirable broad-spectrum antibacterial activity. Excessive AAs residues in the environment can be accumulated in human body through food chain and cause detrimental effect on human health. The establishment of highly specific, simple and sensitive detection methods for monitoring AAs residues is highly in demand. Aptasensor using aptamer as the biological recognition element is the efficient and promising sensing method for detection of AAs. In this review, we have made a summary of specific aptamers sequences against AAs. Subsequently, we provide a systematical and comprehensive overview of modern techniques in aptasensors for detection of AAs according to optical aptasensors as well as electrochemical aptasensors and further summarize their advantages and disadvantages to compare their applications. In addition, we present an overview of practical applications of aptasensors in sample detection of AAs. Moreover, the current challenges and future trends in this field are also included to reveal a promising perspective for developing novel aptasensors for AAs.
Collapse
Affiliation(s)
- Fengling Yue
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Qianqian Kong
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No.12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, China.
| |
Collapse
|
30
|
Lv M, Zhou W, Tavakoli H, Bautista C, Xia J, Wang Z, Li X. Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing. Biosens Bioelectron 2021; 176:112947. [PMID: 33412430 PMCID: PMC7855766 DOI: 10.1016/j.bios.2020.112947] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/22/2020] [Accepted: 12/26/2020] [Indexed: 02/07/2023]
Abstract
As a class of crystalline porous materials, metal-organic frameworks (MOFs) have attracted increasing attention. Due to the nanoscale framework structure, adjustable pore size, large specific surface area, and good chemical stability, MOFs have been applied widely in many fields such as biosensors, biomedicine, electrocatalysis, energy storage and conversions. Especially when they are combined with aptamer functionalization, MOFs can be utilized to construct high-performance biosensors for numerous applications ranging from medical diagnostics and food safety inspection, to environmental surveillance. Herein, this article reviews recent innovations of aptamer-functionalized MOFs-based biosensors and their bio-applications. We first briefly introduce different functionalization methods of MOFs with aptamers, which provide a foundation for the construction of MOFs-based aptasensors. Then, we comprehensively summarize different types of MOFs-based aptasensors and their applications, in which MOFs serve as either signal probes or signal probe carriers for optical, electrochemical, and photoelectrochemical detection, with an emphasis on the former. Given recent substantial research interests in stimuli-responsive materials and the microfluidic lab-on-a-chip technology, we also present the stimuli-responsive aptamer-functionalized MOFs for sensing, followed by a brief overview on the integration of MOFs on microfluidic devices. Current limitations and prospective trends of MOFs-based biosensors are discussed at the end.
Collapse
Affiliation(s)
- Mengzhen Lv
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Wan Zhou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Cynthia Bautista
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA
| | - Jianfei Xia
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China; Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA.
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao, 266071, PR China
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, 79968, USA; Biomedical Engineering, Border Biomedical Research Center, University of Texas at El Paso, El Paso, 79968, USA; Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA.
| |
Collapse
|
31
|
Habibi B, Pashazadeh S, Saghatforoush LA, Pashazadeh A. A thioridazine hydrochloride electrochemical sensor based on zeolitic imidazolate framework-67-functionalized bio-mobile crystalline material-41 carbon quantum dots. NEW J CHEM 2021. [DOI: 10.1039/d1nj01949j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In this research, we introduce an innovative nanocomposite based on ZIF-67/Bio-MCM-41/CQDs in order to fabricate a novel electrochemical sensor at the glassy carbon electrode and for the first time applied for the electrodetermination of the thioridazine hydrochloride.
Collapse
Affiliation(s)
- Biuck Habibi
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| | - Sara Pashazadeh
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| | | | - Ali Pashazadeh
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| |
Collapse
|
32
|
Behyar MB, Shadjou N. d-Penicillamine functionalized dendritic fibrous nanosilica (DFNS-DPA): synthesise and its application as an innovative advanced nanomaterial towards sensitive quantification of ractopamine. RSC Adv 2021; 11:30206-30214. [PMID: 35480274 PMCID: PMC9041102 DOI: 10.1039/d1ra05655g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 08/19/2021] [Indexed: 12/30/2022] Open
Abstract
During the twentieth century, ractopamine (RAC) as one of the important and frequently used feed additives and doping agents has attracted considerable attention in the animal breeding industry and sports competitions.
Collapse
Affiliation(s)
- Milad Baghal Behyar
- Department of Nanotechnology, Faculty of Science and Chemistry, Urmia University, Urmia, Iran
| | - Nasrin Shadjou
- Department of Nanotechnology, Faculty of Science and Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
33
|
Yáñez-Sedeño P, González-Cortés A, Campuzano S, Pingarrón JM. Multimodal/Multifunctional Nanomaterials in (Bio)electrochemistry: Now and in the Coming Decade. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2556. [PMID: 33352731 PMCID: PMC7766190 DOI: 10.3390/nano10122556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/13/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Multifunctional nanomaterials, defined as those able to achieve a combined effect or more than one function through their multiple functionalization or combination with other materials, are gaining increasing attention in the last years in many relevant fields, including cargo targeted delivery, tissue engineering, in vitro and/or in vivo diseases imaging and therapy, as well as in the development of electrochemical (bio)sensors and (bio)sensing strategies with improved performance. This review article aims to provide an updated overview of the important advances and future opportunities exhibited by electrochemical biosensing in connection to multifunctional nanomaterials. Accordingly, representative aspects of recent approaches involving metal, carbon, and silica-based multifunctional nanomaterials are selected and critically discussed, as they are the most widely used multifunctional nanomaterials imparting unique capabilities in (bio)electroanalysis. A brief overview of the main remaining challenges and future perspectives in the field is also provided.
Collapse
Affiliation(s)
- Paloma Yáñez-Sedeño
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | | - Susana Campuzano
- Departamento de Química Analítica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain; (A.G.-C.); (J.M.P.)
| | | |
Collapse
|
34
|
Wang Y, Hu Y, He Q, Yan J, Xiong H, Wen N, Cai S, Peng D, Liu Y, Liu Z. Metal-organic frameworks for virus detection. Biosens Bioelectron 2020; 169:112604. [PMID: 32980805 PMCID: PMC7489328 DOI: 10.1016/j.bios.2020.112604] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
Abstract
Virus severely endangers human life and health, and the detection of viruses is essential for the prevention and treatment of associated diseases. Metal-organic framework (MOF), a novel hybrid porous material which is bridged by the metal clusters and organic linkers, has become a promising biosensor platform for virus detection due to its outstanding properties including high surface area, adjustable pore size, easy modification, etc. However, the MOF-based sensing platforms for virus detection are rarely summarized. This review systematically divided the detection platforms into nucleic acid and immunological (antigen and antibody) detection, and the underlying sensing mechanisms were interpreted. The nucleic acid sensing was discussed based on the properties of MOF (such as metal ion, functional group, geometry structure, size, porosity, stability, etc.), revealing the relationship between the sensing performance and properties of MOF. Moreover, antibodies sensing based on the fluorescence detection and antigens sensing based on molecular imprinting or electrochemical immunoassay were highlighted. Furthermore, the remaining challenges and future development of MOF for virus detection were further discussed and proposed. This review will provide valuable references for the construction of sophisticated sensing platform for the detection of viruses, especially the 2019 coronavirus.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yaqin Hu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Qunye He
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Jianhua Yan
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Hongjie Xiong
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Nachuan Wen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Shundong Cai
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China.
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.
| |
Collapse
|